
http://www.cambridge.org/9780521717892

This page intentionally left blank

The Student’s Introduction
to Mathematica ®

Second edition

The unique feature of this compact student’s
introduction is that it presents concepts in an
order that closely follows a standard mathe-
matics curriculum, rather than structured along
features of the software. As a result, the book
provides a brief introduction to those aspects
of the Mathematica ® software program most
useful to students. The second edition of this
well-loved book is completely rewritten for
Mathematica ® 6, including coverage of the
new dynamic interface elements, several hun-
dred exercises, and a new chapter on pro-
gramming. This book can be used in a variety
of courses, from precalculus to linear alge-
bra. Used as a supplementary text it will aid
in bridging the gap between the mathematics
in the course and Mathematica ®. In addi-
tion to its course use, this book will serve as
an excellent tutorial for those wishing to learn
Mathematica ® and brush up on their mathe-
matics at the same time.

Bruce F. Torrence and Eve A. Torrence are both
Professors in the Department of Mathematics at
Randolph-Macon College,Virginia.

The Student’s
Introduction to
Mathematica ®

A Handbook for
Precalculus, Calculus,
and Linear Algebra

Second edition

Bruce F. Torrence
Eve A. Torrence

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-71789-2

ISBN-13 978-0-511-51624-5

© B. Torrence and E. Torrence 2009

2009

Information on this title: www.cambridge.org/9780521717892

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

paperback

http://www.cambridge.org
http://www.cambridge.org/9780521717892

For

Alexandra and Robert

Contents

Preface · ix

1 Getting Started · 1
Launching Mathematica · The Basic Technique for Using Mathematica · The First Computation ·
Commands for Basic Arithmetic · Input and Output · The BasicMathInput Palette · Decimal In, Decimal
Out · Use Parentheses to Group Terms · Three Well-Known Constants · Typing Commands in
Mathematica · Saving Your Work and Quitting Mathematica · Frequently Asked Questions About
Mathematica’s Syntax

2 Working with Mathematica · 27
Opening Saved Notebooks · Adding Text to Notebooks · Printing · Creating Slide Shows · Creating Web
Pages · Converting a Notebook to Another Format · Mathematica’s Kernel · Tips for Working Effectively ·
Getting Help from Mathematica · Loading Packages · Troubleshooting

3 Functions and Their Graphs · 51
Defining a Function · Plotting a Function · Using Mathematica’s Plot Options · Investigating Functions
with Manipulate · Producing a Table of Values · Working with Piecewise Defined Functions · Plotting
Implicitly Defined Functions · Combining Graphics · Enhancing Your Graphics · Working with Data ·
Managing Data—An Introduction to Lists · Importing Data · Working with Difference Equations

4 Algebra · 147
Factoring and Expanding Polynomials · Finding Roots of Polynomials with Solve and NSolve · Solving
Equations and Inequalities with Reduce · Understanding Complex Output · Working with Rational
Functions · Working with Other Expressions · Solving General Equations · Solving Difference Equations ·
Solving Systems of Equations

5 Calculus · 195
Computing Limits · Working with Difference Quotients · The Derivative · Visualizing Derivatives · Higher
Order Derivatives · Maxima and Minima · Inflection Points · Implicit Differentiation · Differential
Equations · Integration · Definite and Improper Integrals · Numerical Integration · Surfaces of Revolution ·
Sequences and Series

6 Multivariable Calculus · 251
Vectors · Real-Valued Functions of Two or More Variables · Parametric Curves and Surfaces · Other
Coordinate Systems · Vector Fields · Line Integrals and Surface Integrals

7 Linear Algebra · 335
Matrices · Performing Gaussian Elimination · Matrix Operations · Minors and Cofactors · Working with
Large Matrices · Solving Systems of Linear Equations · Vector Spaces · Eigenvalues and Eigenvectors ·
Visualizing Linear Transformations

8 Programming · 385
Introduction · FullForm: What the Kernel Sees · Numbers · Map and Function · Control Structures and
Looping · Scoping Constructs: With and Module · Iterations: Nest and Fold · Patterns

Solutions to Exercises · www.

Index · 461

viii The Student’s Introduction to Mathematica

Preface

The mathematician and juggler Ronald L. Graham has likened the mastery of computer program-
ming to the mastery of juggling. The problem with juggling is that the balls go exactly where you
throw them. And the problem with computers is that they do exactly what you tell them.

This is a book about Mathematica, a software system described as “the world’s most powerful global
computing environment.” As software programs go, Mathematica is big—really big. We said that
back in 1999 in the preface to the first edition of this book. And it’s gotten a good deal bigger since
then. There are more than 900 new documented symbols in version 6 of Mathematica. It’s been said
that there are more new commands in version 6 than there were commands in version 1. It’s gotten
so big that the documentation is no longer produced in printed form. Our trees and our backs are
grateful. Yes, Mathematica will do exactly what you ask it to do, and it has the potential to amaze
and delight—but you have to know how to ask, and that can be a formidable task.

That’s where this book comes in. It is intended as a supplementary text for high school and college
students. As such, it introduces commands and procedures in an order that roughly coincides with
the usual mathematics curriculum. The idea is to provide a coherent introduction to Mathematica
that does not get ahead of itself mathematically. Most of the available reference materials make the
assumption that the reader is thoroughly familiar with the mathematical concepts underlying each
Mathematica command and procedure. This book does not. It presents Mathematica as a means not
only of solving mathematical problems, but of exploring and clarifying the concepts themselves. It
also provides examples of procedures that students will need to master, showing not just individual
commands, but sequences of commands that together accomplish a larger goal.

While written primarily for students, the first edition was well-received by many non-students who
just wanted to learn Mathematica. By following the standard mathematics curriculum, we were told,
the presentation exudes a certain familiarity and coherence. What better way to learn a computer
program than to rediscover the beautiful ideas from your foundational mathematics courses?

What’s New in this Edition?

The impetus for a second edition was driven by the software itself. The first edition coincided with
the release of Mathematica 4. While version 5 introduced a few notable new commands, much of the
innovations in that release were kept under the hood, so to speak. The algorithms associated with
many well-used commands were improved, but the user interface underwent minimal changes.
Mathematica 6 on the other hand is a different beast entirely. Perhaps the most fundamental innova-

tion is the introduction of dynamic user interface elements with commands such as Manipulate. It
is now possible to take essentially any Mathematica expression and add sliders or buttons that permit
a user to adjust parameters in real time. The second edition was re-written from the ground up to
take these and other changes into account. Virtually every section of every chapter has undergone
extensive revision and expansion. This edition reflects the software as it exists today.

The organization of the book has not changed, but there are two notable new additions:

The second edition has exercises, several hundred in fact. These provide a means for experimenting
with and extending the ideas outlined in each section. They also provide a concrete and structured
framework for interacting with the software. It is through such interactions that familiarity and
(ultimately) competence and even mastery will be attained. Complete solutions are freely available
online, as discussed in the next section.

In addition, a new chapter has been added (Chapter 8) to address the fundamental aspects of
programming with Mathematica. While this topic is far too expansive to cover thoroughly in a single
chapter, many of the fundamentals of programming are conveyed here. It is a fact that many of the
new features of version 6 require a working knowledge of pure functions and other ideas that fit
naturally into this context. You are likely to find yourself reading a section of this chapter here and
there as you explore certain topics in the earlier chapters. Think of it as a handy reference.

How to Use this Book

Of course, this is a printed book and as such is perfectly suitable for bedtime reading. But in most
cases you will want to have the book laid open next to you as you work directly with Mathematica.
You can mimic the inputs and then try variations. After you get used to the syntax conventions it
will be fun.

The first chapter provides a brief tutorial for those unfamiliar with the software. The second delves a
bit deeper into the fundamental design principles and can be used as a reference for the rest of the
book. Chapters 3 and 4 provide information on those Mathematica commands and procedures
relevant to the material in a precalculus course. Chapter 5 adds material relevant to single-variable
calculus, and Chapter 6 deals with multivariable calculus. Chapter 7 introduces commands and

procedures pertinent to the material in a linear algebra course.

Some sections of the text carry this warning sign. These sections provide slightly more
comprehensive information for the advanced user. They can be skipped by less hardy souls.

Beginning in Chapter 3, each section has exercises. Solutions to every exercise can be freely down-
loaded from the website at www. .

Mathematica runs on every major operating system, from Macs and PCs to Linux workstations. For
the most part it works exactly the same on every platform. There are, however, a few procedures
(such as certain keyboard shortcuts) that are platform specific. In such cases we have provided
specific information for both the Mac OS and Microsoft Windows platforms. If you find yourself
running Mathematica on some other platform you can be assured that the procedure you need is
virtually identical to one of these.

x The Student’s Introduction to Mathematica

Acknowledgments

Time flies. When we wrote the first edition of this book Robert and Alexandra were toddlers who
would do anything to get our attention and wanted to sit on our laps while we worked. Now they
are teenagers who just want our laptops. Like Mathematica our kids have grown up. They have
become our best friends and terrific travel buddies. This project has again disrupted their lives and
we thank them for their attempts at patience. To quote Robert, “You guys aren’t going to write any
more books, are you?” Don’t worry kids, at this rate you’ll both be in college.

Special thanks go out to Paul Wellin at Wolfram Research, who handled the page design and who
dealt tirelessly with countless other issues, both editorial and technical. We would like to thank
Randolph-Macon College and the Walter Williams Craigie Endowment for the support we received
throughout this project. And we thank Peter Thompson, our editor at Cambridge, for his profes-
sional acumen and ongoing encouragement and support.

Preface xi

1
Getting Started

1.1 Launching Mathematica
The first task you will face is finding where Mathematica resides in your computer’s file system. If
this is the first time you are using a computer in a classroom or lab, by all means ask your instructor
for help. You are looking for “Spikey,” an icon that looks something like this:

When you have located the icon, double click it with your mouse. In a moment an empty window
will appear. This is your Mathematica notebook; it is the environment where you will carry out your
work.

The remainder of this chapter is a quick tutorial that will enable you to get accustomed to the
syntax and conventions of Mathematica, and demonstrate some of its many features.

1.2 The Basic Technique for Using Mathematica
A Mathematica notebook is an interactive environment. You type a command (such as 2 2) and
instruct Mathematica to execute it. Mathematica responds with the answer on the next line. You then
type another command, and so on. Each command you type will appear on the screen in a boldface
font. Mathematica’s output will appear in a plain font.

Entering Input
After typing a command, you enter it as follows:

On a machine running Windows: Hit the combination , or hit the key on
the numeric keypad if you have one (usually in the lower right portion of the keyboard).
On a Mac: Hit the key (usually in the lower right portion of the keyboard), or hit
the combination .

1.3 The First Computation
For your first computation, type

2 2

then hit the combination (Windows) or the key (Mac OS). There may be a brief pause
while your first entry is processed. During this pause the notebook’s title bar will contain the text
“Running...”

In[1]:= 2 2

Out[1]= 4

The reason that this simple task takes a moment is that Mathematica doesn’t start its engine, so to
speak, until the first computation is entered. In fact, entering the first computation causes your
computer to launch a second program called the MathKernel (or kernel for short). Mathematica really
consists of these two programs, the Front End, where you type your commands and where output,
graphics, and text are displayed, and the MathKernel, where calculations are executed. Every subse-
quent computation will be faster, for the kernel is now already up and running.

1.4 Commands for Basic Arithmetic
Mathematica works much like a calculator for basic arithmetic. Just use the +, –, *, and / keys on the
keyboard for addition, subtraction, multiplication, and division. As an alternative to typing *, you
can multiply two numbers by leaving a space between them (the × symbol will automatically be
inserted when you leave a space between two numbers). You can raise a number to a power using
the ^ key. Use the dot (i.e., the period) to type a decimal point. Here are a few examples:

In[1]:= 17 1

Out[1]= 18

In[2]:= 17 1

Out[2]= 16

In[3]:= 123456789 123456789

Out[3]= 15 241578750190521

In[4]:= 123456789 123456789

Out[4]= 15 241578750190521

In[5]:= 123456789 ^2

Out[5]= 15 241578750190521

2 Getting Started

In[6]:= 9.1 256.127

Out[6]= 0.0355292

In[7]:= 34 4

Out[7]=
17

2

This last line may seem strange at first. What you are witnessing is Mathematica’s propensity for
providing exact answers. Mathematica treats decimal numbers as approximations, and will generally
avoid them in the output if they are not present in the input. When Mathematica returns an expres-
sion with no decimals, you are assured that the answer is exact. Fractions are displayed in lowest
terms.

1.5 Input and Output
You’ve surely noticed that Mathematica is keeping close tabs on your work. Each time you enter an
expression, Mathematica gives it a name such as In[1]:=, In[2]:=, In[3]:=. The corresponding output comes
with the labels Out[1]=, Out[2]=, Out[3]=, and so on. At this point, it is enough to observe that these
labels will appear all by themselves each time you enter a command, and it’s okay:

In[1]:=
1

2

6

Out[1]=
1

64

You’ve surely noticed something else too (you’ll need to be running a live session for this), those
brackets along the right margin of your notebook window. Each input and output is written into a
cell, whose scope is shown by the nearest bracket directly across from the respective input or output
text. Cells containing input are called input cells. Cells containing output are called output cells. The
brackets delimiting cells are called cell brackets. Each input–output pair is in turn grouped with a
larger bracket immediately to the right of the cell brackets. These brackets may in turn be grouped
together by a larger bracket, and so on. These extra brackets are called grouping brackets.

At this point, it’s really enough just to know these brackets are there and to make the distinction
between the innermost (or smallest, or leftmost) brackets which delimit individual cells and the
others which are used for grouping. If you are curious about what good can possibly come of them,
try positioning the tip of your cursor arrow anywhere on a grouping bracket and double click. You
will close the group determined by that bracket. In the case of the bracket delimiting an input–output
pair, this will have the effect of hiding the output completely (handy if the output runs over several
pages). Double click again to open the group. This feature is useful when you have created a long,
complex document and need a means of managing it. Alternately, you can double click on any

1.5 Input and Output 3

output cell bracket to reverse-close the group. This has the effect of hiding the input code and display-
ing only the output.

Since brackets are really only useful in a live Mathematica session, they will not, by default, show
when you print a notebook. Further details about brackets and cells will be provided in Section 2.2

on page 27.

One last bit of terminology is in order. When you hit the combination (Windows), or the
 key (Mac OS) after typing an input cell, you are entering the cell. You’ll be seeing this phrase

quite a bit in the future.

1.6 The BasicMathInput Palette
There may already be a narrow, light gray window full of mathematical symbols along the side of
your screen. If so, you are looking at one of Mathematica’s palettes, and chances are that it is the
BasicMathInput palette:

The BasicMathInput palette

If you see no such window, go to the Palettes menu and select BasicMathInput to open it.

4 Getting Started

The BasicMathInput palette is indispensable. You will use it to help typeset your Mathematica input,
creating expressions that cannot be produced in an ordinary one-dimensional typing environment.
Palettes such as this provide you with a means of producing what the designers of Mathematica call
two-dimensional input, which often matches traditional mathematical notation. For instance, use the

 button in the upper left corner of the palette to type an exponential expression such as 1719. To

do this, first type 17 into your Mathematica notebook, then highlight it with your mouse. Next,

push the palette button with your mouse. The exponent structure shown on that button will be

pasted into your notebook, with the 17 in the position of the black square on the palette button
(the black square is called the selection placeholder). The text insertion point will move to the place-
holder in the exponent position. Your input cell will look like this:

17

You can now type the value of the exponent, in this case 19, into the placeholder, then enter the
cell:

In[1]:= 1719

Out[1]= 239072435685151324847153

Another way to accomplish the same thing is this: First hit the palette button, then type 17
into the first placeholder. Next hit the key to move to the second placeholder (in the
exponent position). Now type 19 and enter the cell. This procedure is perhaps a bit more
intuitive, but it can occasionally get you into trouble if you are not careful with grouping. For

instance, if you want to enter 1 x 8, and the first thing you do is push the button on the

palette, then you must type (1+ x) with parentheses, then , then 8. By contrast, you could
type 1+ x with or without parentheses and highlight the expression with your mouse, then hit

the palette button, and then type 8. The parentheses are added automatically, if needed,

when this procedure is followed.

If you don’t understand what some of the palette buttons do, don’t fret. Just stick with the ones that
you know for now. For instance, you can take a cube root like this: type a number and highlight it

with the mouse, then push the button on the BasicMathInput palette, then hit the key, and

finally type 3. Now enter the cell:

In[2]:= 50 653
3

Out[2]= 37

This is equivalent to raising 50653 to the power 1/3:

In[3]:= 50 6531 3

Out[3]= 37

1.6 The BasicMathInput Palette 5

And of course we can easily check the answer to either calculation:

In[4]:= 373

Out[4]= 50 653

Entering Input

Speaking in general terms, the buttons on the top portion of the BasicMathInput
palette (in fact all buttons containing a solid black placeholder on this and any other
palette) are used this way:

Type an expression into a Mathematica notebook.

Highlight all or part of the expression with your mouse (by dragging across the
expression).
Push a palette button. The structure on the face of the button is pasted into your
notebook, with the highlighted text appearing in the position of the solid black square.
If there are more placeholders in the structure, use the key or forward arrow (or
move the cursor with your mouse) to move from one to the next.

The buttons on the middle portion of the BasicMathInput palette have no placeholders. They are
used simply to paste into your notebook characters that are not usually found on keyboards. To use
them, simply position the cursor at the point in the notebook where you want the character to
appear, then push a palette button.

For instance, the symbol can be used to test if one number is less than or equal to another:

In[5]:= 50 653 225

Out[5]= False

In[6]:= 50 653 226

Out[6]= True

The special symbol is used to test if one quantity is equal to another. It has the same meaning as
the equal sign in standard mathematical notation:

In[7]:= 50 653 50 6531 2

Out[7]= True

1.7 Decimal In, Decimal Out
Sometimes you don’t want exact answers. Sometimes you want decimals. For instance how big is
this number? It’s hard to get a grasp of its magnitude when it’s expressed as a fraction:

6 Getting Started

In[1]:=
1719

1917

Out[1]=
239072435685151324847153

5 480386857784802185939

And what about this?

In[2]:= 59 875
3

Out[2]= 5 4791 3

Mathematica tells us that the answer is 5 times the cube root of 479 (remember that a space indicates
multiplication, and raising a number to the power 1 3 is the same as taking its cube root). The
output is exact, but again it is difficult to grasp the magnitude of this number. How can we get a
nice decimal approximation, like a calculator would produce?

If any one of the numbers you input is in decimal form, Mathematica regards it as approximate. It
responds by providing an approximate answer, that is, a decimal answer. It is handy to remember
this:

In[3]:=
17.019

1917

Out[3]= 43.6233

In[4]:= 59 875.0
3

Out[4]= 39.1215

A quicker way to accomplish this is to type a decimal point after a number with nothing after it.
That is, Mathematica regards “17.0” and “17.” as the same quantity. This is important for understand-
ing Mathematica’s output:

In[5]:= 59 875.
3

Out[5]= 39.1215

In[6]:=
30.

2

Out[6]= 15.

Note the decimal point in the output. Since the input was only “approximate,” so too is the output.
Get in the habit of using exact or decimal numbers in your input according to the type of answer,
exact or approximate, that you wish to obtain. Adding a decimal point to any single number in your

1.7 Decimal In, Decimal Out 7

input will cause Mathematica to provide an approximate (i.e., decimal) output. A detailed discussion

on approximate numbers can be found in Section 8.3 on page 392.

1.8 Use Parentheses to Group Terms
Use ordinary parentheses () to group terms. This is very important, especially with division,
multiplication, and exponentiation. Being a computer program, Mathematica takes what you say
quite literally; tasks are performed in a definite order, and you need to make sure that it is the order
you intend. Get in the habit of making a mental check for appropriate parentheses before entering
each command. Here are some examples. Can you see what Mathematica does in the absence of
parentheses?

In[1]:= 3 4 1

Out[1]= 15

In[2]:= 3 4 1

Out[2]= 13

In[3]:= 3 2

Out[3]= 9

In[4]:= 32

Out[4]= 9

In[5]:= 3 1 2

Out[5]= 2

In[6]:= 3 1 2

Out[6]=
7

2

The last pair of examples above shows one benefit of using the BasicMathInput palette instead of
typing from the keyboard. With the two-dimensional typesetting capability afforded by the palette
there is no need for grouping parentheses, and no chance for ambiguity:

In[7]:=
3 1

2

Out[7]= 2

8 Getting Started

In[8]:= 3
1

2

Out[8]=
7

2

The lesson here is that the order in which Mathematica performs operations in the absence of
parentheses may not be what you intend. When in doubt, add parentheses. Also note: you do not
need to leave a space to multiply by an expression enclosed in parentheses:

In[9]:= 25 2 2

Out[9]= 100

Note also that only round brackets can be used for the purpose of grouping terms. Mathematica
reserves different meanings for square brackets and curly brackets, so never use them to group terms.

1.9 Three Well-Known Constants
Mathematica has several built-in constants. The three most commonly used are , the ratio of the
circumference to the diameter of a circle (approximately 3.14); , the base of the natural logarithm
(approximately 2.72); and , the imaginary number whose square is 1. You can find each of these
constants on the BasicMathInput palette.

In[1]:=

Out[1]=

In[2]:= 0.

Out[2]= 3.14159

Again, note Mathematica’s propensity for exact answers. You will often use to indicate the radian
measure of an angle to be input into a trigonometric function. There are examples in the next
section.

It is possible to enter each of these three constants directly from the keyboard, as well. You can type
p for , ee for , and ii for .

You can also type Pi for , E for , and I for . The capitalizations are important. These do not
look as nice, but it illustrates an important point: it is possible to type any Mathematica input
using only the characters from an ordinary keyboard. That is, every formatted mathematical
expression that can be input into Mathematica has an equivalent expression constructed using
only characters from the keyboard. Indeed, versions 1 and 2 of Mathematica used only such
expressions. These days, the keyboard, or InputForm, of an expression is used when you
include a Mathematica input or output in an email message (say, to a friend or to your profes-
sor). If you copy a formatted expression such as 1 3 from Mathematica and paste it into an

1.9 Three Well-Known Constants 9

email or text editor, you’ll find that it becomes Pi^(1/3) (or just ^(1/3) if the editor has the
symbol available). The point is that it is exceedingly simple to include formatted Mathematica
expressions in plain text environments. Note that you can display any input cell in Input

Form from within Mathematica by clicking on its cell bracket to select it, and going to the Cell
menu and choosing ConvertTo InputForm.

In[3]:= Pi

Out[3]= True

1.10 Typing Commands in Mathematica
In addition to the basic arithmetic features discussed earlier, Mathematica also contains hundreds of
commands. Commands provide a means for instructing Mathematica to perform all sorts of tasks,
from computing the logarithm of a number, to simplifying an algebraic expression, to solving an
equation, to plotting a function. Mathematica’s commands are more numerous, more flexible, and
more powerful than those available in any hand–held calculator, and in many ways they are easier
to use.

Commands are typically typed from the keyboard, and certain rules of syntax must be strictly
obeyed. Commands take one or more arguments, and when entered transform their arguments into
output. The typical syntax for a command is:

Command argument or Command argument1, argument2

Rules for Typing Commands
When typing commands into Mathematica, it is imperative that you remember a few
rules. The three most important are:

Every built–in command begins with a capital letter.Furthermore, if a command name
is composed from more than one word (such as ArcSin or FactorInteger) then each
word begins with a capital letter, and there will be no space between the words.
The arguments of commands are enclosed in square brackets.

If there is more than one argument, they are separated by commas.

When you begin typing a command, the individual characters will be blue. They will change to
black as soon as they match the name of a built–in command. This syntax coloring mechanism is
designed to help you spot typing errors. If you were to type Arcsin instead of ArcSin, for example, it
would remain blue, indicating that it’s not right.

Here are some examples of commonly used commands:

10 Getting Started

Numerical Approximation and Scientific Notation
The first command we will introduce is called N. You can get a numerical approximation to any
quantity x by entering the command N[x]. By default, the approximation will have six significant
digits:

In[1]:= N

Out[1]= 3.14159

Very large or very small numbers will be given in scientific notation:

In[2]:= 1730

Out[2]= 8 193465725814765556554001028792218849

In[3]:= N 1730

Out[3]= 8.19347 1036

In[4]:= N
1

250

Out[4]= 8.88178 10 16

If you were wondering, yes, typing 17.30 has the same effect as typing N[1730]. But the command N
is more flexible. You can add an optional second argument that specifies the number of significant
digits displayed in the output. Type N[x, m] to get a numerical approximation to x with m signifi-
cant digits:

In[5]:= N 1730, 20

Out[5]= 8.1934657258147655566 1036

In[6]:= N , 500

Out[6]= 3.14159265358979323846264338327950288419716939937510582097494459230781640
62862089986280348253421170679821480865132823066470938446095505822317253

59408128481117450284102701938521105559644622948954930381964428810975665
93344612847564823378678316527120190914564856692346034861045432664821339

36072602491412737245870066063155881748815209209628292540917153643678925
90360011330530548820466521384146951941511609433057270365759591953092186
11738193261179310511854807446237996274956735188575272489122793818301194

91

1.10 Typing Commands in Mathematica 11

Trigonometric Functions
All trigonometric functions require that their argument be given in radian measure. The command
names themselves and the square brackets are most easily typed directly from the keyboard, while
many arguments (such as

4
) are best typeset with the BasicMathInput palette. Note carefully the

placement of capital letters in these commands. You can choose from Cos, Sin, Tan, Sec, Csc, Cot,
ArcCos, ArcSin, ArcTan, ArcSec, ArcCsc, and ArcCot:

In[7]:= Cos
4

Out[7]=
1

2

In[8]:= Sin
12

Out[8]=
1 3

2 2

In[9]:= ArcSin
1 3

2 2

Out[9]=
12

In[10]:= Tan
12

Out[10]= 2 3

In[11]:= Sec
12

Out[11]= 2 1 3

In[12]:= Csc
12

Out[12]= 2 1 3

12 Getting Started

If you wish to use degrees, enter the degree measure multiplied by the degrees-to-radians conver-
sion factor of

180
. This will simply convert your degree measure to radian measure. For instance, the

sine of 45 degrees is found as follows:

In[13]:= Sin 45
180

Out[13]=
1

2

Alternatively, you can use the built-in constant Degree, which is equal to
180

. Either type Degree or

push the button on the BasicMathInput palette. Both of these have the effect of reading nicely,

although in reality you are simply multiplying the argument by
180

:

In[14]:= Sin 45

Out[14]=
1

2

In[15]:= Sin 45 Degree

Out[15]=
1

2

In[16]:= N
180

Out[16]= 0.0174533

In[17]:= N

Out[17]= 0.0174533

Logarithms
Type Log[x] to find the natural logarithm of x:

In[18]:= Log

Out[18]= 1

In[19]:= Log 45

Out[19]= 45

1.10 Typing Commands in Mathematica 13

Note that it is possible to build up input by nesting one command inside another. Before long you’ll
be doing this sort of thing without giving it a second thought:

In[20]:= N Log , 30

Out[20]= 1.14472988584940017414342735135

To find the base b logarithm of x, type Log[b, x]. Here is a base 10 logarithm:

In[21]:= Log 10, 1000

Out[21]= 3

And here is one in base 2:

In[22]:= Log 2, 512

Out[22]= 9

 Of course you can always check an answer:

In[23]:= 29

Out[23]= 512

Factoring Integers
You can factor any integer as a product of prime numbers using the command FactorInteger. Type
FactorInteger[n] to obtain the prime factorization of n:

In[24]:= FactorInteger 4 832875

Out[24]= 5, 3 , 23, 1 , 41, 2

The output here needs interpretation. It means that 4,832,875 can be factored as 53 23 412. Note
the form of the output: a list whose members are each lists of length two. Each list of length two
encloses a prime number followed by its exponent value. Again, it is easy to check the answer:

In[25]:= 53 23 412

Out[25]= 4 832875

You may wonder why the output to FactorInteger appears in a form that at first glance is
somewhat cryptic. Why isn’t the output just 53 23 412? The rationale is subtle, but impor-
tant. The designers of Mathematica put the output in the form they did to make it easier for the
user to work programmatically with the output. That is, it is easy to extract just the primes 5,
23, and 41, or just the exponents 3, 1, and 2, from this output, and to input those values into
another command for further analysis. Remember that Mathematica is a sophisticated program-
ming language that is used by experts in many disciplines. In this and in many other cases,
commands are designed to allow their output to be easily operated on by other commands. It

14 Getting Started

makes the task of assembling many commands into a single program much simpler for the
user. For the beginner, however, these advantages may not be immediately obvious.

Factoring and Expanding Polynomials
Mathematica is very much at home performing all sorts of algebraic manipulations. For example, you
can factor just about any imaginable polynomial by typing the command Factor[polynomial] (recall

that a polynomial is an expression consisting of a sum of terms, each of which is the product of a
constant and one or more variables each raised to a nonnegative whole number power). Typically,
lowercase letters such as x or t are used to represent the variables in a polynomial. Here’s an example
that you could probably do by hand:

In[26]:= Factor t2 9

Out[26]= 3 t 3 t

But here’s one that you probably couldn’t do by hand:

In[27]:= Factor 64 128 x 48 x2 144 x3 292 x4 288 x5 171 x6 61 x7 12 x8 x9

Out[27]= 2 x 6 1 x x3

Note that you do not need to type a space between a number and a variable to indicate multiplica-
tion as long as the number is written first; Mathematica will insert the space automatically in this
case.

You can also have Mathematica expand a factored polynomial by typing Expand[polynomial]. Below

we confirm the output above:

In[28]:= Expand 2 x 6 1 x x3

Out[28]= 64 128 x 48 x2 144 x3 292 x4 288 x5 171 x6 61 x7 12 x8 x9

The commands Factor, Expand, and a host of others that perform various algebraic feats are
explored in Chapter 4, “Algebra.”

Plotting Functions
Mathematica has a variety of commands that generate graphics. One of the most common is the Plot
command, which is used for plotting functions. Plot takes two arguments. The first is the function
to be plotted, the second is something called an iterator, which specifies the span of values that the
independent variable is to assume. It is of the form

{variable, min value, max value}

Here’s an example. Note that we view the function on the domain where the variable x ranges from
3 to 3. Mathematica determines appropriate values for the y axis automatically:

1.10 Typing Commands in Mathematica 15

In[29]:= Plot x2 1, x, 3, 3

Out[29]=

3 2 1 1 2 3

2

4

6

8

Here’s a more interesting example:

In[30]:= Plot x Cos
10

x
, x, 2, 2

Out[30]=
2 1 1 2

1.5

1.0

0.5

0.5

1.0

1.5

The Plot command is explored in greater depth in Section 3.2 on page 53.

Manipulate
Version 6 of Mathematica introduces the Manipulate command, which allows the user to create a
dynamic interface (with sliders or buttons that can be manipulated in real time). Like Plot, Manipu
late takes two arguments. The first is the expression to be manipulated, the second is an iterator
which specifies the span of values that the controller variable is to assume. Here’s an example:

In[31]:= Manipulate x2 1, x, 3, 3

Out[31]=

x

8

You can now move the slider with your mouse to control the value assumed by x, and watch as the

value of x2 1 is displayed in real time. This is far more interesting to play with than it is to read
about, so be sure to try it! Click on the button to the right of the slider to reveal a more sophisti-

cated user control panel:

16 Getting Started

x

3

8

As you mouseover each button on the panel, a tooltip message will display on screen with a brief
explanation of that button’s function. Go ahead and try each button in turn to get a feel for what
you can do. You can even type a value for the variable x into the input field and hit Return (Mac) or

Enter (Windows PC) to see the value of x2 1 in the display area.

Here’s a more interesting example:

In[32]:= Manipulate Plot a x Cos
10

x
, x, 2, 2 , PlotRange 2 , a, 2, 2

Out[32]=

a

2 1 1 2

2

1

1

2

As you type this input, be sure to leave a space between the a, the x, and Cos. The setting Plot
Range 2 has been added after the second argument in the Plot command to fix the viewing
rectangle between 2 and 2 in both the x and y directions. This is needed so that the scaling on the

y axis does not change as the slider moves. You can find the symbol on the BasicMathInput

palette. Manipulate is explored in greater depth in Section 3.4 on page 76.

Square Root Function
Here you have two choices. You can use the square root button on the BasicMathInput palette:

1.10 Typing Commands in Mathematica 17

In[33]:= 144

Out[33]= 12

Or you can forgo the palette approach and type Sqrt[x] to get the square root of x:

In[34]:= Sqrt 144

Out[34]= 12

It is a fact that every palette button with a placeholder (such as the square root button) has an
equivalent syntax that may be typed entirely from the keyboard. In most cases you will find
the palette version of the command easier to use. However, if you are a good typist and use
Mathematica frequently you may find it easier to work from the keyboard more rather than
less. If you ever want to know the name of the InputForm of a palette command, follow this
procedure: First use the palette version of the command to create an input cell. Then use a

single click of your mouse to highlight the cell bracket for the cell. Go to the Cell menu and

select Convert to InputForm from the pop-up menu. You will see the two-dimensional
formatted command replaced by its InputForm alternative. In the future, you can just type
the InputForm of the command directly instead of using the palette.

Real and Imaginary Parts of Complex Numbers
Every complex number is of the form a b , where represents the square root of 1. The real part
of the number is a, and the imaginary part is b. You can extract the real and imaginary parts of
complex numbers with the commands Re and Im.

In[35]:= Re 2 3

Out[35]= 2

In[36]:= Im 2 3

Out[36]= 3

In[37]:= Re 2 3 6

Out[37]= 2035

Extracting Digits from a Number
The command IntegerDigits will produce a list of the digits appearing in an integer.

In[38]:= IntegerDigits 2010

Out[38]= 2, 0, 1, 0

18 Getting Started

The output is a list; it is comprised of items (digits in this case) enclosed in curly brackets and
separated by commas. Lists such as this are a fundamental data structure in Mathematica. Many
commands will produce lists as output and accept lists as input. Lists are so ubiquitous that many
operations that work on numbers will automatically be distributed over lists. For instance, we can
add 1 to every member of a list like this:

In[39]:= 1 2, 0, 1, 0

Out[39]= 3, 1, 2, 1

FromDigits will take a list of digits and assemble them back into a number.

In[40]:= FromDigits 2, 0, 1, 0

Out[40]= 2010

Programming
The real utility of commands such as these lies in the ability to take the output of one and use it as
the input to another. Putting commands together in a way that does something useful is known as
programming. Mathematica is, among other things, a rich programming environment. Here we take a
number and form a new number by adding 1 to each of the original number’s digits:

In[41]:= FromDigits 1 IntegerDigits 2010

Out[41]= 3121

Think about how little code is required to do that, and then think how you might accomplish the
same task in some other programming language, or in Excel.

The following input illustrates this embedding of commands, one within another, but taken to
another level:

In[42]:= ArrayPlot NestList Function x, IntegerDigits Floor
3

2
FromDigits x, 2 , 2 ,

1, 0 , 200 , Background Gray

1.10 Typing Commands in Mathematica 19

Out[42]=

While what’s happening here is far beyond what one needs to know at this early stage, it is possible,
with a bit of perseverance, to see what is going on. We read from the inside out: starting with x,
which represents the base–2 digit sequence of a number, it multiplies the number (FromDigits[x, 2])

by 3

2
, rounds down if the result is not a whole number, then displays its IntegerDigits base–2. This

is invoked successively, starting on the number 2 (i.e., the number whose IntegerDigits are 1, 0),
and then on the result, and then on the result of that, a total of 200 times. So beginning with 2, one

next gets 3

2
 of 2, i.e., 3, then 3

2
 of 3 (rounded down), or 4, then 3

2
 of 4, i.e., 6, and so on. The num-

bers are displayed in base–2, one above the other as successive rows in an array, with zeros repre-
sented by white squares and ones represented by black squares. Chapter 8 presents the basic com-
mands used here in more detail.

Naming Things
It is easy to assign names to quantities in Mathematica, and then use those names to refer to the
quantities later. This is useful in many situations. For instance, you may want to assign a name to a
complicated expression to avoid having to type it again and again. To make an assignment, type the
name (perhaps a lowercase letter, or a Greek character, or even an entire word), followed by =,
followed by the quantity to which the name should be attached. For example (look for in the
BasicMathInput palette):

20 Getting Started

In[43]:=
6

Out[43]=
6

Now whenever you place in an input cell, Mathematica will replace it with
6
:

In[44]:=

Out[44]=
6

In[45]:= Sin

Out[45]=
1

2

In[46]:= Sin 2

Out[46]=
3

2

In[47]:= Tan 4

Out[47]= 3

You can (and should) clear an assignment when you are done. This is accomplished with the Clear
command:

In[48]:= Clear

No output will be produced when you enter the Clear command. You can check that no value is
attached to the symbol by typing it into an input cell:

In[49]:=

Out[49]=

For a second example, we can assign to p the value of rounded to 39 decimal places (the 3 fol-
lowed by 39 decimal places makes a total of 40 significant digits):

In[50]:= p N , 40

Out[50]= 3.141592653589793238462643383279502884197

Using this approximation of , we can approximate the area of a circle of radius 2:

1.10 Typing Commands in Mathematica 21

In[51]:= p 22

Out[51]= 12.56637061435917295385057353311801153679

Note how Mathematica, in performing a calculation involving an approximate number p and an exact

number 22, returns an approximate number with the same number of significant digits as p.

In[52]:= Clear p

For a final example, we’ll assign values to words. Each word is treated as a separate entity. The terms
miles and hour are not given values, but distance is assigned the value 540 miles, and time is
assigned the value 6 hour:

In[53]:= distance 540 miles

Out[53]= 540 miles

In[54]:= time 6 hour

Out[54]= 6 hour

In[55]:= rate
distance

time

Out[55]=
90 miles

hour

We can clear all of these assignments in one shot with the Clear command—just put a comma
between each successive pair of names:

In[56]:= Clear distance, time, rate

Since all built-in Mathematica objects begin with capital letters, it’s a good practice to make all your
names lowercase letters, or words that begin with lowercase letters. This practice assures that you
will never accidentally assign a name that Mathematica has reserved for something else. The only
Greek character that has a built-in value is . All others make perfectly good names. You’ll find
these characters in the Special Characters palette.

It is also permissible to use numbers in your names, provided that a number is not the first charac-
ter. For instance, you might use the names x1 and x2. It is not alright to use the name 2x, for that
means 2 x.

22 Getting Started

1.11 Saving Your Work and Quitting Mathematica
Say you want to save a notebook that you created. Let’s suppose that it is a freshly created notebook
that has not been saved previously. Go to the File menu and select Save. You will be prompted by
the computer and asked two things: What name do you want to give the notebook, and where
would you like the computer to put it? Give it any name you like (it is good form to append the
suffix “.nb” which stands for “notebook”), and save it to an appropriate location. The details of this
procedure vary somewhat from one platform to the next (Mac OS, Windows, etc.), so ask a friendly
soul for assistance if you are unfamiliar with the computer in front of you. Keep in mind that the
saving and naming routine isn’t a Mathematica thing; it’s a process that will be similar for every
program on the computer you are using. Anyone who is familiar with the platform will be able to
help.

The file size of a Mathematica notebook tends to be quite small unless the notebook contains
lots of graphics. Notebook files are also portable across computer platforms, as the files
themselves are plain text (ascii) files. The Mathematica front end interprets and displays
notebook files in much the same way that a Web browser interprets and displays HTML files.

For information on the structure of the underlying notebook file, select Documentation
Center from the Help menu, type “notebooks as Mathematica expressions” in the text field,

then read the tutorial Notebooks as Mathematica Expressions.

If you have created a large notebook file, and want to shrink its file size (for instance to make
it small enough to attach to an email) do this: Open the notebook and delete the graphics

cells. To do this, click once on a graphic’s cell bracket to select it, then choose Cut in the Edit
menu. Do not cut out the input cells that generated the graphics. Now save the notebook.
When you open the notebook next time, you can regenerate any graphic by entering the

input cell that created it. An even simpler approach is to select Cell Delete all Output, and

then save your notebook. When you open the file later, select Evaluation Evaluate Note–
book to re-evaluate every input cell in the notebook.

After a notebook has been saved once, the title bar will bear the name you have assigned. As you
continue to work and modify the notebook, you can and should save it often. This is easy to do:
choose Save from the File menu. This will write the latest version of the notebook to the location
where the file was last saved. Should the power fail during a session, or should your computer crash
for some reason, it is the last saved version of your notebook that will survive. Many hardened souls
will save every few minutes.

To end a Mathematica session, select Quit from the application’s main menu. If you have modified
your notebook since it was last saved, you will be prompted and asked if you care to save the
changes you have made since it was last saved. Answer Save or Don't Save as appropriate.

1.11 Saving Your Work and Quitting Mathematica 23

1.12 Frequently Asked Questions About Mathematica’s Syntax

Why Do All Mathematica Command Names Begin with Capital Letters?

Mathematica is case-sensitive, and every one of the thousands of built-in Mathematica commands
begins with a capital letter. So do all built-in constants, built-in option settings, and so on. In fact,
every built-in Mathematica symbol of any kind that has a name begins with a capital letter (or the $
or \ characters). Taken together, there are over 3000 such objects.

In[1]:= Length Names " "

Out[1]= 3043

Why capital letters? The main reason is that you will find yourself assigning names to quantities,
such as x 3 or pi 3.14. Since you don’t know the name of every built-in object, there is a danger

that you may choose a name that coincides with the name of a built-in command or constant.
Without getting into the technicalities, that would be bad. But it can be avoided if you simply stick
to the convention of beginning all your assignment names with lowercase letters. By doing this you
guarantee that you will never choose a name that conflicts with any existing Mathematica symbol.

Why Does My Input Appear in Color as I Type?
Mathematica is ruthless in its demand for precise typing. Syntax coloring is an aid to help you
navigate these perilous waters. Symbols that are not in the system’s memory appear in blue. So as
you type a command such as Factor, it will be blue until the final r is added, at which point it turns
black. If it doesn’t turn black—oops, you mistyped it. When you use = to define your own symbols,
they too will turn black upon being entered. Brackets need to come in pairs, with each opening
bracket having a matching closing bracket somewhere down the line. An opening bracket appears
brightly colored, and turns black only when its mate has been appropriately placed. If your input
has any brightly colored brackets it’s not ready for entry. If you close a bracket too early, you may
see a disturbing red caret. For instance:

In[2]:= Plot x

Plot::argr : Plot called with 1 argument; 2 arguments are expected.

Out[2]= Plot x

The caret indicates that you forgot something; Plot needs two arguments (a function and iterator),
and here we did not add the iterator. The caret points to where you need to type something.

24 Getting Started

Why Are the Arguments of Commands Enclosed in Square Brackets?
The numerical approximation command N is an example of what a mathematician calls a function;
that is, it converts an argument x to an output N[x]. In Mathematica, all functions enclose their
arguments in square brackets [], always.

You may recall that in our usual mathematical notation, we often write f x to denote the value of

the function f with argument x. This won’t do in Mathematica, for parentheses () are reserved for

grouping terms. When you write f 12 , for instance, it is not clear whether you intend for a function

named f to be evaluated at 12, or whether you want the product of a variable named f with 12. Since

parentheses are routinely used for these two very different purposes, the traditional notation is
ambiguous. You and I can usually flesh out the meaning of the notation f 12 from its context, but

a computer needs unambiguous instructions. Hence in Mathematica, square brackets are used to
enclose function arguments, while parentheses are used to group terms.

When working with Mathematica, never use round parentheses for anything other than grouping
terms, and never use square brackets for anything other than enclosing the arguments to functions.

What Happens If I Use Incorrect Syntax?
If you want to find the natural log of 7.3, you must type Log[7.3], not log(7.3), not Log(7.3), not
log[7.3], not ln[7.3], and not anything else.

What happens if you slip and muff the syntax? First of all, don’t worry. This will happen to you. The
computer won’t explode. For example, behold:

In[3]:= Log 7.3

Here our input is close enough to the correct syntax that Mathematica suspects that we goofed, and
tells us so. Upon entering an incomplete or erroneous input, version 6 and higher will show a
warning flag in the expression’s cell bracket, and will often highlight the offending part of the
input. Click once on the warning flag and any relevant warning messages will be displayed.

In[3]:= Log 7.3

Syntax::bktmcp : Expression "Log 7.3" has no closing " ".

Syntax::sntxi : Incomplete expression; more input is needed.

You will certainly generate messages like this at some point, so its good to acquaint yourself with
some. Error messages are somewhat cryptic to the new user, and are rarely a welcome sight. But do
read the text of these messages, for you will often be able to make enough sense out of them to find
the source of the problem. In this case we left off the closing square bracket. Note that as you type
your input, each opening bracket will appear brightly colored until the corresponding closing
bracket is added, at which time both brackets will turn black. This makes mistakes of this type easy
to spot. If an expression has one or more brightly colored brackets, it is incomplete and should not
be entered.

1.12 Frequently Asked Questions About Mathematica’s Syntax 25

But worse than getting an error message or input flag is getting neither. It is not difficult to enter
syntactically correct, but meaningless input. For example, consider this:

In[4]:= ln 7.3

Out[4]= 7.3 ln

No warning is given (other than the command name ln appearing in blue before the cell is entered),
but the output is not the natural logarithm of 7.3. Mathematica has instead multiplied the
meaningless symbol ln by the number 7.3 (remember round brackets are for grouping only). Always
look carefully and critically at your output. There will certainly be times when you need to go back
and edit and re-enter your input before you get the answer you desire.

26 Getting Started

2
Working with Mathematica

2.1 Opening Saved Notebooks
You can open any Mathematica notebook file by double-clicking on its icon with your mouse. It will
appear on your screen exactly as it was when it was saved. You can open two or more notebooks at
the same time if you wish.

2.2 Adding Text to Notebooks

Text Cells
Mathematica has an integrated word processor that is simple to use once you are familiar with the

cell structure of a Mathematica notebook (see Section 1.5, “Input and Output,” on page 3 for a

discussion of input and output cells). To add text to a notebook, you need to create a text cell. To do
this, first go to the Window menu and select Show Toolbar. A toolbar will appear across the top of
your notebook window. Now position your mouse between any two cells in your notebook (or below
the last cell in the notebook, or above the first cell) where you want to add text. The cursor will
change from a vertical bar to a horizontal bar. Now click. You should notice a horizontal black line
that runs completely across your notebook window. Next, use your mouse to select Text from the
pull-down menu on the toolbar, and start typing. As soon as you do, a new text cell will be inserted
in your notebook at the position of the horizontal black line, and it will contain the text you type. It
is common practice to use a new text cell for each paragraph of text. Note that using the key
combination at the end of a paragraph will create a new text cell under the current one, so
it’s easy to write paragraph after paragraph as if you were using a dedicated word processor.

Mathematica’s text environment is a joy to use. It wraps lines for you within each text cell. You can
use any palette to paste a mathematical symbol or expression into your text, just as you paste into
an input cell. There is a full-featured spell checker—just place the cursor where you want to start
spell checking and choose Check Spelling… in the Edit menu. We’ll soon see that it is highly adept at
formatting complex mathematical expressions. For these reasons, you may find yourself using
Mathematica as your word processor of choice for technical papers. You can also highlight portions
of text with your mouse and cut, copy, or paste (look in the Edit menu for these and other features).
You can change the size, face, font, and color of highlighted text by choosing the appropriate item

in the Format menu. There are buttons on the toolbar to control the centering and justification of
your text. Use these features to make your notebook a masterpiece.

A Notebook with the Toolbar Displayed

You can cut, copy, paste, and format entire cells or groups of cells. You select a cell or group of cells
by positioning the tip of the cursor arrow on a cell bracket or grouping bracket along the right side
of the notebook window. The bracket becomes highlighted. Now choose Cut or Copy from the Edit
menu, position the mouse where you wish to paste the selection (in the current notebook or in any
other notebook that is open), click once, and select Paste from the Edit menu. Similarly, the com-
mands in the Format menu will be applied to the text in any cell or group of cells whose bracket is
selected.

Mathematica’s cell structure makes it easy to organize your notebook into collapsible sections. You
simply add preformatted title or section headings. To do this, click between existing cells (or below
the last cell in the notebook, or above the first cell), and then go to the pull-down menu in the
toolbar and select Title, or Section, or Subsection, or the like, and start typing. Upon adding a title to
a notebook, you will notice a gigantic grouping bracket on the far right of your notebook window
that spans the entire notebook. Place the cursor anywhere along this bracket and double-click to
close the group. You will see the title, but the rest of the notebook will disappear. Don’t worry, it’s
still there; double-click again on the bracket to open the group. When you create sections or subsec-
tions, grouping brackets will appear to show their respective domains, and these too can be toggled
open or closed with a double-click on the appropriate grouping bracket. These features allow you to
keep your work organized, and minimize the amount of scrolling needed to navigate a large
document.

If you click between cells in a notebook and then start typing, you will by default create a new input
cell. This makes it easy to enter input during a Mathematica session; as soon as you get output from
one computation, you can just start typing to generate a new input cell. You only have to specify
cell type (Text, Title, Section, etc.) when you want to create some type of cell other than input. By
the way, you can forgo the toolbar if you want, and select your cell types from the pop-up menu
that appears when you select Style in the Format menu.

28 Working with Mathematica

If you accidently start typing text in an input cell, don’t despair. The fix is simple: click once on the
cell’s bracket to select it, then use the toolbar (or go to the Format menu) to change the cell to a text
cell.

Adding Mathematical Expressions to Text
If you wish to place a mathematical expression (such as f x x2) within a sentence of text, there is a

simple means for doing so. However, be aware that typesetting mathematics is inherently a tricky
business whose subtleties can only be appreciated by those who have attempted it. That said,
Mathematica is an excellent environment for producing beautifully typeset mathematics. Its prowess
in this regard far exceeds that of standard word processing programs such as Word, and rivals that of
specialty programs such as LATEX, while being much easier to use. We advise you to read carefully

the procedure outlined below, as the method for adding mathematical expressions to text, while not
difficult, is not obvious.

Suppose that you wish to place a mathematical expression in the middle of a sentence of text. Begin
by creating a text cell (as outlined in the previous section) and typing the text that will precede the
mathematical expression. When you are ready to insert the math, from the menus select Insert
Typesetting Start Inline Cell. Or from the keyboard hit 9 (for both Mac OS and Windows). The
state of the cursor will change to a placeholder within a lightly colored box. This colored box
delimits what is called an inline cell. Now type your mathematics, using palettes if you like, being
careful not to exit the inline cell as you add the mathematics (if you exit the colored box, use the
backarrow to get back into it). When you are finished typing the mathematical expression, hit the
forward arrow to exit the inline cell. You can also exit the inline cell by hitting 0 . It’s easy to
remember these keyboard shortcuts as (to start a mathematical formula and) to end it.

When you are typing your mathematics within an inline cell, you’ll notice that what you type is
displayed differently than ordinary text. For instance: any single letter will be italicized, a hyphen
will change subtly to a minus sign, and spacing will be different. For example, here is an equation
typeset without using an inline cell: f(x)-x=0. And here is what is produced by the same keystrokes
when typeset within an inline cell: f x x 0. The difference is striking, and clearly illustrates the

advantage of using inline cells to display mathematics.

Modifying the Stylesheet
You can change the look of an entire notebook by changing the stylesheet. A stylesheet contains
different formatting parameters for each cell type. One stylesheet might render all input cells with
purple backgrounds; another might render all titles, sections, and subsections in Helvetica font with
a gray background, and 12-point Times Roman as the default text font. By choosing a new
stylesheet your notebook will take on a completely new look. Go to Format StyleSheet to select a
new stylesheet for your notebook; there are several from which to choose.

2.2 Adding Text to Notebooks 29

Note that whenever you switch stylesheets, the items in the Format Style menu will change to
reflect the cell styles available in that stylesheet. Note also that stylesheets can be used to control
both the on-screen and print versions of notebooks, and even to make each look different from the
other if you wish. Stylesheets may also be used to change what the default cell style is in a particular
notebook (the type of cell that will be created if you just start typing). In order to see just how
powerful these concepts are, try this: Open a new blank notebook, and switch to the Format
Stylesheet Utility Correspondence stylesheet. Now pay attention: you are going to write a formal
letter. First type your name and address, using carriage returns to create new lines. It appears in a
special “Sender” cell, complete with a gray label to remind you of that fact. Now hit the down-arrow
on the keyboard to jump to the insertion point for the next cell. Immediately start typing. This time
a “Date” cell will be created, so type today’s date. Again, when you’re done hit the down-arrow.
Now type the recipient’s name and address. Down-arrow. Type a salutation, such as “Dear Stephen.”
Down-arrow. Now type the body of your letter, using the carriage return to create new paragraphs.
Down-arrow. Type your closing, such as “Sincerely” or “Cheers.” Down-arrow. And finally, add your
signature. Now print it. All the gray cell labels do not appear in the printed version; the formatting
is just right. If you have to write a lot of letters, this stylesheet streamlines your workflow. That’s
exactly what a stylesheet should do. Creating a sophisticated stylesheet like this one takes a bit of
work, but using it takes almost none. And if you just wish to modify an existing stylesheet to better
suit your purposes, well that’s a breeze. Read on…

Suppose you wish to modify an existing cell style, for instance, to change the look of the “Section”
headings. Or suppose you wish to create an entirely new cell style, say a custom text cell that puts a
light-gray background color behind your text. To do this you add a local modification to an existing
stylesheet (the principle is that of a cascading stylesheet, which is common in web design). This is the
best way to ensure that you produce a document with consistent style parameters; it prevents you
from having to apply the desired style features one by one onto each relevant cell in your notebook.
Here’s how to set it up: create a notebook using one of the included stylesheets. Choose Format Edit
Stylesheet…, and a stylesheet notebook will appear. At the top of this notebook you may either
choose an existing style to modify (if, for instance, you just want to change the default text font), or
type the name of a new style you would like to create (if, for instance, you want to keep the default
text style, and add a second text style for some other purpose). In either case, a cell will appear in
this new notebook, and its cell bracket will be selected. Go directly to the Format menu and apply
the formatting changes you desire to this selected cell. You can change the font, the font size, the
font slant, the font color, the background color, the alignment, etc. When you are finished, close
the stylesheet window, and return to your notebook. If you created a new style, its name will appear
at the bottom of the Format Style menu, so you may easily apply it to any cell in your notebook at
any time. If you modified an existing style, all cells of that style in your notebook will now reflect
that change.

30 Working with Mathematica

2.3 Printing
As long as your computer is properly hooked up to a printer, and the printer is turned on, you can
print your current notebook by going to the File menu and choosing Print…. If your notebook
contains graphics or two-dimensional input using special math fonts, it may take a moment to start
printing, so be patient.

You can also select one or more cells to print, rather than printing an entire notebook. This can save
vast quantities of paper, so we repeat: You don’t have to print the entire notebook. To print a single
cell or any group of cells delimited by a grouping bracket, position the tip of the cursor arrow on the
cell or grouping bracket and click once. This selects the cell or group. Now go to the File menu and
choose Print Selection….

To select several adjacent cells when there is no grouping bracket, hold down the key and click
on their cell brackets one by one. They will all become selected. To select several nonadjacent cells,
hold down the key (Mac OS), or the key (Windows), while clicking on cell brackets. You can
then print your selection as above: Go to the File menu and choose Print Selection….

Printing a notebook that has graphics can sometimes lead to less-than-optimal page breaks. It is easy
to add more page breaks, but it can be tricky to force pages not to break. To add a page break, simply
click between the cells where the break should occur and select Insert PageBreak. To remove a break
above or below a graphic, try resizing the graphic. It is often the case that when printed, smaller
graphics look better, so this may be a good idea in any event. If this does not help, or if the
unwanted page break is not adjacent to a graphic, select the bracket of the first cell to appear after
the unwanted break, then summon the Option Inspector by visiting Format Option Inspector....
Make sure that the first pull-down menu reads Selection (which it should by default). Now type
“PageBreak” into the text field. Change the PageBreakAbove setting for the selected cell to False.
Repeat as necessary for nearby cells. If you are working on a Mac, be sure to make use of the Preview
button in the Print dialog before committing your notebook to paper.

It is possible to control what is printed in the header and footer areas on each page of a printed
notebook. By default, the header is comprised of the filename of the notebook and the page num-
ber. To change this, go to the File menu and select Printing Settings Headers and Footers…. The
resulting dialog box gives you the option of not displaying any header on the first page, which is
handy if you have a nicely typeset title page. There are also text fields for the content of the left,
right, and center portion of each header and footer. What appears by default in some of these fields
will look complex, but don’t worry. You may replace the content of any of these fields with any text
you like enclosed in double quotation marks, and you’ll be good to go. The complex structures
appearing by default are needed only if you wish to place page numbers or other such non-constant
values into your headers. Look up any of the command names appearing in these fields in the
Documentation Center for further information.

2.3 Printing 31

Each text field for the left, right, and center portions of a header or footer will accept a
complete Cell expression. This ensures total control over the style of the header, and allows
you to include CounterBoxes (for page numbers), and other such objects. To create a styled
text heading in any one of these locations, type Cell " your header text ", " Header " in the text

field. The first argument of the Cell command is your header text wrapped in double quotes.
The second argument is a cell style name, also in double quotes. Other common style names
for headers include "PageNumber", "Footer", or any other style name that appears in the

Format Style menu. You can modify styles with a third argument, such as:
Cell "your header text", "Text", FontSlant "Italic" . If you don’t like the look of the page

numbers that appear in the default headers, the most simple means of manually putting a
page number into one of the text fields is to type

Cell TextData CounterBox "Page" , "Header"

where you may change the second argument from "Header" to "PageNumber" or to any other

style name that appears in the Format Style menu.

2.4 Creating Slide Shows
Most people are familiar with PowerPoint presentations. A Slide Show in Mathematica is a similar
type of presentation environment. Making a Slide Show is easy. While the transition effects are not
as polished as those in a dedicated presentation program such as PowerPoint or Keynote, a
Mathematica Slide Show has the added feature of allowing live computations during your
presentation. You can wow your audience with a Manipulate or take a surface for a spin in real
time. This is possible because a Slide Show is really just a live Mathematica notebook with some
special display features.

To get started simply grab the SlideShow palette from the Palettes menu. The top button, New
Template, will open a new notebook with three pre-formatted generic slides. You are not bound to
this format, it is just to give you an idea of what a very simple Slide Show looks like. You can delete
everything in these slides and fill them with any Mathematica content, but before you do that let’s
take the generic one for a quick drive.

At the bottom of the palette there are two buttons labeled Normal and Slide Show. You can edit your
slides in either environment. The Normal environment shows all your slides at once with cell
brackets grouping the content of each slide. This is handy for cutting and pasting content into
several slides. The Slide Show environment shows one slide at a time. You can toggle back and forth
between the two environments as often as you wish.

In the Slide Show environment you can advance your slides by pushing the buttons in the toolbar at
the top of the window or the small gray arrows at the bottom right. If you don’t want the gray
arrows at the bottom of a slide you can delete that cell when you are in the Normal environment.
The leftmost arrow button among the four in the toolbar takes you to the beginning of the Slide
Show while the one on the right takes you to the end. Hit the button in the far top left corner of the

32 Working with Mathematica

toolbar in order to toggle into full-screen presentation mode. Push it again to toggle out of full-
screen mode.

Now you are ready to create your own Slide Show. You can use any format to add content to a slide.
You can even change the Stylesheet. If you want to add another slide go to the Normal environment,
position your cursor between the slides where you want to add a slide and click once to make a
horizontal bar appear, then click the New Slide button in the palette.

Push the Table of Contents button and you get a window listing all your slides. Finally, the Convert
Notebook button will convert any notebook into a Slide Show.

You can cut and paste content from other programs, such as photos from the web or sketches from
Geometer’s Sketchpad, into your Mathematica Slide Show. Once you get started you’ll find it is very
simple and intuitive to work in the Slide Show environment.

2.5 Creating Web Pages
If you would like to save a Mathematica notebook as an HTML (Hypertext Markup Language)
document so that it can be posted as a web page, simply go to the File menu and select Save As…,
then choose Web Page (*.html) in the Format pop-up menu near the bottom of the resulting dialog
box. Your notebook will be converted, and any graphics or mathematical expressions will be saved
as separate files (in the gif format).

We know of a student who was getting nowhere trying to explain a mathematics problem over the
phone to a fellow student. He then typed the equations he was thinking of into Mathematica, saved
the notebook as HTML, posted it to his website, and had the fellow student go to the freshly minted
page. This seems a bit extreme, but if you maintain a web site and are handy with posting web
pages, it’s nice to know that it’s a simple matter to compose in Mathematica.

2.6 Converting a Notebook to Another Format
Mathematica notebooks are highly structured documents, and as such it is possible to convert them
into a variety of other formats (such as HTML, as outlined in the previous section). By choosing Save
As… in the File menu and inspecting the Format options in the resulting dialog box, you can see
exactly which formats are supported. For example, if you save your notebook as a PDF file, you’ll be
able to read it and print it out from a computer that does not have Mathematica installed.

2.5 Creating Web Pages 33

2.7 Mathematica’s Kernel
When you enter a command in Mathematica, it is processed by a separate program called the
MathKernel, or kernel for short. This program is launched automatically when the first command is
entered. It takes a moment to launch this program, and that is why there is a perceptible lag during
the first computation. The kernel usually runs on the same computer that you are using, but this
need not be the case. It can be located on another, perhaps more powerful, computer. Many web
sites take user input and forward it to a Mathematica kernel, and then display the result as a web
page (see, for example, the Integrator at http://integrals.wolfram.com). If you are running the kernel
on your local computer, when you quit Mathematica the kernel quits as well. Each time you start
Mathematica and enter your first command a new kernel is launched.

When you launch Mathematica by opening an existing notebook, the kernel is not needed. You can
scroll through the notebook and view and even edit the contents. It is only when you place the
cursor on an input cell and enter the cell, or type a new command line and enter it, that the kernel
will be launched.

Numbering Input and Output
The command lines entered to the kernel and the outputs delivered by the kernel are numbered.
They are numbered in the order that they are received by the kernel. After the Mathematica program
is launched, the first command entered will be labeled In[1]:=, and its output will be labeled Out[1]=.
The next input will be labeled In[2]:=, and so on.

Be mindful that the numbering is determined by the sequential order in which the commands are
received by the kernel, and not necessarily by the order in which commands appear in the note-
book. For instance, if you were to start a Mathematica session by opening an existing notebook, then
scroll through to some input cell in the middle of that notebook, click on that cell and enter it, it
would be labeled In[1]:=.

Reevaluating Previously Saved Notebooks
When you first open a previously saved notebook, you will notice that none of the inputs or
outputs will be numbered any more. That’s because the numbering refers to the order in which
input cells were sent to the kernel and in which output cells were delivered from the kernel. When
you save a notebook, this information is lost. You are now free to click on any input cell and enter
it. That cell will acquire the label In[1]:=, and its output will be called Out[1]=.

It is important to realize that when you start a new Mathematica session by opening an old note-
book, you should not enter any input cell that makes reference to another cell (or variable, or
anything you created) that has not been entered in this session. For instance, suppose you opened a
notebook that contained the following input and output cells (they are not numbered, since they
have not been entered in this session):

34 Working with Mathematica

a 90

90

a2

8100

What would happen if you were to click on the second input cell (containing the text a2) and enter
it? Mathematica would be unaware of the cell containing the assignment a 90 since that cell has
not been entered in the current session. The resulting notebook would look like this:

a 90

90

In[1]:= a2

Out[1]= a2

In practice this means that when reopening an old notebook to continue work that you started in a
previous session, you should reenter, one by one, all the cells to which you will refer later in the
session.

You can automate this procedure if you like. After opening a previously saved notebook, go to the
Evaluation menu and select Evaluate Notebook. This will instruct the kernel to evaluate every cell in
the notebook, in order, from top to bottom. It’s a handy way to pick up your work where you left
off. Alternately, you may –click on the cell bracket of any cell (Mac OS), or –click (Windows),
to select all cells of that type the notebook. Do this to an input cell, and all input cells will be
selected. Now go to the Evaluation menu and choose Evaluate Cells.

Many notebooks contain certain input cells that will be evaluated each time the notebook is
used; this is often the case with notebooks created for students by teachers. Such notebooks
utilize special types of input cells called initialization cells. When a cell is an initialization cell,
it will be automatically evaluated before any other input cells in the notebook. Typical
initialization cells will define a special command to be used throughout the notebook, or load
a Mathematica package (more on packages later in this chapter). When you send your first
input to the kernel from a notebook containing one or more initialization cells, you will be
prompted and asked if you want to automatically evaluate all initialization cells in the
notebook. If you ever see such a prompt, answer “Yes.” Moreover, if you want to make an
input cell in one of your own notebooks an initialization cell, select the cell by clicking once

on its cell bracket (or –click on several cell brackets), then go to the Cell menu and choose

Cell Properties Initialization Cell.

2.7 Mathematica’s Kernel 35

You will notice that the cell bracket gets a little vertical tick mark at the top. Now when you
reopen this notebook in the future, the cell (or cells) that are initialization cells can be
automatically processed by the kernel. When you first save a notebook containing one or
more initialization cells, you will be prompted, “Do you want to create an Auto Save Package?”
Answer “No.” This feature is for programmers who are creating Mathematica packages.

2.8 Tips for Working Effectively

Referring to Previous Output
In a typical Mathematica session you will enter a cell, examine the output, enter a cell, examine the
output, enter a cell, examine the output, and so on. There are numerous little tricks that make it
easier to deal efficiently with Mathematica’s input-output structure. Perhaps the most important is
the percentage sign. When you need to use the output of the previous cell as part of your input to
the current cell, just type %. Mathematica interprets % as the output of the last cell processed by the
kernel (i.e., % represents the contents of the output cell with the highest label number):

In[1]:=
2120

2021

Out[1]=
278218429446951548637196401

2097152000000000000000000000

In[2]:= N

Out[2]= 0.132665

If you want to keep the old input and output cells, click below the old output cell and select Insert
Output from Above from the menu. It will paste the contents of the output cell that resides directly
above the position of the cursor into a new input cell, regardless of when that cell was processed by
the kernel. You can then edit the new input cell and enter it.

Referring to Previous Input
You will often enter a cell and later want to enter something very similar. The simplest way to deal
with this is to click on the former input cell and edit it, then reenter it. The cursor can be anywhere
in the input cell when you enter it; it need not be at the far right. Once the cell is entered, its label
number will be updated (for example from In[5]:= to In[6]:=). The old output will be replaced with the
output from the edited input cell.

If you want to keep (rather than overwrite) the old input and output cells, click below the old
output cell, go to the menu, and select Insert Input from Above. The old input cell will be copied
into a new input cell, which you can then edit and enter.

Another option is to use your mouse to copy and paste text from one cell (input or output) to a new
input cell. You can highlight text with your mouse to select it, then choose Copy from the Edit

36 Working with Mathematica

menu, click to position the cursor where you want the text to appear, and finally choose Paste from
the Edit menu.

Postfix Command Structure
The typical structure for Mathematica commands is:

Command argument or Command argument1, argument2

We’ve seen examples such as Sin
4

 and Log[10, 243]. When a command has only one argument,

another way to apply it is in postfix form. The postfix form for a command is:

argument //Command

This form is useful when the command is applied to an existing expression as an afterthought. For
instance, if you copy the contents of an earlier input or output cell into a new input cell, you can
easily apply a command in postfix form to the entire copied expression. Here are some examples:

In[3]:= Sin
12

N

Out[3]= 0.258819

This is equivalent to entering N Sin
12

.

In[4]:= x 1 2 3 x 6 x Expand

Out[4]= 12 4 x 19 x2 3 x3

This is equivalent to entering Expand[(x - 1)(2 + 3 x)(6 - x)].

Prefix Command Structure
When a command accepts a single argument, it can also be given in prefix form. The prefix form for
a command is:

Command@argument

Like the postfix form, this form can useful when the command is applied to an existing expression
as an afterthought. It allows you to apply the command without worrying about adding the closing
square bracket. Here are some examples:

In[5]:= First 2, 4, 6, 8

Out[5]= 2

This is equivalent to entering First[{2, 4, 6, 8}].

2.8 Tips for Working Effectively 37

In[6]:= TraditionalForm Sin x 2

Out[6]//TraditionalForm=

sin2 x

This is equivalent to entering TraditionalForm Sin x 2 .

Undoing Mistakes
If you make a bad mistake in typing or editing, the kind that makes you say, “I wish I could undo
that and return my notebook to its former state,” chances are you can. Look for Undo in the Edit
menu. It will reverse the previous action. The catch is that it will only undo the most recent action,
so use it immediately after making your mistake.

Another option is to close your notebook (choose Close in the File menu), and answer Don’t Save
when you are prompted. You can then reopen your notebook (choose Open Recent in the File
menu). You will find your notebook in the state that it was in when it was last saved. Of course you
should only do this if you have saved the notebook recently.

A more frightening scenario is entering an input cell and finding that Mathematica appears to be
stuck. For a long time you see the text “Running…” in the notebook’s title bar, but no output is
being generated. You may have inadvertently asked Mathematica to perform a very difficult calcula-
tion, and after a few minutes you may get tired of waiting. How can you make it stop? Go to the
Evaluation menu and select Abort Evaluation. Depending on the situation, it may halt immediately or
you may have to wait a minute or two before it stops. Be patient. If more than a few minutes pass

with no response, refer to Section 2.11, “Troubleshooting” on page 47.

Keyboard Shortcuts
If you have quick fingers you may find it easier to type characters than make repeated trips to the
menus with your mouse. Next to many menu items you will find keyboard shortcuts for
accomplishing the same task. We summarize some of the most common in Table 2.1.

Typesetting Input—More Shortcuts
We have seen that a typical input cell contains symbols and structures both from the keyboard and
from palettes (such as the BasicInput palette). As you get more familiar with Mathematica, you will
want to find the easiest way to typeset your input. It is helpful to know that there are ways to get
many symbols and structures directly from the keyboard without invoking the use of a palette at all.
Table 2.2 shows some of the most often used. You can find others by opening the SpecialCharacters
palette. If a character has a keyboard entry sequence, it will be displayed on the palette when you
select it.

38 Working with Mathematica

Task Mac OS Windows PC

Save your notebook s s

Cut x x

Copy c c

Paste v v

Undo an editing or typing mistake Z z

Copy input from above l l

Copy output from above l l

Complete a command k k

Make a command template k k

Abort an evaluation . .

Quit q F4

Table 2.1 Keyboard Shortcuts. When reading this table, q means hitting the command key and the q key at the same
time. On a Mac, the command key is marked .

Type to get

p the symbol

ee the symbol

ii the symbol

inf the symbol

deg the symbol for entering angles in degrees

th the symbol no buil meaning, but often used

the symbol for multiplication

^ or 6 to the exponent position

into a fraction

2 into a square root

out of an exponent, denominator, or square root

from one placeholder to the next

Table 2.2 Keyboard Shortcuts for Typesetting. When reading this table, 2 means hitting the control key and the 2 key
at the same time, while 2 means hitting the control key followed by the 2 key.

For instance, you can produce the input

2
x

y

by typing the following key sequence:

 p 6 2 + / x y

2.8 Tips for Working Effectively 39

And you can produce the input

2 x

y

by typing the following key sequence:

/ p 6 2 + x y

Of course if you consider yourself a poor typist, you may want to use palettes more rather than less.
Check out the BasicMathInput palette (in the Palettes menu). It contains buttons that will paste
templates of commonly used commands into your notebook. This keeps your typing to a minimum,
and helps you remember the correct syntax for commands. Whichever approach you take, you’ll
eventually find the way to typeset Mathematica input that works best for you.

Suppressing Output and Entering Sequences of Commands
There will be times when you don’t want Mathematica to produce output. For instance, suppose you
need to carry out several calculations involving the quantity

12
. Rather than type this expression

each time it is needed, you can assign its value to a letter and type this letter instead. When you
make this assignment and enter it, Mathematica will display the value as its output:

In[7]:= x
12

Out[7]=
12

Here the output is not necessary. If you would like to suppress the output of any input cell, simply
type a semicolon ; after typing the contents of the cell:

In[8]:= x
12

;

You can enter a sequence of several commands in a single input cell by putting semicolons after all
but the final command. Only the output of the final command will be displayed. When you are
typing, you can use the character return key (on a Mac or on a PC) to move to a new line in
the same input cell, or you can keep it all on one line if it will fit:

In[9]:= x 3;

Expand x y
8

Out[10]= 6561 17 496 y 20 412 y2 13 608 y3 5670 y4 1512 y5 252 y6 24 y7 y8

In[11]:= Clear x ; Expand x y 8

Out[11]= x8 8 x7 y 28 x6 y2 56 x5 y3 70 x4 y4 56 x3 y5 28 x2 y6 8 x y7 y8

40 Working with Mathematica

A different means for suppressing output is the Short command. This command is useful if you
generate output that is just plain too long. If you enter a cell and produce screen upon screen of
output, append the text //Short to the input and reenter it. You will get the very beginning and end
of the total output, with a marker indicating how much was chopped out of the middle. Here’s an
example that makes use of factorials. The factorial of a positive integer n is the product of n with
every other positive integer less than n. So the factorial of 5 is equal to 5 4 3 2 1 120. The
common mathematical notation for the factorial of n and the Mathematica notation agree: type n :

In[12]:= 1000 Short

Out[12]//Short=

402387260077 2544 000000000000

Here Mathematica tells us that there are over 2500 digits missing from the output.

If you want to find out whose computer is faster, or if you want to know how long it takes Mathemat-
ica to arrive at an answer, use the Timing command. Wrap any input with this command, and the
output will be a list containing two items (they will be separated by a comma). The first item in the
list is the number of seconds that it took the kernel to process your answer (it doesn’t include the
time it takes to format and display the answer), and the second item is the answer itself. If the input
to the Timing command is followed by a semicolon, the second item in the list will be the word
Null rather than the answer. This is useful when the output is large:

In[13]:= 20 Timing

Out[13]= 0., 2432902008176640000

In[14]:= 1 000000 ; Timing

Out[14]= 0.985, Null

2.9 Getting Help from Mathematica

Getting Information on a Command whose Name You Know
Type ? followed by a Mathematica command name, and then enter the cell to get information on
that command. This is useful for remembering the syntax for a command whose name you know,
and for seeing the various ways in which a command can be used. For example:

In[1]:= ? N

N expr gives the numerical value of expr.

N expr, n attempts to give a result with n-digit precision.

2.9 Getting Help from Mathematica 41

You can click on the symbol at the end of this output to get more detailed information in the
Documentation Center.

Command Completion
Mathematica can finish typing a command for you if you provide the first few letters. This is useful if
the command has a long name; it saves time and guarantees that you won’t make a typing mistake.
Here’s how it works: After typing a few letters choose Complete Selection from the Edit menu. If more
than one completion is possible, you will be presented with a pop-up menu containing all of the
options. Just click on the appropriate choice. Try it—type Cos in an input cell and attempt the
completion. You will find that there are four Mathematica commands that start with these letters:
Cos, Cosh, CosIntegral, and CoshIntegral.

Command Templates
If you know the name of a command, but have forgotten the syntax for its arguments, type the
command name in an input cell, then choose Make Template from the Edit menu. Mathematica will
paste a template into the input cell showing the syntax for the simplest form of the command. For
example, if you were to type Plot, and then choose Make Template, the input cell would look like

this:

Plot f , x, xmin, xmax

You can now edit the cell (replacing f with the function you want to plot, xmin with the lower bound

for your domain, etc.).

Command templates and command completions work well together. Type a few letters, complete
the command, then make the template. It’s an easy way to avoid syntax errors. See Table 2.1 for
keyboard shortcuts.

The Documentation Center
The Documentation Center is the most useful feature imaginable; learn to use it and use it often. Go
to the Help menu and choose Documentation Center. In a moment a window will appear displaying
the documentation home page. The documentation window is modeled after a web browser. You
may either type a keyword in the text field, or follow links from the home page. Every one of the
more than 3000 built-in symbols has its own individual help page. For example, if you type “Plot”
into the text field (with a capital P), the help page for the Plot function will appear. In the large
yellow box the basic syntax for the command is explained. In the far upper right corner there are
links to related tutorials, a very useful feature. Under the main yellow box showing a command’s
syntax structure there is a button labeled “More Information.” Push it and all the dirty details of
your command will be revealed. Below all this are usage examples.

One could spend the rest of his or her natural life wading through the documentation center; it’s a
big place.

42 Working with Mathematica

2.10 Loading Packages
Mathematica comes with over 3000 built-in commands and symbols. Nevertheless, there will
inevitably come a time when you will seek a command that is not built into the system. In such
cases it is possible to create or simply use a suite of custom-designed Mathematica commands
designed for a particular application. A Mathematica package, or add-on, is a file that activates
additional commands that are not ordinarily available. When you load a package, the commands in
that package become available for you to use. Mathematica comes with a few dozen “standard”
packages, and there are many more in use around the world.

If so many packages are “standard” and ship with the software, why does one have to load
them separately? Why are they not just built-in? The reason is two-fold. On the one hand,
keeping these packages on the shelf, so to speak, until needed makes Mathematica leaner and
more nimble. If a user will not need these commands in most sessions, keeping them out of
the system means that there will be more resources available for everything else. The user
simply loads packages as they are needed. On the other hand, the design of packages allows for
the possibility that the same command name could have one meaning in one package, and an
entirely different meaning in another. Common mathematical terms such as “tensor,” for
instance, have different meanings in different mathematical contexts, and indeed there are
different packages available that define the command Tensor differently. Thus packages allow
the user flexibility to customize Mathematica to suit the purpose at hand.

To understand in a very basic way how packages work, it is necessary to understand that the
built-in commands have a “full name” and a short name. So far we have only mentioned the
short name. The full name of a built-in command can be had by attaching System` to the
front of it. For instance, the full name of Plot is System`Plot. We say that the Plot command
lives in the System context. The commands found in a package, by contrast, have a context
other than System. For instance, below we give examples from the Units` package. The
command whose short name is Convert is defined in this package; its full name is Units`Con
vert. One can always call a command by typing its full name, but this is almost never done. It is
only necessary if two commands have the same short name, a situation that we generally try
to avoid. When a package is loaded, its context is recognized, so that calls can be made to the
short name of any command defined in the package.

Hundreds of additional packages are available to download (for free) from the web site
http://library.wolfram.com. At this site, type a topic of your choosing in the search field, and search
within “MathSource.” A listing of hits is displayed, each with a brief summary, a link, and the date
on which it was posted (recent dates are generally better than old). It is a simple matter to follow a
link, then download and install the relevant package. Package files are identical regardless of which
operating system your computer uses. To install a package, simply place the package file (ending in
.m) into the ~/Library/Mathematica/Applications folder in your home directory (Mac OS), or the
Documents and Settings\username\Application Data\Mathematica\Applications folder (Windows).

The following input can be used to get a listing of the standard packages included in your installa-
tion of Mathematica. It looks rather complicated, but it simply instructs Mathematica to look in the
appropriate directory on your computer and report the names of the files that are stored there. Note

2.10 Loading Packages 43

that it is possible to do this with slightly shorter input, but the following (redundant but simple)
input will work on all platforms (Mac, PC, etc.):

In[1]:= SetDirectory $InstallationDirectory ;

SetDirectory "AddOns" ;

SetDirectory "Packages" ;

FileNames

Out[4]= ANOVA, Audio, BarCharts, Benchmarking, BlackBodyRadiation, Calendar,

Combinatorica, Compatibility, ComputationalGeometry , ComputerArithmetic ,

Developer, EquationTrekker, ErrorBarPlots, Experimental, FiniteFields,

FourierSeries, FunctionApproximations , Geodesy, GraphUtilities, GUIKit,

HierarchicalClustering, Histograms, HypothesisTesting, LinearRegression,

MultivariateStatistics, Music, NonlinearRegression, Notation, NumericalCalculus,

NumericalDifferentialEquationAnalysis , PhysicalConstants, PieCharts, PlotLegends,

PolyhedronOperations, Polytopes, PrimalityProving, Quaternions, RegressionCommon,

ResonanceAbsorptionLines , Splines, StandardAtmosphere, StatisticalPlots,

Units, VariationalMethods, VectorAnalysis, VectorFieldPlots, WorldPlot, XML

It is highly likely that you will at some point need to load a package into Mathematica. To do so, the
Needs command is used. Suppose that you wish to use a package, and either it is a standard package
or you have already downloaded it and placed it in the Applications directory. For example, there is
a standard package called Units that allows you to easily convert units of measurement. To load it,
enter a cell containing the text:

In[5]:= Needs "Units`"

This must be typed with perfect precision. The argument to Needs is a String, that is, it is enclosed
in double quotation marks. And the package name will invariably contain one or more backquote
characters ` (look in the upper left portion of your keyboard for the backquote character. Do not use

an apostrophe ’). If the cell is entered properly, there will be no output. If you get an error message,

chances are good that you didn’t type the input exactly right; fix it, then reenter the cell. Under no
circumstances should you attempt to use the commands in the package until it has been properly
loaded. You can check that the package loaded properly by typing and entering

In[6]:= $Packages

Out[6]= Units`, ResourceLocator`, DocumentationSearch`,

JLink`, PacletManager`, WebServices`, System`, Global`

The output shows all currently loaded packages; your output may be slightly different. What you
need to look for is the name of the package you tried to load. Since Units` appears in the output, all
is well. If your package does not appear in the list, try using the Needs command again until it does.

Once the package has loaded you can use the commands it contains just as if they were ordinary
Mathematica commands. The Units package contains the command Convert, which allows the

44 Working with Mathematica

conversion of just about any imaginable pair of measurement units. The syntax is:

Convert from, to

For example, how many miles are there in a light year? How many teaspoons in a 16 gallon tank of
gas? Bartenders take note: How many jiggers in a 1.75 liter bottle?

In[7]:= Convert LightYear, Mile

Out[7]= 5.87863 1012 Mile

In[8]:= Convert 16 Gallon, Teaspoon

Out[8]= 12 288. Teaspoon

In[9]:= Convert 1.75 Liter, Jigger

Out[9]= 39.4497 Jigger

Note that all units of measurement are given in the singular, so you should type Foot rather than
Feet and Mile rather than Miles. Note also that you may arithmetically combine basic units of
measurement; for instance, you can convert miles per hour to feet per second like so:

In[10]:= Convert 90 Mile Hour, Foot Second

Out[10]=
132 Foot

Second

You can deal in thousands with the prefix Kilo, which is simply equal to 1000. For instance there is
no unit named Kilometer. Rather, you should use the product (note the space) Kilo Meter.

This brings a natural question to mind: How do you find out what commands are available in a
given package? For instance, what units of measurement are available in the Units package? To find

out, use the Names command (do this after loading the package). The syntax for Names is just like
that of the Needs command, except that you need to place an asterisk between the last backquote
and double quote (the asterisk is the “wild-card” symbol common in many computer applications
and operating systems). You can save yourself some typing by clicking once under the input cell
containing the Needs command, and from the menus choosing Insert Input From Above. Then edit
the new cell, adding the asterisk and changing Needs to Names. To save space below, we Take only
the 40th through 70th names from over 250 names in the package.

In[11]:= Names "Units` " Short

Out[11]//Short=

Abampere, 274 , Zetta

2.10 Loading Packages 45

In[12]:= Take Names "Units` " , 40 ;; 70

Out[12]= BTU, Bucket, Bushel, Butt, Cable, Caliber, Calorie, Candela,

Candle, Carat, Celsius, Cental, Centi, Centigrade, Centimeter, Century,

CGS, Chain, ChevalVapeur, Cicero, Convert, ConvertTemperature,

Cord, Coulomb, Cubit, Curie, Dalton, Day, Deca, Decade, Deci

Here we see that there are a host of objects defined in the package. Most of them are units of mea-
surement, but two of them, Convert and ConvertTemperature, are commands. You can now find
out about any of these names in the usual way:

In[13]:= ? Butt

Butt is a unit of volume.

In[14]:= ? ConvertTemperature

ConvertTemperature temp, oldscale, newscale converts

temperature temp from temperature scale oldscale to scale newscale.

In[15]:= ConvertTemperature 212, Fahrenheit, Celsius

Out[15]= 100

There is an important thing you need to know about packages. If you accidentally attempt to use a
command defined in a package before the package has been loaded (you’ll know if you’ve done this
because the command won’t work; the output will simply match the input), you’ll create a bit of a
challenge for both yourself and for Mathematica. Suppose, for instance, that you tried to use the
Convert command before loading the Units` package. By calling the Convert command prematurely,
you have inadvertently created a symbol of that name. Mathematica notes that Convert is now a
recognized symbol, albeit a symbol that has no meaning. The next logical step is for you to realize
that you forgot to load the package, and proceed to load it. Now here’s the rub: As Mathematica goes
about loading all the new symbols in the package it will encounter two symbols with the name
Convert, the one in the package and the meaningless one you (inadvertently) created. This will lead
to a warning message as the package loads. It will also lead to the symbol Convert being displayed
in red when it is typed, to flag it as a symbol with conflicting meanings. However beyond this rather
disturbing red display, nothing bad will happen. The package definition takes precedence over your
meaningless one, and everything will work as it should.

You can avoid these issues by simply loading the package before calling any commands in it. And if
you do inadvertently call a command prematurely (this is known as premature evaluation), and
would rather not see the command displayed in red, simply type Remove[Convert] (or whatever
command you accidentally called) before loading the package. This will purge the offending symbol
from the system registry so that there will be no conflict upon loading the package.

46 Working with Mathematica

Exercises 2.10
1. How many gallons are in a butt? Load the Units package and investigate. Make a joke out of the

answer.

2.11 Troubleshooting
The most common problem with learning Mathematica is adapting to a system in which spelling and
syntax must be perfect. What happens if your syntax is wrong (say you typed a period instead of a
comma, or forgot to capitalize a command name)? Usually you will get an error message. Don’t
panic. Most error messages can be traced to a simple typing mistake. Just go back to your last input
cell, edit it, and reenter it. If you can’t find your mistake, ask a friend or your instructor. You may
also want to try the online help features discussed earlier.

In any event, if your input is either generating error messages or not generating the output you
want, look first for spelling or syntax problems. If you are reasonably certain that the command has
been entered correctly, there are a few other things you might try. If Mathematica beeped when you
attempted to enter your input cell, you can go to the Help menu and select Why the Beep?…. This
will provide you with an explanation that may be quite helpful. Another tactic that cures a common
source of problems is to clear the names of any variables appearing in your input, then try reenter-
ing the cell. For instance, if your current input involves a variable called x, and somewhere long ago
you typed x 3, then Mathematica will substitute 3 for x every chance it gets for as long as the
current kernel is running. You may have forgotten that you made such an assignment, and no
longer want it. Type and enter Clear[x] to remove any previous assignment to x, then reenter your
input cell (you will need to clear the values of all expressions that have been assigned values in your
current session; such expressions may or may not be called x in your notebook). Get in the habit of
clearing variable names as soon as you are done with them.

Another reality that you may encounter at some point is that your computer can crash. This occurs
only very rarely under ordinary usage on a computer of recent vintage, but it’s good to be able to
recognize one should it occur.

Recognizing a Crash

When you enter a command to Mathematica’s kernel, the title bar to the notebook window will
display the text “Running….” This label will vanish when the output appears. It is Mathematica’s
way of telling you that it is working on a calculation. Some calculations are fast, but some are slow,
and some are very slow (hours, days, even weeks). How much time a calculation will require depends

2.11 Troubleshooting 47

on the complexity of the calculation and the type of computer being used. If you have entered a
command and nothing seems to be happening, don’t despair. It is likely that you have simply asked
a difficult question (intentionally or not) and it will take Mathematica a bit of time to answer.

If you don’t have time to wait and just want Mathematica to stop, read on.

Or if (heaven forbid) the cursor does not respond when you move the mouse, and the keyboard does
not seem to work, it is likely that a crash has occurred. Don’t panic, and don’t pull the plug just yet.
Read on…

Aborting Calculations and/or Recovering from a Crash
Under ordinary circumstances (the computer hasn’t crashed), simply select Abort Evaluation from the
Evaluation menu. This will usually work, but not always. Wait a minute or two and take a deep
breath. Relax. If all goes well you should eventually see the message $Aborted in your notebook
window where the output would ordinarily appear. Mission accomplished.

If nothing happens when you attempt to abort, you will have to take slightly more decisive action:
You will have to quit the kernel. To do this, go again to the Evaluation menu, but this time select
Quit Kernel (you then have to select the kernel that is running, usually the local kernel), then hit the
Quit button when it asks if you really want to quit the kernel. The only consequence here is that if
you wish to continue working, you will have to start a new kernel. This will happen automatically
when you enter your next input. Remember that the new kernel will not be aware of any of your
previous calculations, so you may have to reenter some old cells to bring the new kernel up to date
(if your new commands make reference to any of your previous work).

Now for those of you who have lost control of the mouse and keyboard due to a crash, none of the
above is possible. Ideally, you would like to be able to quit Mathematica without losing any of your
unsaved work. It’s not always possible; this is why it’s a good idea to save your work often.

The action that you should take depends to some extent on what type of computer you are using.
Let’s proceed by platform:

Mac OS Procedure
First, try simultaneously hitting and . (that’s the period key). This is just the keyboard equivalent
of selecting Abort Evaluation from the Evaluation menu as described above. It probably won’t work,
but give it a try. We’ve seen instances in which the mouse failed in the middle of a long calculation.
No crash, just a worn mouse that died at an inopportune time.

If that doesn’t work, try simultaneously hitting Q. If this works you will be presented with a dialog
box asking if you wish to save your work. Answer “Yes.” In this case, the result will be quitting the
entire Mathematica program (front end and kernel).

If that doesn’t work, simultaneously hit the keys. A dialog will appear asking which applica-
tion you wish to Force Quit. Choose Mathematica. This is almost always effective. The front end and
kernel will quit, but you will not have an opportunity to save your work.

48 Working with Mathematica

As a last resort, you will have to turn off your computer manually. Any unsaved changes will be lost.
If the computer has a reset button, use it. Otherwise find the “off” button (often on the back of your
computer) and use it. Wait a few seconds and restart the computer in the usual way.

Windows Procedure
First, try simultaneously hitting and . (that’s the period key). This is just the keyboard equivalent
of selecting Abort Evaluation from the Evaluation menu as described above. It probably won’t work,
but give it a try. We’ve seen instances in which the mouse failed in the middle of a long calculation.
No crash, just a worn mouse that died at an inopportune time.

If that doesn’t work, simultaneously hit the keys. This is usually effective. You should be
presented with a dialog box. Hit the Task Manager button, then look under the Applications Tab for
Mathematica. Select it, and hit the End Task button to quit Mathematica altogether. It may be possi-
ble to save your notebook before quitting. You should restart your computer before launching
Mathematica again. This will decrease the likelihood of another crash.

As a last resort, you will have to restart your computer. Again, any unsaved changes will be lost.

Running Efficiently: Preventing Crashes
Mathematica can make heavy demands on your computer’s resources. In particular, it benefits from
large amounts of random access memory, or RAM. You should be aware of this so that you can help
it along. Here are some tips to consider if you find yourself pushing your system’s resources:

First, quit other programs (such as your web browser) when using Mathematica. Other programs also
require RAM, so running them at the same time steals valuable memory from Mathematica. Also,
even though it is possible to have multiple notebooks open at one time, avoid having more note-
books open than necessary. Each open notebook will consume memory. You should also save your
notebooks often. Doing so will allow Mathematica to store part of it on your computer’s hard drive,
rather than storing all of it in RAM. Finally, if you work on your own computer and are in the habit
of leaving Mathematica running for days or weeks at a time, quit the kernel from time to time to
flush out any symbols that are not being used.

2.11 Troubleshooting 49

3
Functions and Their Graphs

3.1 Defining a Function
A function is a rule that assigns to each input exactly one output. Many functions, such as the
natural logarithm function Log, are built in to Mathematica. You provide an input, or argument, and
Mathematica produces the output:

In[1]:= Log 1

Out[1]= 0

You can define your own function in Mathematica like this (use the BasicMathInput palette to type

x2; see Section 1.6, page 4):

In[2]:= f x : x2 2 x 4

This function will take an input x, and output x2 2 x 4. For instance:

In[3]:= f 1

Out[3]= 1

In[4]:= f

Out[4]= 4 2 2

As a second example, here is a function that will return the multiplicative inverse of its argument
(again, use the BasicMathInput palette to type the fraction):

In[5]:= inv x :
1

x
Let’s try it:

In[6]:= inv 45

Out[6]=
1

45

You can also create functions by combining existing functions:

In[7]:= g x : N inv x

In[8]:= g 45

Out[8]= 0.0222222

Defining a Function
Follow these rules when defining a function:

The name of the function (such as f or inv) should be a lowercase letter, or a word that
begins with a lowercase letter. This is because all built-in functions (such as Log and N)
begin with capital letters. If your function begins with a lowercase letter, you will never
accidentally give it a name that already belongs to some built-in function.
The function argument (in these examples x) must be followed by an underscore _ on
the left side of the definition.
Use square brackets [] to enclose the function argument.

Use the colon-equal combination := to separate the left side of the definition from the
right.

After typing the definition, enter the cell containing it. Your function is now ready for action.

The := operator (called the SetDelayed operator) used in defining functions differs in a subtle
way from the = operator (called the Set operator) used for making assignments (the = operator

was discussed in Section 1.10—see page 20). Essentially, when you use := the expression

appearing to its right is evaluated anew by the kernel each time that the expression appearing
to its left is called. The = operator, by contrast, evaluates the expression on its right only once,
at the time the assignment is made. In many settings = and := can be used interchangeably;
however, there are cases when one is appropriate and the other is not. Using SetDelayed for
function definitions will work in virtually every setting, and we will use it consistently for that
purpose throughout this book.

An illustrative example is the following: Type and enter x RandomInteger 100 ; x, x, x .

Then change = to := and do it again. In the first case, x is set to be a single (randomly chosen)
integer, so the output is a list in which that same number appears three times. In the second
case, each x causes a new random integer to be chosen, so the output is a list of three
(probably) distinct numbers.

For more information, go to the Documentation Center and type SetDelayed in the text field,
then follow the link to the tutorial titled “Immediate and Delayed Definitions.”

52 Functions and Their Graphs

Clearing a Function
A word to the wise: Once you are finished working with a function, get rid of it. Why? One reason is
that you may forget about the function and later in the session try to use the name for something
else. But Mathematica won’t forget, and all sorts of confusion can result. Another is that in getting
rid of a function you will clear out a little bit of memory, leaving more room for you to work. To see
if a letter or word has been defined as a function, use the ? command just as you would for a built-
in Mathematica command:

In[9]:= ? f

Global`f

f x : x2 2 x 4

This indicates that f is still retained in memory. You can use the Clear command to erase it, just as

you would to erase the value of a constant:

In[10]:= Clear f

Now if you use the ? command you will find no such definition:

In[11]:= ? f

Global`f

To clear out every user-defined symbol from the current session, try Clear["Global`*"]. The
asterisk is a wild-card symbol; this essentially says, “Clear all symbols defined in the Global
context” (the Global context is the default location where user-defined symbols are stored).

3.2 Plotting a Function
We begin with a simple example:

In[1]:= Clear f ;

f x : x2 2 x 4

3.2 Plotting a Function 53

In[3]:= Plot f x , x, 1, 3

Out[3]=

1 1 2 3

4

5

6

7

The Plot command takes two arguments, separated (as always) by a comma. The first (in this case
f[x]) is the function to be graphed, and the second (in this case {x, -1, 3}) is called an iterator. It
describes the span of values that the variable x is to assume; that is, it specifies the domain over
which the plot will be constructed. The curly brackets are essential in describing this domain. In
fact, Mathematica uses this iterator structure in numerous commands, so it warrants a bit of discus-
sion. The first item (x) names the variable, and the next two items give the span of values that this
variable will assume (1 through 3). Values in this domain are displayed along the horizontal axis,
while the values that the function assumes are displayed along the vertical axis.

Note that the axes in this plot do not intersect at the origin, but rather at the point 0, 3 . Every time
you use the Plot command Mathematica decides where to place the axes, and they do not always
cross at the origin. There is a good reason for this. As often as not you will find yourself plotting
functions over domains in which the graph is relatively far from the origin. Rather than omit one or
both axes from the plot, or include the axes together with acres of white space, Mathematica will
simply move the axes into view, giving your plot a frame of reference. If you really want to produce
a plot with the axes intersecting at the origin, you can. The details are provided in the next section
of this chapter, “Using Mathematica’s Plot Options.”

You can zoom in on a particular portion of a plot simply by editing the domain specified in the
iterator, then reentering the cell. Let’s take a close look, so to speak, at the function in the last
example, this time with x values near 2. Notice how “flat” the graph becomes:

In[4]:= Plot f x , x, 1.9, 2.1

Out[4]=

1.95 2.00 2.05 2.10

3.9

4.0

4.1

4.2

You could zoom in even more (say with a domain from 1.99 to 2.01) and get a more detailed view of
the function’s behavior near the point x 2. In the plot below we show an extreme zoom (and make
use of the lowercase Greek letter , which mathematicians often use to denote small quantities).
Here we also employ the With command, a device that allows you to make local assignments; the

54 Functions and Their Graphs

assignment 10 10 will only be utilized within the Plot expression, and will not be remembered
by Mathematica later.

In[5]:= With 10 10 , Plot f x , x, 2 , 2

Out[5]=

2 2 2 2

4

4

4

4

Note that the numerical values on each axis display identically; this is simply because so many
decimal places (ten in this case) are needed to distinguish them that there isn’t room for their
display. In principle you could keep zooming in forever, but in practice this is not possible. See

Exercise 3 for a discussion on the limits of zooming.

Another little trick that’s good to know about is how to resize a graphic. This technique is best
learned by trying it, so get yourself in front of the computer and produce a plot. Position the cursor
anywhere on the graph and click once. A rectangular border with eight “handles” appears around
the graph. Position the cursor on a handle and drag (hold down the mouse button and move the
mouse) to shrink or enlarge the graphic. It’s easy; try it.

A plot often demands careful investigation:

In[6]:= Clear f ;

f x :
x5 4 x2 1

x 1

2

In[8]:= Plot f x , x, 3, 3

Out[8]=

3 2 1 1 2 3
20

20

40

60

80

Something strange seems to be happening when x 1 2 (see that vertical blip?). What’s happening
is this: the function is not defined when x 1 2, since the denominator of f is equal to zero at this

value of x. Think of there being an imaginary vertical line, an asymptote, at x 1 2 through which
the graph of f cannot pass. In order to understand Mathematica’s output it is important to

understand how the Plot command works. Plot samples several values of x in the specified domain

3.2 Plotting a Function 55

and numerically evaluates f x for each of them. After refining its selection of sample points via an

adaptive algorithm, it then plots these points and “connects the dots” with little line segments.
There are so many that the graph appears in most places like a smooth curve. The important issue
here is that Mathematica’s plots are not exact in a mathematical sense; they are only
approximations. For instance, the vertical-looking segment that crosses the x axis near 1 2 is not
part of the true graph of f . As Mathematica plotted successively larger values of x, just to the left of

x 1 2, the function values got smaller and smaller. The last point that was plotted to the left of the
true asymptote took a large negative value. The very next point plotted, just to the right of the true
asymptote, took a large positive value. Mathematica then connected these two points with a line
segment (so in fact that vertical-looking segment tilts ever so slightly from lower left to upper right).
Mathematica had no way of knowing that in fact the true graph of f never crosses the vertical

asymptote. Although technically inaccurate, this isn’t a bad state of affairs. You can interpret the
plot as the graph of f with the asymptote roughly drawn in. And an important lesson can be learned

here: Never trust the output of the computer as gospel; it always demands scrutiny.

Beware also that vertical asymptotes (and other “narrow” features) in a plot will change in appear-
ance as the specified domain changes. Asymptotes may disappear or become barely noticeable. For
instance, here is another view of the function f , this time zoomed out to accommodate the domain

from 10 to 10. The asymptote appears to have vanished:

In[9]:= Plot f x , x, 10, 10

Out[9]=

10 5 5 10

2000

4000

6000

8000

10 000

The asymptote is almost invisible because Mathematica (by chance) skipped over those values of x so
close to the asymptote that f x would return very large or very small values. The “true” graph of f

still spikes up toward infinity just to the right of the asymptote and down to negative infinity just to
the left of it. The point of all this is to make clear that the plots Mathematica produces are approxima-
tions. They may hide important features of a function if those features are sufficiently narrow
relative to the domain over which the function is plotted. When it comes to finding a function’s
asymptotes, for instance, looking for them on a plot is not necessarily the best approach. We’ll
discuss better methods for finding vertical asymptotes (by finding explicit values of x for which the
denominator is equal to zero) in the next chapter.

We note that if you do know the precise numerical position of a function’s vertical asymptote(s),
you can add these values between the lower and upper numbers in the iterator. Mathematica will
omit such points from the resulting plot, and will hence produce a more accurate plot. In the next

56 Functions and Their Graphs

section, the Exclusions option will be introduced; this provides a sophisticated means of excluding
points from a domain.

In[10]:= Plot f x , x, 1,
1

2
, 2

Out[10]= 1.0 0.5 0.5 1.0 1.5 2.0

10

5

5

A more subtle issue may arise from the manner in which Mathematica utilizes the complex number
system. There are cases in which there are two potential definitions for a function: one which
disallows complex numbers, and another which embraces them. Mathematica will always embrace
them, and this can lead to some unexpected results. In particular, students in precalculus or calculus
often work in a setting that opts to disallow non-real numbers. A classic example is the cube root

function, f x x1 3. Here is a plot of this function on the domain 8 x 8:

In[11]:= Plot x1 3, x, 8, 8

Out[11]=

5 5

0.5

1.0

1.5

2.0

The left side of the plot is empty. That seems odd; don’t negative numbers have cube roots? We

know that 2 3 8, so the cube root of 8 should be 2, shouldn’t it? The issue is a subtle one. In
the complex number system there are three numbers whose cube is 8, (they happen to be 2 and

the two complex numbers 1 3). Mathematica, savvy as it is regarding the complex numbers,

takes one of the complex numbers to be the cube root of 8. In a similar manner, it regards the cube
root of every negative number to be complex. It can’t plot a complex number, and so the left half of
the plot is empty. A thorough discussion of why Mathematica chooses complex values as the cube

roots of negative numbers can be found in Section 4.4 on page 162. Suffice it to say that there are
very good reasons for doing so, but that it can be an annoyance to those who would like to study
the real-valued cube root function (and remain blissfully ignorant of the complex number system).

If you would like to see the plot of the real-valued cube root function found in many precalculus
and calculus texts (where the cube root of 8 is taken to be 2), one can define an alternative Power

3.2 Plotting a Function 57

command, as follows:

In[12]:= realPower x , p : If x 0 && Element p, Rationals ,

If OddQ Denominator p , If OddQ Numerator p ,

Power x, p , Power x, p , Power x, p , Power x, p

A discussion of the If command can be found in Section 8.5. At this point it’s okay to ignore the
details of this definition, and to use it freely. It will modify the powers of negative numbers when
those powers are rational numbers with odd denominator (powers such as 1 3). Here is how to use
this alternate Power command to produce a plot of the real-valued cube root function:

In[13]:= Plot realPower x, 1 3 , x, 8, 8

Out[13]=
5 5

2

1

1

2

realPower will differ from the built-in Power command only if the power (1 3 in the example
above) is a rational number. This will suffice for the types of power functions typically encountered
in precalculus and calculus courses. Just be sure to enter an exact rational number (no decimal
points) as the second argument to realPower.

Exercises 3.2
1. Plot the following functions on the domain 10 x 10.

a. sin 1 cos x

b. sin 1.4 cos x

c. sin
2

cos x

d. sin 2 cos x

2. One can zoom in toward a particular point in the domain of a function and see how the graph

appears at different zoom levels. For instance, consider the square root function f x x when

x is near 2.

a. Enter the input below to see the graph of f as x goes from 1 to 3.

With 100 , Plot x , x, 2 , 2

b. Now zoom; change the value of to be 10 1 and re-enter the input above to see the graph of f

as x goes from 1.9 to 2.1. Do this again for 10 2, 10 3, 10 4, and 10 5.

58 Functions and Their Graphs

c. Use the last plot to approximate 2 to six significant digits. Check your answer using N.

d. When making a Plot, the lower and upper bounds on the iterator must be distinct when

rounded to machine precision. Enter the previous Plot command with 10 20. An error
message results. Read the error message and speculate as to what is happening. The bottom
line is that zooming has its limits.

3. Use the realPower command to plot the real-valued function f x x4 5 on the domain

32 x 32. What is the value of f 32 ?

3.3 Using Mathematica’s Plot Options
Many of Mathematica’s commands accept option settings; you can type additional arguments into a
command to modify the behavior of that command. In this section we’ll see how to tweak the Plot
command so that you get the most out of your graphs. For example, here is the plot of the function

100 cos x x2
:

In[1]:= Plot 100 Cos x x2
, x, 3, 3

Out[1]=

3 2 1 1 2 3

200

400

600

800

Notice how Mathematica only showed us a portion of what we asked for (the graph is not shown
when x exceeds 2.5 or so). This is because beyond the portion shown Mathematica observed no
interesting behavior; the graph just kept going up on the left and on the right. The (boring) informa-
tion near the edges was clipped off to give a better view of the middle portion of the plot. Mathemat-
ica will do this clipping by default.

The option PlotRange is set by default to an automated setting which will sometimes result in a
graph with a truncated vertical scale. But suppose you really want to see the function over the full
domain from 3 to 3. You can indicate this by adding PlotRange Full as an additional argument
to the Plot command. It must be placed after the two required arguments. The arrow is found on
the BasicMathInput palette; alternatively, it can be typed from the keyboard as a “minus” sign
followed by a “greater than” sign: ->. After typing these two symbols one after the other, they will
turn into the arrow on their own at the next keystroke.

3.3 Using Mathematica’s Plot Options 59

In[2]:= Plot 100 Cos x x2
, x, 3, 3 , PlotRange Full

Out[2]=

3 2 1 1 2 3

2000

4000

6000

8000

Look at the output. The left and right sides of the plot now climb almost ten times higher, and as a
result the detail in the middle is harder to surmise. It’s a very different picture.

After exploring this function in the previous two graphs it is clear that the interesting behavior
occurs above the x-axis and below y 250. You can specify the exact range of values you wish to

display using PlotRange ymin, ymax . If your desired range is n to n, PlotRange n will suffice.

In[3]:= Plot 100 Cos x x2
, x, 3, 3 , PlotRange 0, 250

Out[3]=

3 2 1 0 1 2 3

50

100

150

200

250

In general, you type the name of the option, followed by , followed by the desired setting for the
option. The philosophy of allowing commands such as Plot to accept options is simple: very little
typing is required to allow the command to be used in its default form. But when the default output
is not entirely to your liking you have the ability to tweak the default settings to your heart’s con-
tent. There are over 50 options for the Plot command, several of which are discussed below. You
may add several option settings to a command, and in any order you wish (provided each optional
argument is listed after the required arguments); just use commas to separate them.

How to Get the Same Scaling on Both Axes
In order to get both sets of axes on the same scale use the option AspectRatio Automatic:

60 Functions and Their Graphs

In[4]:= Plot 2 x 4 2 1, x, 3, 5 , AspectRatio Automatic

Out[4]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

Be mindful that in many cases you definitely do not want your axes to have the same scale. You
could, for instance, very easily ask for a plot that was a few inches wide and a few miles high.
Imagine the plot at the beginning of this section if you are skeptical. That is why the default aspect
ratio (the ratio of height to width) is set to a fixed value. In other words, by default Plot will scale
the axes in such a way that the graph will fit into a rectangle of standard proportions. It’s best to
add the AspectRatio Automatic option only after you have viewed the plot and determined that

its use won’t result in a plot that’s too long and skinny.

Note that you can also set AspectRatio to any positive numerical value you like. The plot will have
the height to width ratio that you specify. For instance, the setting AspectRatio 3 will produce a

plot that is three times as high as it is wide. Widescreen televisions are advertised to have a 16 : 9
aspect ratio. In Mathematica, we can obtain these dimensions with the setting AspectRatio 9 16.

How to Get the Axes to Intersect at the Origin
Use the option AxesOrigin 0, 0 :

In[5]:= Plot 2 x 4 2 1, x, 3, 5 , AxesOrigin 0, 0

Out[5]=

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

3.3 Using Mathematica’s Plot Options 61

Note that the domain specified is 3 x 5, yet the option setting extends the graphic beyond these
values. You may need to adjust the AspectRatio as well if you end up with something too long and
thin.

How to Display Mesh Points
To show the points delineating all the line segments generated in a Plot, use the option Mesh All:

In[6]:= Plot Sin x 2, x, 0, 2 , Mesh All

Out[6]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Note that more points are generated in regions where the function bends sharply. The graph itself is
comprised of line segments joining these points.

To show points whose x coordinates are regularly spaced, use the option Mesh Full or Mesh n
where n is the desired number of points (not counting endpoints).

In[7]:= Plot Sin x 2, x, 0, 2 , Mesh Full

Out[7]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

In[8]:= Plot Sin x 2, x, 0, 2 , Mesh 10

Out[8]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

One can display any finite collection of mesh points by setting Mesh to a list of x coordinates,
such as Mesh 1, 2, 3 . One can programmatically generate this list of x coordinates using

62 Functions and Their Graphs

Range (for equally spaced x coordinates), or Table (see Section 3.5 for a discussion of the

Table command). Even more control can be garnered by setting the MeshFunctions option,
which specifies which function or functions are to be set to the list of Mesh values. Typically

such functions are given as pure functions (see Section 8.4 for a discussion of the Function

command). By default, MeshFunctions is set to 1 & , meaning that the list of Mesh values is
a list of x coordinates. With the setting MeshFunctions 2 & , the list of Mesh values

becomes a list of y coordinates. See Exercise 5 for examples.

How to Add Color and Other Style Changes: Graphics Directives
It’s not hard to make a plot any color you like using the PlotStyle option. The output below is
shown in grayscale. It will appear red on your monitor:

In[9]:= Plot 2 x 4 2 1, x, 3, 5 , PlotStyle Red

Out[9]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

You may use any standard color name; for a list of all colors go to the Documentation Center, type
“Colors” in the search field, and navigate to the guide page of that name. You may also use a lighter
or darker version of any color; just replace Red, for instance, with Lighter Red , or Lighter Red, .7

or Darker Red, .2 . The second numerical argument may be omitted. If present, it determines the
extent of the lightening or darkening, and should be set to a value between 0 (no effect) and 1
(maximal effect).

In[10]:= Plot 2 x 4 2 1, x, 3, 5 , PlotStyle Lighter Blue, .8

Out[10]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

You can also blend two or more colors. Setting PlotStyle to Blend Blue, Red , .3 will produce a

blend of 70% blue and 30% red. And one could nest these settings to create a custom color such as
Lighter Blend Blue, Red , .3 , .4 . Other color settings are discussed in Exercise 3.

3.3 Using Mathematica’s Plot Options 63

These color settings are examples of graphics directives. The PlotStyle option may be set to any single
graphics directive (such as the color directives outlined above), or simultaneously to several such
directives. Multiple directives should be wrapped in the Directive command. For instance, one can
apply the directives Thick, Gray, and Dashed as follows:

In[11]:= Plot 2 x 4 2 1, x, 3, 5 , PlotStyle Directive Thick, Gray, Dashed

Out[11]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

Dashes may be fine-tuned by replacing Dashed with the directive Dashing Small ,

Dashing Large , or Dashing .02, .01 . This last setting has the effect of breaking the plot into

dashed segments each of which is 2% of the width of the entire graphic, and where the space
between consecutive dashes is 1% of the width of the graphic. To fine-tune the thickness, try
Thickness .01 . This will adjust the plot’s thickness to 1% of the width of the entire graphic.

Other common Plot options that accept graphics directive settings are AxesStyle, Background,
FillingStyle, FrameStyle, and MeshStyle.

How to Remove the Axes or Add a Frame
To remove axes simply add the option Axes False:

In[12]:= Plot 2 x 4 2 1, x, 3, 5 , Axes False

Out[12]=

To replace the axes with a frame around the entire graph, add the option Frame True:

64 Functions and Their Graphs

In[13]:= Plot 2 x 4 2 1, x, 3, 5 , Frame True

Out[13]=

3.0 3.5 4.0 4.5 5.0
1.0

1.5

2.0

2.5

3.0

How to Place Arrowheads on the Axes
Add the option AxesStyle Arrowheads 0.05 to put arrowheads on the top and right only, or

AxesStyle Arrowheads 0.05, 0.05 to put arrowheads on both ends of each axis. The value .05

means that the arrowheads will be scaled to be 5% of the width of the entire plot.

In[14]:= Plot 2 x 4 2 1, x, 3, 5 , AxesStyle Arrowheads .05 , AxesOrigin 2, 0

Out[14]=

2.5 3.0 3.5 4.0 4.5

0.5

1.0

1.5

2.0

2.5

In[15]:= Plot x2 1, x, 2, 2 , AxesStyle Arrowheads .05, .05

Out[15]=

1 1

1

2

When adding arrowheads, it may be desirable to manually increase the PlotRange for both axes to
place the arrowheads farther from the center of your plot. This will allow room to display more tick
marks on the axes.

3.3 Using Mathematica’s Plot Options 65

In[16]:= Plot x2 1, x, 2, 2 , AxesStyle Arrowheads .05, .05 ,

PlotRange 3, 3 , 2, 4

Out[16]=

2 1 1 2
1

1

2

3

How to Add Grid Lines and Adjust Ticks on the Axes
To add a grid to your plot, as if it were plotted on graph paper, add the option
GridLines Automatic.

In[17]:= Plot Sin x 2, x, 0, 2 , GridLines Automatic

Out[17]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

The appearance of the grid lines is controlled by the GridLinesStyle option, which can be set to any
graphics directive.

In[18]:= Plot Sin x 2, x, 0, 2 , GridLines Automatic,

GridLinesStyle Directive Thin, Gray, Dotted

Out[18]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

To adjust the placement of the grid lines, set GridLines to a list of two lists: the first consists of x
values indicating the positions of the vertical lines, and the second consists of y values indicating

the positions of the horizontal lines:

66 Functions and Their Graphs

In[19]:= Plot Sin x 2, x, 0, 2 , GridLines
2

, ,
3

2
, 2 , .2, .4, .6, .8, 1

Out[19]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

For fine grids, use Range to generate each of the x and y lists. Range is used to generate a list of

evenly spaced numerical values. For example, Range 0, 1, .1 generates a list of numbers from 0 to 1

in increments of one tenth:

In[20]:= Range 0, 1, .1

Out[20]= 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

In[21]:= Plot Sin x 2, x, 0, 2 , GridLinesStyle Lighter Gray ,

GridLines Range 0, 2 ,
8

, Range 0, 1, .1

Out[21]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Numerical tick marks on the axes are controlled via the Ticks option, which works in a manner
similar to GridLines. If you are happy with the default list of tick marks on one of the axes, just use
Automatic instead of a specific list of values.

3.3 Using Mathematica’s Plot Options 67

In[22]:= Plot Sin x 2, x, 0, 2 , GridLinesStyle Lighter Gray ,

GridLines Range 0, 2 ,
8

, Range 0, 1, .1 ,

Ticks Range 0, 2 ,
2

, Automatic

Out[22]=

0
2

3

2
2

0.2

0.4

0.6

0.8

1.0

How to Add Labels
Labels can be added to the axes via the option AxesLabel. By default, it will apply TraditionalForm

to your label expressions. So, for instance, Sin x 2 will be displayed using the traditional notation,

sin2 x .

In[23]:= Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 , AxesLabel x, Sin x 2

Out[23]=

2
x

0.5

1

sin2 x

You can put a label on the entire plot with the option PlotLabel.

68 Functions and Their Graphs

In[24]:= Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 ,

AxesLabel x, y , PlotLabel Sin x 2

Out[24]=

2
x

0.5

1

y
sin2 x

Labels that include operators (such as =), or that are comprised of more than one word, should be
entered as a String, i.e., put in double quotation marks. In this case, the text between the quotation
marks will be reproduced exactly as you write it. Below, for instance, we italicized the x and the y as

we typed the label text.

In[25]:= Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 ,

AxesLabel x, y , PlotLabel "y sin2 x "

Out[25]=

2
x

0.5

1

y

y sin2 x

If one had not used double quotation marks, Mathematica would have actually made the nonsensical

assignment y sin2 x, possibly causing confusion later in the session. When in doubt, wrap your

plot labels in double quotes.

An alternate means of labeling will work not only for plots, but for labeling any Mathematica expres-
sion. Simply wrap the expression to be labeled in the Labeled command, and add a second argu-
ment that specifies the text for the label. The label appears at the bottom by default, but if present a
third argument may be given to specify the position of the label. Look up Labeled in the Documenta-
tion Center for information about micro-positioning the label text.

3.3 Using Mathematica’s Plot Options 69

In[26]:= p Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 , AxesLabel x, y ;

Labeled p, Text "y sin2 x " , Right

Out[27]=

2
x

0.5

1

y

y sin2 x

Exclusions and Vertical Asymptotes
As mentioned in the previous section, a single x value can be excluded from the domain of a plot by
listing that value (or a few such values) within the iterator for the independent variable. Here, for
instance, we let x span all values from 0 to 7, but in the second input we exclude the values 2 and 5
(where the function is undefined).

In[28]:= Plot
x 3 x 4

x 2 x 5
, x, 0, 7

Out[28]=

1 2 3 4 5 6 7

4

2

2

4

In[29]:= Plot
x 3 x 4

x 2 x 5
, x, 0, 2, 5, 7

Out[29]=

1 2 3 4 5 6 7

2

2

4

Even more control can be garnered using the options Exclusions and ExclusionsStyle. Exclusions
can be set to a list containing an equation or equations whose solution(s) you wish to exclude. Use

70 Functions and Their Graphs

two equal signs back to back when typing an equation. ExclusionsStyle specifies the directive(s)
applied to the vertical line(s) through the points to be excluded, enabling you to include vertical
asymptotes in your plot. Multiple directives should be wrapped in the Directive command, as was
done earlier with PlotStyle.

In[30]:= Plot
x 3 x 4

x 2 x 5
, x, 0, 7 , Exclusions x 2, x 5 , ExclusionsStyle Dashed

Out[30]=

1 2 3 4 5 6 7

4

2

2

4

The benefit of expressing exclusions as equations is illustrated in the following example, where a
single equation has many solutions in the specified domain:

In[31]:= Plot Tan x , x, 0, 4 , Exclusions Cos x 0 ,

ExclusionsStyle Directive Gray, Dashed , Ticks Range 0, 4 ,
2

, Automatic

Out[31]=

2

3

2
2

5

2
3

7

2
4

6

4

2

2

4

6

Note that Exclusions has little visible effect at a point unless there is an essential discontinuity

there. See Exercise 4.

Putting a Logarithmic Scale on One or Both Axes
While Plot may use different scales on the horizontal and vertical axes, it will always put a uniform
scale on each (in which there are equal distances between successive numbers). The commands
LogPlot, LogLinearPlot, and LogLogPlot may be used to put a logarithmic scale (in which there are
equal distances between successive powers of 10) on one or both axes. Each of these commands has
the same syntactical structure as Plot, and will accept the Plot options discussed above.

To put a logarithmic scale on the vertical axis, use the command LogPlot:

3.3 Using Mathematica’s Plot Options 71

In[32]:= Plot 10x, x, 0, 3

Out[32]=

0.5 1.0 1.5 2.0 2.5 3.0

100

200

300

400

500

600

The LogPlot of any exponential function will be linear since log bx x log b .

In[33]:= LogPlot 10x, x, 0, 3

Out[33]=

0.5 1.0 1.5 2.0 2.5 3.0

5
10

50
100

500
1000

To put a logarithmic scale on the horizontal axis, use the command LogLinearPlot:

In[34]:= Plot Log 10, x , x, 1, 1000

Out[34]=

200 400 600 800 1000

2.0

2.5

3.0

LogLinearPlot will make logarithmic functions appear linear.

In[35]:= LogLinearPlot Log 10, x , x, 1, 1000

Out[35]=

5 10 50 100 5001000

0.5

1.0

1.5

2.0

2.5

3.0

To put a logarithmic scale on both axes, use the command LogLogPlot:

72 Functions and Their Graphs

In[36]:= Plot x3 2, x, 1, 100

Out[36]=

20 40 60 80 100

200

400

600

800

1000

In[37]:= LogLogPlot x3 2, x, 1, 100

Out[37]=

2 5 10 20 50 100

5

10

50

100

500

1000

Exercises 3.3
1. Use the GridLines and Ticks options, as well as the setting GridLinesStyle Lighter Gray , to

produce the following Plot of the sine function:

2 2

1.0

0.5

0.5

1.0

2. Use the Axes, Frame, Filling, FrameStyle, PlotRange, and AspectRatio options to produce the

following plot of the function y cos 15 x

1 x2 :

3.3 Using Mathematica’s Plot Options 73

3. Color values such as Red, Blue, and Orange are easy to type and to remember, but they present
you with a very limited color palette. Standard color spaces used in graphic design, such as RGB
(for Red-Green-Blue) and HSB (for Hue-Saturation-Brightness), are supported. The command
RGBColor take three arguments, each a number between 0 and 1. They represent the relative
amounts of red, green, and blue, respectively, in the final color. Hue takes either one argument
(the color setting), or three, where the second and third are saturation and brightness levels. Each
is a number between 0 and 1. You may type in values yourself (such as RGBColor .2, .8, .8 or
Hue .6, .5, .5), or you may do this: type an option setting such as PlotStyle , and with the
cursor still at the tip of the arrow go to the Insert menu and select Color…. A dialog box appears,
and you can use it any way you like to choose the color you’re after. When you have it, hit the
OK button. You’ll find the appropriate RGBColor setting pasted in your notebook at the position
of the cursor. Experiment with both methods, direct typing and using the menu, to custom-color
the Plot of a function of your choosing.

4. Plot the function f x x2 on the domain 2 x 2, and set Exclusions to x 1 . Note that f

has no vertical asymptote at x 1. What happens?

5. In order to place mesh points on the graph so that their y coordinates are equally spaced, one

may set the MeshFunctions option to {#2&}. This notation is explained in depth in Section 8.4

on page 403, but for our purposes it will suffice to understand that #1 refers to x and #2 refers to

y, and that the ampersand character & is needed to make it a function. The mesh points will be

displayed at the specified values for this function. For example, a numerical Mesh setting of 9
indicates that there should be 9 equally spaced values. A list of Mesh values indicates that the
specific values in the list should be used as values for the function. For instance, consider the
input and output:

74 Functions and Their Graphs

In[38]:= Plot x2, x, 0, 10 , Mesh 9, MeshFunctions 2 & ,

GridLines None, Range 0, 100, 10

Out[38]=

2 4 6 8 10

20

40

60

80

100

a. Replace the None in the input above with the appropriate of list of x values to add vertical
GridLines that pass through these same mesh points.

b. Add a GridLines setting to the input below so that the output includes (equally spaced)
vertical grid lines that pass precisely through the mesh points, and (unequally spaced) horizon-
tal grid lines that pass through the same mesh points.

In[39]:= Plot x2, x, 0, 10 , Mesh 9

Out[39]=

2 4 6 8 10

20

40

60

80

100

6. Add Mesh and MeshFunctions options to the input below so that the mesh points are precisely
the points where the graphs of the two functions intersect.

In[40]:= Plot Sin 2 x ,
1

2
Cos 5 x , x, 0, 2

Out[40]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

3.3 Using Mathematica’s Plot Options 75

3.4 Investigating Functions with Manipulate
The Manipulate command is used to manipulate an expression in real time using the mouse (or

even a gamepad controller; see Exercise 7). One of the most basic uses of Manipulate is to evaluate a

function defined over an interval, say 1 x 10. In such a case, the syntax is identical to that of the
Plot command:

In[1]:= Manipulate x2, x, 1, 10

Out[1]=

x

1

The controller, aptly called a manipulator, initially displays as a slider. Clicking on the button to
the right of the slider, however, will reveal additional controls beneath:

x

2.6

6.76

Now operate the slider. It ranges over the values from 1 to 10 in this example, and the current value

is displayed in the input field directly under the slider. The function value f x x2 is displayed

below. Try it. As you position your mouse over any control button, a tooltip will appear that

describes that button’s function. For instance, the Play/Pause button is used to start and stop an

animation, while the buttons on either side of it will advance it forward or backward one frame at a
time. The double up and down arrow buttons are used to adjust the speed of the animation, and the
direction button on the far right is used to determine whether the animation will play forward,
backward, or oscillate (forward to the end, then backward to the beginning, and so on). You may
also type a specific numerical value directly into the input field, followed by the key. Note that if
you hit (or on a Mac) after typing in the input field, you will generate a second output
cell.

The Manipulate command in its most basic form takes two arguments, separated by a comma. The

first (in this case x2) describes the expression to be manipulated. The second (in this case {x,1,10}) is
an iterator. If you wish to have your variable increase in unit steps only, you can add a fourth
element to the iterator that will specify the amount by which the variable will skip from one value
to the next. For example, here we increment the variable x in steps of size 5. When the slider is
moved, x jumps from 0 to 5 to 10, etc.

76 Functions and Their Graphs

In[2]:= Manipulate x2, x, 0, 50, 5

Out[2]=

x

0

In the next example, we make a plot of the function f x x sin 1 x , the right endpoint of which is

controlled with a slider, while the left endpoint is fixed at 0. When the controller is moved to the
left, the plot’s domain narrows, and the user is afforded a zoomed-in view of the function’s behav-
ior near x 0.

In[3]:= Manipulate Plot x Sin 1 x , x, 0, r ,

r, .1, 2

Out[3]=

r

0.02 0.04 0.06 0.08 0.10

0.05

0.05

In cases such as this it would be nice to put a more descriptive label on the slider. This can be
accomplished either by giving the controller variable a more descriptive name (e.g., one might use
xmax or rightEndpoint), or by replacing the controller variable r in the iterator above by a list of
the form {var , init , label}. Here var is the variable name, init is the initial value to be assumed by the
variable upon evaluation, and label is the label you want to be displayed on the interface. For
instance, below we generate the same output as above, except that we create a slider with the label
right endpoint, and whose initial value upon evaluation will be 0.2.

3.4 Investigating Functions with Manipulate 77

In[4]:= Manipulate Plot x Sin 1 x , x, 0, r ,

r, 0.2, "right endpoint" , 10 10, 2

Out[4]=

right endpoint

0.05 0.10 0.15 0.20

0.15

0.10

0.05

0.05

0.10

It is possible to place several controller variables in a single Manipulate. It is also possible to simulta-
neously animate all of them using their individual controls. Below we explore three directive set-
tings for PlotStyle.

In[5]:= Manipulate Plot x Sin x , x, 10, 10 ,

PlotStyle Directive Thickness t , Dashing d , Blend Red, Blue , b ,

t, .01, "Thickness" , .001, .02 , d, .02, "Dash Size" , 0, .04 ,

b, .5, "Percent Blue" , 0, 1

Out[5]=

Thickness

Dash Size

Percent Blue

10 5 5 10

4

2

2

4

6

8

78 Functions and Their Graphs

When manipulating a Plot, it is often desirable to include a PlotRange setting to maintain a fixed
viewing rectangle as the controllers are moved. Here we use three controls to adjust some coeffi-
cients on a parabola:

In[6]:= Manipulate

Plot a x b 2 c, x, 5, 5 , PlotRange 5, PlotLabel "y a x b 2 c" ,

a, 1, 1 , b, 1 , 3, 3 , c, 2 , 3, 3

Out[6]=

a

b

c

4 2 2 4

4

2

2

4

y a x b 2 c

There are numerous control types available other than sliders. Below we force Manipulate to use a
SetterBar (a row of buttons, only one of which can be selected at a time) simply by changing the
syntax of the iterator. The values to be assumed by the controller variable are given explicitly as a
list. This example is useful for exploring the roles of the PlotPoints, MaxRecursion, and Mesh
options in producing a Plot. Note that the default setting for PlotPoints is 50, so most of the settings
for this option below force Mathematica to produce a poor image.

In[7]:= Manipulate

Plot Sin 4 x , x, 2 , 2 , PlotPoints pp, MaxRecursion mr, Mesh m ,

pp, 64, "PlotPoints" , 4, 8, 16, 32, 64 ,

mr, 4, "MaxRecursion" , 0, 1, 2, 3, 4 , m, Full, "Mesh" , Full, All, None

3.4 Investigating Functions with Manipulate 79

Out[7]=

PlotPoints 4 8 16 32 64

MaxRecursion 0 1 2 3 4

Mesh Full All None

6 4 2 2 4 6

1.0

0.5

0.5

1.0

The control type adapts to the syntax used in the iterator for that control. For instance, if a list of
values associated with a controller variable contains six or more items, the controller will change
from a SetterBar (as in the previous example) to a PopupMenu. While a PopupMenu is desirable if
there is a very long list of choices, we prefer a simple SetterBar as long as there is room for it. In the
next example we override the default behavior with an explicit ControlType option setting.

In[8]:= Manipulate

Plot f x , x, 0, 4 , Ticks Range 0, 4 , 2 , Automatic , PlotLabel f x ,

f, Tan, "function" , Sin, Cos, Sec, Csc, Tan, Cot , ControlType SetterBar

Out[8]=

function Sin Cos Sec Csc Tan Cot

2

3

2

2 5

2

3 7

2

4

6

4

2

2

4

6

0.

There are many other useful controller types. For instance, you can produce the controller known as
Slider2D by creating a Manipulate variable whose value is set to an ordered pair of the form {x,y} (i.e.

80 Functions and Their Graphs

a point in the plane), and specifying its bounds as {xmin,ymin} and {xmax,ymax}. Below we illustrate
this by letting the user manipulate the AxesOrigin setting with a two-dimensional slider:

In[9]:= Manipulate Plot x Sin x , x, 20, 20 , AxesOrigin pt, PlotRange 20 ,

pt, 0, 0 , "Move the axes: " , 20, 20 , 20, 20 , ControlPlacement Left

Out[9]=

Move the axes:

20 10 10 20

20

10

10

20

Another means of manipulating a point in a graphic is to use an iterator of the form {var,Locator},
as shown below. Drag the Locator icon with your mouse to move it directly across the graph, or
simply click on the graphic to move the Locator to that location. The {0,0} in the input below
specifies the initial position of the locator when the cell is first evaluated.

In[10]:= Manipulate Plot x Sin x , x, 20, 20 , AxesOrigin pt, PlotRange 20 ,

pt, 0, 0 , Locator

Out[10]=
20 10 10 20

20

10

10

20

The simple iterator structure {var , colorSetting} will produce a color slider. You can drag over the color
field with the mouse to adjust the color continuously in real time.

3.4 Investigating Functions with Manipulate 81

In[11]:= Manipulate Plot
Sin x

x
, x, 0, 20 , PlotStyle color , color, Blue

Out[11]=

color

5 10 15 20

0.2

0.1

0.1

0.2

0.3

0.4

A complete listing of permissible iterator syntax structures and their corresponding default control-
ler types can be had in the More Information section of the documentation page for Manipulate.
We summarize this information in Table 3.1.

Iterator Form Default ControlType

u, umin, Animator

u, umin, umax Manipulator

u, umin, umax, du discrete Manipulator with step du

u, xmin, ymin , xmax, ymax Slider2D

u, xmin, ymin , xmax, ymax , dx, dy discrete Slider2D with horizontal step dx, vertical step dy

u, Locator Locator

u, True, False Checkbox

u, value1, value2, … , PopupMenu or SetterBar if fewer than 6 items

u, color ColorSlider

u InputField

Table 3.1 Iterator structures for Manipulate variables and the default control types they produce.

When making a Manipulate object it is important to put the right controllers in place for the task
at hand. Options may be added to any of the iterator forms so that one may specify a controller
other than the default. For example one might replace the Manipulate iterator u, 0, 10 by
u, 0, 10, ControlType VerticalSlider, ControlPlacement Left . We summarize some valid

ControlType settings for each iterator form in the Table 3.2 (with the default setting in bold).

82 Functions and Their Graphs

Iterator Form Valid ControlType Settings

u, umin, umax
Animator, InputField, Manipulator,

Slider, Slider2D, VerticalSlider, None

u, umin, umax, du
Animator, InputField, Manipulator,

PopupMenu, RadioButtonBar, SetterBar,

Slider, Slider2D, VerticalSlider, None

u, xmin, ymin , xmax, ymax
InputField, Locator, Slider2D, None

u, xmin, ymin , xmax, ymax , dx, dy InputField, Locator, Slider2D, None

u, Locator Locator, None

u, True, False
Animator, Checkbox, CheckboxBar, InputField,

Manipulator, Opener, PopupMenu, RadioButtonBar,

SetterBar, Slider, VerticalSlider, None

u, value1, value2, …
Animator, Checkbox, CheckboxBar, InputField,

Manipulator, PopupMenu, RadioButtonBar,

SetterBar, Slider, TogglerBar, VerticalSlider, None

u, color ColorSetter, ColorSlider, InputField, None

u InputField, None

Table 3.2 Valid control type settings for the various iterator structures used in Manipulate.

Other Dynamic Display Commands
While Manipulate is the single most flexible and powerful command for creating dynamic user
environments, there are a number of other commands which produce dynamic output of some
kind. For instance, one may use the command Animate to produce an animation. The syntax is
identical to that of Manipulate.

Each of the commands ListAnimate, FlipView, PopupView, OpenerView, and SlideView accepts a
list of expressions, and creates an environment in which the user can dynamically interact with the
individual expressions. OpenerView accepts a list containing only two expressions: a header, and an
expression to display when it is in the “open” state.

In[12]:= OpenerView Style "click the triangle", "Text" , Style "Hah, you did it ", "Section"

Out[12]= click the triangle

The commands MenuView and TabView accept lists of the form {label1 expression1, label2

expression2,…}, and return a menu of labels or a collection of tabs, respectively, associated with their

corresponding expressions.

3.4 Investigating Functions with Manipulate 83

In[13]:= TabView "sine" Plot Sin x , x, 0, 2 , "cosine" Plot Cos x , x, 0, 2 ,

ImageSize Automatic

Out[13]=

1 2 3 4 5 6

1.0

0.5

0.5

1.0

sine cosine

Exercises 3.4
1. The following simple Manipulate has two sliders: one for x and one for y. Make a Manipulate

that also has output {x,y}, but that has a single Slider2D controller.

In[14]:= Manipulate x, y , x, 0, 1 , y, 0, 1

Out[14]=

x

y

0, 0

2. Make a Manipulate of a Plot where the user can adjust the AspectRatio in real time, from a
starting value of 1 5 (five times as wide as it is tall) to an ending value of 5 (five times as tall as it
is wide). Set ImageSize to Automatic, 128 so the height remains constant as the slider is
moved.

3. Make a Manipulate of a Plot where the user can adjust the Background in real time.

a. Use the setting Background RGBColor r, g, b , where r, g, and b are Manipulate variables

that range from 0 to 1. They will control the relative amounts of red, green, and blue in the
background, respectively. This allows you to interactively explore the RGB color space.

b. Use the setting Background Hue h, s, b , where h, s, and b are Manipulate variables that

range from 0 to 1. They will control the values of hue, saturation, and brightness in the
background, respectively. This allows you to interactively explore the HSBcolor space.

4. It is often the case that one wants to create a Manipulate that includes some sort of explanatory
text that can be manipulated. A robust means of accomplishing this is to (1) transform any

84 Functions and Their Graphs

variable quantity in the text to a String using ToString, and (2) join together the static and
variable text strings with StringExpression.

a. You can type ~~ between two text strings to sew them together into a single string. Techni-
cally, you are invoking the StringExpression command when you do this. Try it; type and
enter the following. We use FullForm so that the double quotes will display.

"This is a string" " and so is this." FullForm

b. Now explain what’s going on here:

In[15]:= Manipulate Style "The square root of " ToString x

" is " ToString N x ".", "Subsubsection" ,

x, 2 , 1, 10

Out[15]=

x

The square root of 2 is 1.41421.

c. Create a Manipulate showing a Plot of the sine function, with a PlotLabel that indicates the
value of the function for any value of x between and . The user can control x with a slider.

5. The following input will create a useful interactive interface in which every available option for
the Plot command appears in a popup menu. Select an option in this menu, and the usage
message for that option is displayed. Try it (Courtesy of Lou D’Andria, Wolfram Research).

Manipulate

ToExpression SymbolName option "::usage" ,

option, Map First, Options Plot

a. Modify the input above to create an option explorer for the Grid command, and use it to get
information on the ItemSize option.

b. See if you can figure out how this Manipulate works. This will entail finding information in
the Documentation Center on the commands Map, First, Options, SymbolName, ToExpres
sion, and StringExpression (~~). Note that by replacing Plot (in the last line) by any other
command that accepts options, an option explorer for that command can be generated.

6. Use TabView with two tabs to produce the output below. You’ll have to find the answer to the
riddle on your own, or look at the solution. (Riddle by Alexandra Torrence, age 10.)

I'm a wave that does not move, and to you I want to prove, that

if you knock I'm hard as rock and if you kick me I'll stick to your sock.

Riddle Answer

3.4 Investigating Functions with Manipulate 85

7. This exercise discusses the use of gamepad controllers to operate a Manipulate output. If you
have a gamepad for your computer the first thing to do is to plug it in, select the cell bracket for
a Manipulate and try it. In most cases it’s plug and play. To bind a particular Manipulate local
variable to a given controller axis, replace the iterator {var, spec} for that variable with axisName
{var,spec}, where axisName is the string name of the given controller axis. Typical axis names are
given below. Create a Manipulate where you bind a specific local variable to a specific controller
axis.

one-dimensional: "X1", "Y1", "Z1", "X2", "Y2"
two-dimensional: "XY1", "XY2"
buttons: "Button 1", "Button 2"

3.5 Producing a Table of Values
It is often handy to produce a table of function values for various inputs. Here is a table of the
squares of the first ten positive whole numbers:

In[1]:= f x : x2

In[2]:= Table f x , x, 1, 10

Out[2]= 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

Like Plot and Manipulate, the Table command takes two arguments, separated by a comma. The
first describes the contents of each table entry, while the second (in this case x, 1, 10) is an itera-

tor. Unlike Plot and Manipulate, however, the values of the variable will increment by 1 (by
default) in a Table. As with Manipulate, a fourth number can be added to the iterator to specify the
step size.

In[3]:= Table f x , x, 0, 50, 5

Out[3]= 0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500

You can also shorten the iterator to contain only two items—the name of the variable and a stop-
ping number. When you do this, Mathematica starts at 1 and increments the variable in steps of 1
until the stopping number is reached. So for instance, using the iterator x, 10 is the same as using

the iterator x, 1, 10 :

In[4]:= Table f x , x, 10

Out[4]= 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

The output of the Table command is a basic data structure in Mathematica called a list. A list is
comprised of an opening curly bracket, individual items (such as numbers) separated by commas,
and a closing curly bracket.

Table will also accept a special iterator structure of the form {var,{value1,value2,…}}. In this case the

86 Functions and Their Graphs

variable will assume the explicit values in the given list.

In[5]:= Table f x , x, 1, 7, 12, 20

Out[5]= 1, 49, 144, 400

One of the most useful applications of the Table command is producing something that actually
looks like a table. We accomplish this by constructing a Table where the first argument is itself a
list. The result is a list of lists. We then apply Grid to the result in order to create a two-dimensional
display in which each inner list becomes a row. Here’s an example where both the input value x and
the output value f x for a function are given in each row:

In[6]:= data Table x, f x , x, 5

Out[6]= 1, 1 , 2, 4 , 3, 9 , 4, 16 , 5, 25

In[7]:= Grid data

Out[7]=

1 1

2 4

3 9

4 16

5 25

Grid will display any list of lists in a two-dimensional format like this; each sublist appears as a
separate row. Numerous options are available that allow all manner of presentation possibilities. But
perhaps the most simple formatting tip is to apply Text to an entire grid. This will apply textual
formatting to the individual items (numbers in this case) that occupy each grid cell. Here we use

prefix form (@, see Section 2.8 on page 37) instead of square brackets when applying the Text
command, and add the Grid option setting Alignment Right to align each column to the right.

In[8]:= Text Grid data, Alignment Right

Out[8]=

1 1
2 4
3 9
4 16
5 25

Another simple but valuable technique is to add headings to the columns of a table by prepending an
additional row containing these headings to your table data. Typically each item in the header row
is a string; this is accomplished by enclosing each item in double quotes.

In[9]:= tableContents Prepend data, "x", "x2"

Out[9]= x, x2 , 1, 1 , 2, 4 , 3, 9 , 4, 16 , 5, 25

3.5 Producing a Table of Values 87

In[10]:= Text Grid tableContents, Alignment Right,

Dividers Center, False, True , Spacings 2

Out[10]=

x x2

1 1
2 4
3 9
4 16
5 25

The Spacings option can be used to add a bit of space between successive columns. The Dividers
option is used above to add dividing lines in a Grid. The setting is of the form {vertical
dividers,horizontal dividers}. The Center setting specifies that there are no vertical lines on the far left
or far right, only between the columns. The False, True specifies the horizontal dividing lines:
there is no line above the first row, while there is one above the second row, and none for any
subsequent rows. The following syntax may also be used for Dividers. It can be handy in cases like
this where few dividers are required. It simply specifies that only the second vertical divider and the
second horizontal divider will be rendered, and no others.

In[11]:= Text Grid tableContents, Alignment Right,

Dividers 2 True, 2 True , Spacings 2

Out[11]=

x x2

1 1
2 4
3 9
4 16
5 25

With these tools in hand, you can create tables to your heart’s content. Here we use powers of ten as
the values of the function variable, and the simple Dividers All setting to put in all possible row
and column dividers:

In[12]:= Clear data ;

data Table 10n, f 10n , n, 0, 5

Out[13]= 1, 1 , 10, 100 , 100, 10000 , 1000, 1 000000 ,

10 000, 100000000 , 100000, 10 000000000

88 Functions and Their Graphs

In[14]:= Text Grid Prepend data, "x", "x2" ,

Alignment Right, Dividers All, Spacings 2

Out[14]=

x x2

1 1
10 100
100 10000
1000 1000000
10000 100000000
100000 10000000000

As a last example, here is how you can make a table that displays the values for multiple functions,

in this case f x x2 and g x 2x:

In[15]:= Clear data ;

data Table x, x2, 2x , x, 10

Out[16]= 1, 1, 2 , 2, 4, 4 , 3, 9, 8 , 4, 16, 16 , 5, 25, 32 ,

6, 36, 64 , 7, 49, 128 , 8, 64, 256 , 9, 81, 512 , 10, 100, 1024

In[17]:= Text Grid Prepend data, "x", "x2", "2x" ,

Alignment Right, Dividers Center, False, True , Spacings 2

Out[17]=

x x2 2x

1 1 2
2 4 4
3 9 8
4 16 16
5 25 32
6 36 64
7 49 128
8 64 256
9 81 512
10 100 1024

The three most common types of brackets
Now is a good time to review the three most commonly used brackets in Mathematica.
Parentheses () are used to group terms in algebraic expressions. Square brackets [] are
used to enclose the arguments of functions. And curly brackets { } are used to enclose lists.

3.5 Producing a Table of Values 89

Manipulating a Grid
Here is a grid with a header row, and a second row of content. The values in this second row can be
manipulated. This gives a compact table that allows one to display the row of his or her choosing:

In[18]:= Manipulate

Text Grid "x", "x2" , x, x2 , Dividers All, ItemSize 5 , x, 5.3 , 1, 10, .1

Out[18]=

x

x x2

5.3 28.09

The following shows a simple Celsius to Fahrenheit conversion tool:

In[19]:= Manipulate Text Grid "C", "F" , c, 1.8 c 32 , Dividers All, ItemSize 5 ,

c, 0 , 40, 100, 1

Out[19]=

c

C F
0 32

The two examples above make use of the ItemSize option to the Grid command. When set to a
single numerical value (as we did here) it specifies the width of each cell in the grid in ems (the
width of the letter m). Other common settings for this option include All (which specifies that all
cells have identical width and height values, determined by the content of the largest cells), or a list
of two numerical values such as {5, 2} (which specifies the width of each cell in ems and the height
of each cell in line heights, respectively). When manipulating a grid, it is a good idea to set ItemSize
to a specific numerical value (or to a list of two such values) in order to keep the table dimensions
steady as the controller is adjusted.

Exercises 3.5
1. The Partition command is used to break a single list into sublists of equal length. It is useful for

breaking up a list into rows for display within a Grid.

a. Enter the following inputs and discuss the outputs.

Range 100

90 Functions and Their Graphs

Partition Range 100 , 10

b. Format a table of the first 100 integers, with twenty digits per row. The first two rows, for
example, should look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

c. Make the same table as above, but use only the Table and Range commands. Do not use
Partition.

d. Make the same table as above, but use only the Table command (twice). Do not use Partition
or Range.

2. The Style command is used to apply a particular style to an expression.

a. Enter the following inputs and discuss the outputs.

Style 4, Red

Style 4, 72

Style 4, "Section"

Style 4, FontFamily "Helvetica", FontWeight "Bold"

b. One can apply a particular style to every item in a Grid by using the entire Grid as the first
argument to Style. Create an output that matches that below. The font is Comic Sans MS, and
the text should be blue.

1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625

c. Alternately, one can apply style elements to an entire grid by selecting the cell bracket of the
cell containing the grid, and visiting the Format menu. For instance, Format Text Color Blue
will make all the text blue. Reproduce the Grid above, this time using the menu items to
change the style.

3. A statement that is either true or false is called a predicate; in Mathematica a predicate is any
expression that evaluates to True or False. In this exercise you will learn how to use predicates to
apply Styles selectively.

a. There are many built-in predicate commands. Most end in the letter Q (for “Query”). Enter
the following inputs and discuss the outputs.

? PrimeQ

? Q

b. The If command is used to generate one output if a specified condition (i.e., a predicate) is
true, and another if that condition is false. The predicate is the first argument to If. The next

3.5 Producing a Table of Values 91

argument is what is returned if the predicate is true (If is discussed in Section 8.5). A third
argument specifies the expression to be returned if the predicate is false. Enter the following
input and discuss the output.

Table If PrimeQ n , Style n, Red , n , n, 100

c. Format a table of the first 100 integers, with ten digits per row. In this table, make all prime
numbers red.

d. Format a table of the first 100 integers, with ten digits per row. In this table, make all square-
free numbers blue and underlined. Note: An integer is squarefree if none of its divisors (other
than 1) are perfect squares.

e. Format a table of the first 100 integers, with ten digits per row. In this table, make all prime
powers orange and italicized. Note: An integer is a prime power if it is equal to pn, where p is
prime and n is a positive integer.

4. The Sum command has a syntax similar to that of Table.

a. Use the Sum command to evaluate the following expression:

13 23 33 43 53 63 73 83 93 103 113 123 133 143 153 163 173 183 193 203

b. Make a table of values for x 1, 2, … ,10 for the function

 f x

1 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

c. Plot f x on the domain 1 x 10.

5. Comments can be inserted directly into your input code. Any text placed between the (* and *)
tokens will be ignored by the kernel when an input is entered. Comments do not affect the
manner in which your code is executed, but they can be helpful to you or someone else who has
to read and understand the code later. Look at the solution to the next exercise to see an example
in which comments are used to help a reader find each of four items in a somewhat complex two-
by-two Grid.

6. Use a two-by-two Grid within Manipulate to create the interface below for zooming in on a
graph of the sine function. The “Center” controller corresponds to a variable named x0, and the
“Zoom Level” controller corresponds to a variable named . The iterator for the lower Plot is of
the form {x0- ,x0+ }.

92 Functions and Their Graphs

Center

Zoom Level

2 21

1

Full View

0.6 0.7 0.8 0.9 1.0

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Zoom View

7. In this exercise you will explore the syntax for applying options to a Grid. Mastery of this syntax
will allow you to construct stunningly beautiful tables. There are two common syntax forms that
work for several options. To illustrate the possibilities we use the Dividers option, which speci-
fies the placement and style of vertical and horizontal dividing lines in a Grid. First enter the
input below to generate a 10 10 table of invisible data (each entry is simply a string comprised

of a single space character). Note: The Partition command is discussed in Exercise 1.

emptyTable Partition Table " ", 100 , 10 ;

a. The simple setting Dividers All will insert every possible line. But other single word settings
such as Gray are permissible. Enter the inputs below, and discuss the outputs.

Grid emptyTable, Dividers Gray

Grid emptyTable, Dividers Dotted

Grid emptyTable, Dividers Thick

Grid emptyTable, Dividers Directive Thin, Orange

b. More control may be obtained with the syntax Dividers x setting , y setting . Typically the x

setting is a list of values relating to positions within a row, and is used to specify the style and
placement of vertical items. Enter the input below. Here the x setting is

Black, Gray , Black , and the y setting is None. What effect does this have?

Grid emptyTable, Dividers Black, Gray , Black , None

c. How would you produce the output below?

3.5 Producing a Table of Values 93

d. Take your last input and add the following option setting, then explain the output.

Background None, Lighter Gray, .7 , Lighter Blue, .9 , Lighter Yellow, .9

e. Other options that utilize these syntactical conventions are Alignment, Spacings, ItemSize,
and ItemStyle. Some simple but useful Alignment settings to try are Alignment Right or

Alignment "." (to align numbers at the decimal point). Produce the following Grid using the
options mentioned. The Helvetica font is used for the entries in the first column, while the
default text font is used in the second. Once you can do this, you will be equipped to produce
a rich assortment of useful tables.

10 5 0.00001

10 4 0.0001

10 3 0.001

10 2 0.01

10 1 0.1

100 1

101 10.

102 100.

103 1000.

104 10000.

105 100000.

3.6 Working with Piecewise Defined Functions
Certain functions are defined by different rules over various disjoint pieces of their domain, so-
called piecewise defined functions. For instance a function may be defined by the rule f x x when x

is between zero and one, inclusive; by the rule f x x when x is strictly between negative one and

zero; and by f x 1 for all other values of x. In standard mathematical notation we write:

94 Functions and Their Graphs

f x

x 0 x 1

x 1 x 0

1 otherwise

Here “otherwise” means that either x 1 or x 1. How can this be conveyed to Mathematica? It is a
simple matter to enter a piecewise function directly from the keyboard in standard notation. To do
so, first type f[x_]:=, then create the single bracket by typing pw , and finally produce a grid to
the right of the bracket by typing , . If more than two rows are needed, type . Each time
you hit you will add one additional row. Now move the cursor to the first placeholder and
type in a function expression, then use the key to move to the adjacent placeholder and type a
logical expression. This is typically an inequality such as 0 x 1, but in all cases is an expression
that evaluates to either True or False when x is a specific real number. Fill in the remaining pairs of
placeholders; the first in each pair holds a function expression, the second a logical expression. The
following example shows how one would enter the function above. Note that the logical expression
in the final row can simply contain the expression True, which conveys the meaning that this rule
is applied to all values of x for which the logical expressions in earlier rows are False; that is, it
behaves like the word “otherwise” in the example above. When you’re finished typing, enter the cell.

In[1]:= f x :

x 0 x 1

x 1 x 0

1 True

Once entered, this function behaves like any other. You may Plot it, Manipulate it, apply to it any
transformations that you might apply to any other function. In short, it behaves exactly as it
should. For instance:

In[2]:= Plot f x , x, 2, 2

Out[2]=

2 1 1 2

0.2

0.4

0.6

0.8

1.0

The underlying Mathematica command that is being utilized to create the function above is called
Piecewise. In most cases it is easiest to use the syntax above, which has the effect of calling the
Piecewise command. Equivalently, one can use Piecewise directly; the following example shows
how to enter the function above using this syntax:

In[3]:= f x : Piecewise x, 0 x 1 , x, 1 x 0 , 1

This syntax can be useful when you are working with a function that has many “pieces,” for you can

then use the Table command to generate the first argument programmatically. See Exercise 3.

3.6 Working with Piecewise Defined Functions 95

Regardless of how a piecewise function is entered, it is important to understand some syntactical
conventions regarding the logical expressions (such as 0 x 1) that specify when a function rule is
applied. In particular, the logical connective && can be used to mean “and,” and || can be used to
mean “or.” The connectives allow complex conditions to be specified. Here’s an example:

In[4]:= g x :
x2 2 x 1 1 x 2
1 1 x 1

4 True

Here is an equivalent formulation, using the absolute value function:

In[5]:= g x :
x2 1 Abs x 2
1 Abs x 1

4 True

In[6]:= Plot g x , x, 3, 3 , PlotRange 0, 5

Out[6]=

3 2 1 0 1 2 3

1

2

3

4

5

Piecewise functions provide a rich setting in which to explore discontinuous functions. Plot is aware
of discontinuities appearing at the boundary between regions, and excludes such points. This leads
to accurate plotting of such discontinuous functions.

In[7]:= Plot
1 x 1

1 x 1
, x, 3, 3

Out[7]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

The ExclusionsStyle option works as it should in such cases:

96 Functions and Their Graphs

In[8]:= Plot
1 x 1

1 x 1
, x, 3, 3 , ExclusionsStyle Dashed

Out[8]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

Exercises 3.6
1. Show the second condition in the last example above could just as well be True.

2. Make a plot of the piecewise function below, and comment on its shape.

f x

0 x 0
x2

2
0 x 1

x2 3 x 3

2
1 x 2

1

2
3 x 2 2 x 3

0 3 x

3. A step function assumes a constant value between consecutive integers n and n 1. Make a plot of

the step function f x whose value is n2 when n x n 1. Use the domain 0 x 20.

3.7 Plotting Implicitly Defined Functions
An implicitly defined function is given as an equation relating two variables, such as x2 y2 1 (which

describes a circle of radius one). Here the y variable is not given explicitly as a function of the x

variable, but rather the x and y terms are wrapped up in an equation; hence the term “implicitly”

defined function. In order to plot an implicitly defined function, use the ContourPlot command.
Use the implicit equation for the first argument (with a double equal sign either typed from the
keyboard or inserted via the BasicMathInput palette), and include two iterators: one for x, a second
for y.

3.7 Plotting Implicitly Defined Functions 97

In[1]:= ContourPlot x2 y2 1, x, 1, 1 , y, 1, 1

Out[1]=

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

By default, a ContourPlot will display with a frame and no coordinate axes, but it is a simple matter
to change this behavior.

In[2]:= ContourPlot x2 y2 1, x, 1, 1 , y, 1, 1 , Frame False, Axes True

Out[2]=
1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Note that by default the AspectRatio of a ContourPlot will be set to 1, meaning that the coordinate
axes will be scaled as necessary to produce a perfectly square plot. Such a plot can be misleading; for
instance, the ellipse below looks like a circle!

98 Functions and Their Graphs

In[3]:= ContourPlot x2 4 y2 1, x, 1, 1 , y, .5, .5

Out[3]=

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4

Set the AspectRatio to Automatic to give your axes a uniform scale. We do not recommend this as
a default setting, however, as it is all too easy to ask for a plot that is thousands of times higher than
it is wide. But in cases such as the ellipse above where a common scaling of axes is called for, this
setting is important.

In[4]:= ContourPlot x2 4 y2 1, x, 1, 1 , y, .5, .5 , AspectRatio Automatic

Out[4]=

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4

ContourPlot works in a fundamentally different way than Plot does, as there is no explicit expres-
sion to evaluate for each numerical value of x. Rather, it samples points in the rectangular region
specified by the two iterators, and recursively applies an adaptive algorithm in an attempt to find a
smooth curve (or curves) satisfying the given equation. It is possible that in some cases the default
parameters governing the algorithm are insufficient to produce an accurate plot. For example, note
the jagged appearance in some parts of the output below:

3.7 Plotting Implicitly Defined Functions 99

In[5]:= ContourPlot Sin x2 y2 Cos x y , x, 10, 10 , y, 1, 1

Out[5]=

10 5 0 5 10
1.0

0.5

0.0

0.5

1.0

To cure a case of the “jaggies,” try setting the PlotPoints option to a large value such as 25, 50, or
100. PlotPoints controls how many points are initially sampled in the domain. Larger values tend to
produce more accurate plots but may lead to significantly slower evaluation time, so use the lowest
setting that produces a satisfactory plot.

In[6]:= ContourPlot Sin x2 y2 Cos x y , x, 10, 10 , y, 1, 1 , PlotPoints 100

Out[6]=

10 5 0 5 10
1.0

0.5

0.0

0.5

1.0

Several implicitly defined functions can be simultaneously displayed by providing a list of equations
as the first argument to ContourPlot. Mousing over a curve on the plot yields a tooltip displaying
the equation corresponding to that curve, so it is easy to interpret the output when multiple equa-
tions are plotted.

100 Functions and Their Graphs

In[7]:= ContourPlot 2 x2 y2 1, 2 x2 y2 1 , x, 1, 1 , y, 1, 1

Out[7]=

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

As with the Plot command, the option setting Mesh Full will reveal which points are sampled
initially, while the setting Mesh All will reveal the final points used to construct the curves after
the algorithm has run. The following Manipulate is a useful aid for understanding how the options
PlotPoints and MaxRecursion work in a ContourPlot. When MaxRecursion is set to 0, no itera-
tions take place and the initial and final meshes are the same. We saw a similar example for Plot in
Section 3.4 on page 79.

The three types of equal signs
Now is a good time to review the three types of equal signs that are used in Mathematica.
Each is used for a separate purpose so it is imperative that they be used appropriately. A
single equal sign = is used to assign a name to an expression, such as a 3 or
myPlot Plot 2 x, x, 2, 2 . A colon-equal sign := is used to make a delayed

assignment to an expression and is useful for defining functions, such as f x : x2. A
double equal sign is used to express an equation, such as 2 x2 y2 1.

3.7 Plotting Implicitly Defined Functions 101

In[8]:= Manipulate

ContourPlot 2 x2 y2 1, x, 2, 2 , y, 2, 2 ,

PlotPoints plotPoints, MaxRecursion maxRecursion, Mesh mesh ,

plotPoints, 4 , 2, 3, 4, 8 , maxRecursion, 2 , 0, 1, 2, 3 , mesh, Full, All

Out[8]=

plotPoints 2 3 4 8

maxRecursion 0 1 2 3

mesh Full All

Exercises 3.7
1. The option ContourStyle (not PlotStyle) is used to change the style of a ContourPlot. Plot the

implicit function x2 sin x y 3 as a thick, blue, dotted line.

2. If you ever wish to simultaneously view contour plots of implicitly defined functions of the form
f x, y z1, f x, y z2, f x, y z3, and so on, where z1, z2, etc... are constants, the following

syntax will work. Suppose, for instance, f x, y x2 y2, and the z-values are 2, 1, 0, 1, and 2.

Enter the following input to see overlaid plots of x2 y2 2, x2 y2 1, x2 y2 0, x2 y2 1,

and x2 y2 2.

ContourPlot x2 y2, x, 2, 2 , y, 2, 2 ,

Contours 2, 1, 0, 1, 2 , ContourShading False

3. Piecewise functions may be implicitly defined. Let f x, y
x2 y2 x y

1 x2

y2 x y
. Make a ContourPlot

102 Functions and Their Graphs

of the implicitly defined function f x, y 1

2
 for 0 x 3 and 0 y 3.

3.8 Combining Graphics
So you want to combine two or more graphics together as one? There are many possibilities here, so
we’ll address each in turn.

Superimposing Plots
It is often desirable to view two or more plots together. If you simply want to plot several functions
on the same set of axes, enter a list containing these functions as the first argument to the Plot
command and you’ll have it:

In[1]:= Clear f, g ;

f x : 1 x;

g x : x2;

In[4]:= Plot f x , g x , f x g x , x, 1, 1

Out[4]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

On your monitor the three functions are given three distinct colors. To better distinguish between
them, one may wrap the list of functions with the Tooltip command. When you mouseover any
curve in the resulting plot, a tooltip will pop up displaying that function’s expression. Note that the
output in printed form is indistinguishable from the prior output, so this feature is only useful in a
live session.

In[5]:= Plot Tooltip f x , g x , f x g x , x, 1, 1

Out[5]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

 3.8 Combining Graphics 103

One may also use the PlotStyle option to change the appearance of the three functions. This is
sometimes useful for printed output when using a black and white printer. Just set PlotStyle to a list
of three directives. These will be applied to the functions (in the order listed).

In[6]:= Plot f x , g x , f x g x , x, 1, 1 , PlotStyle Gray, Black, Dashing .01

Out[6]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

Finally, with a little extra work you can add a legend to the plot that will explain to the reader
which function is which. You must first load the PlotLegends package. Be sure to type the double
quotes and the backquote character.

In[7]:= Needs "PlotLegends`"

In[8]:= Plot f x , g x , f x g x , x, 1, 1 , PlotStyle Gray, Black, Dashing .01 ,

PlotLegend f x , g x , f x g x , LegendPosition 1, .5

Out[8]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

1 x x2

x2

1 x

The option PlotLegend is set to the list of labels to be placed in the legend box. In this case we just
used the functions themselves, but textual expressions or strings (expressions enclosed in double
quotes) are also fine. The LegendPosition option specifies where the legend box is placed relative to
the plot. To be more precise, it specifies where the midpoint of the left side of the legend box is
placed. You will almost certainly want to change its default placement. To do this, set LegendPosi
tion to a coordinate pair where each coordinate ranges from 1 to 1. The setting {-1, -1} places the
legend in the lower left corner, while {1,1} places it upper right.

Alternatively, it is a simple matter to build your own plot legend from scratch using the drawing

tools (discussed in Section 3.9 on page 112); simply plot your functions, then click on the output
image and use the drawing tools to place on it (for instance) some text and some lines to which the

104 Functions and Their Graphs

same directives used in the plot are applied. Finally, place a rectangle with opacity and a thick black
edge on top of your text. For instance, here’s a plot:

In[9]:= Plot x2, x4, x6 , x, .5, 1.5 , PlotRange 0, 3 ,

PlotStyle Black, Directive Dashed, Black , Directive Dotted, Black

Out[9]=

0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

2.5

3.0

And here we’ve used the drawing tools to add a legend:

If you need to superimpose a large number of plots, you can use Mathematica’s Table command to
generate the list of functions:

In[10]:= Plot Table n x2, n, 40, 40 , x, 2, 2 , PlotRange 50

Out[10]=
2 1 1 2

40

20

20

40

In cases like this where the expression appearing as the first argument to Plot is generated
programmatically, it may be beneficial to wrap the expression with Evaluate. The necessity of
the Evaluate command is a subtle business. Generally, Plot will hold the expression appearing
as the first argument unevaluated, then evaluate it multiple times, once for each numerical
value of x sampled in the domain. Evaluate forces Plot to first evaluate its initial argument
before plugging in any values of x. In some settings this can lead to a plot that works versus
one that does not. In other cases, Evaluate can reduce the time it takes to produce the plot. In

3.8 Combining Graphics 105

the example above, the processing time is reduced (and curves become individually colored), if
one replaces Table n x2, n, 40, 40 by Evaluate Table n x2, n, 40, 40 .

Producing Filled Plots
One can shade the region between a plot and the x axis as follows:

In[11]:= Plot 1 x2, x, 2, 2 , Filling Axis

Out[11]=

And one can shade the region between two curves like so:

In[12]:= Plot Sin x , 1 x2 , x, 2, 2 , Filling 1

Out[12]=

When there are more than two functions there are many ways to shade the various regions between
them. Below, filling is added from the first function to the third, and from the second function to
the top of the plot. Note that the filling is transparent, so the two filling styles can be layered one
over the other. Look up Filling in the Documentation Center for more information.

In[13]:= Plot x2, x4, Sin 20 x , x, 0, 1.5 , PlotRange 0, 1.5 , Filling 1 3 , 2 Top

Out[13]=

106 Functions and Their Graphs

Superimposing Graphics
To overlay one graphic on top of another, simply feed the component images to the Show
command. The individual images will be superimposed upon a common coordinate system. Below
we demonstrate this by assigning names to the component images and suppressing their individual
output with semicolons.

In[14]:= p1 Plot Sin x , x, 0, 2 , AspectRatio Automatic ;

p2 ContourPlot x
2

2

y2 1, x, 0, 3 , y, 1, 1 ;

Show p1, p2

Out[16]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

The plot domain, and option settings, such as AspectRatio, Axes, and so on will be inherited from
their settings in the first image listed within Show. Changing the order of the graphics listed within
Show may therefore change the appearance of the output:

In[17]:= Show p2, p1

Out[17]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

Note also that the order of the component images listed within Show is the order in which they are
rendered. The first graphic is rendered first, with the next graphic overlaid on top of it, and so on.

3.8 Combining Graphics 107

In[18]:= ellipse

ContourPlot
x2

3
2 y2 1, x, 2, 2 , y, 1, 1 , ContourStyle Thickness .06 ;

squiggle Plot Sin 10 x , x, 2, 2 , PlotStyle Directive Gray, Thickness .04 ;

Show ellipse, squiggle

Out[20]=

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

In[21]:= Show squiggle, ellipse

Out[21]=
2 1 1 2

1.0

0.5

0.5

1.0

One may also include within Show any options accepted by Graphics. Such options can be used to
override settings inherited from the component images.

In[22]:= Show squiggle, ellipse, Axes False

Out[22]=

Keep in mind also that while Show is an extremely useful and versatile command, it is often not
needed. To plot two functions together, for instance, recall that one can simply provide a list of the
two functions as the first argument to Plot. One may also use the Epilog option in commands such

108 Functions and Their Graphs

as Plot and ContourPlot to overlay primitive graphic elements on a plot (the Epilog option is
discussed in Section 3.9, on page 117).

Graphics Side-by-Side
A simple but rather primitive means of arranging graphics side-by-side is to simply create a list of
graphics. Of course, the curly brackets enclosing the list will be displayed in the output, and there
will be commas separating the images:

In[23]:= Plot Sin x Cos x , x, , , Plot Sin x Cos x , x, ,

Out[23]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

,
3 2 1 1 2 3

1.0

0.5

0.5

1.0

A better way to accomplish a side-by-side display is to use GraphicsRow. Its argument is a list of
graphics. It will integrate this list of individual Graphics objects into a single conglomerate graphic
that can, for instance, be moved or resized as a whole.

In[24]:= GraphicsRow

Out[24]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

3 2 1 1 2 3

1.0

0.5

0.5

1.0

The Frame, FrameStyle, and Dividers options may be used to add frames around each item, or to
place divider lines between some of them. The syntax for these options works as it does in a Grid.
The list of graphics can be generated programmatically, using Table for instance:

In[25]:= GraphicsRow Table Plot Sin m x , x, 0, 2 , m, 3 ,

Frame All, FrameStyle Dotted

Out[25]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

1 2 3 4 5 6

1.0

0.5

0.5

1.0

1 2 3 4 5 6

1.0

0.5

0.5

1.0

3.8 Combining Graphics 109

Graphics in a Grid
There is also a GraphicsGrid command to lay out graphics in a grid pattern. The syntax and many
of the options are the same as for Grid.

In[26]:= GraphicsGrid

Table Plot Csc m x , x, 0, 2 , Axes False , m, 5 ,

Table Plot Sec m x , x, 0, 2 , Axes False , m, 5 ,

Frame All, FrameStyle Gray

Out[26]=

One could also use Grid instead of GraphicsRow or GraphicsGrid. The main difference is that the
output of these latter commands is a single graphic that may be edited as such, for instance using the
drawing tools. The entire output can be resized by selecting it and dragging a handle. In a plain
Grid, only the individual component graphics can be edited.

Exercises 3.8
1. Name at least three strategies for determining which function is which in the graph below. You

may alter the input and re-enter it.

In[27]:= Plot x2 , x Sin x , x, 1, 1

Out[27]=

1.0 0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

2. In this exercise you will examine the function sin .4 t sin 1.6 t

2 sin t
and the function cos .6 t .

a. Simultaneously plot both functions on the domain 0 t 8 and describe what you find.

b. Repeat for the functions sin .3 t sin 1.7 t

2 sin t
and cos .7 t . What do you find?

c. How about for the functions sin .2 t sin 1.8 t

2 sin t
and cos .8 t ?

110 Functions and Their Graphs

d. Make a conjecture as to the value of sin k t sin 2 k t

2 sin t
 for any real numbers k and t, where t is not

an integer multiple of .

e. Enter the following, which illustrates the equivalence and allows the viewer to control k.
Comment on the graphical implications of the fact that the third function is the sum of the
other two. Note that in Exercise 2 in Section 4.6 we will return to this example and show why
the equivalence holds.

In[28]:= Manipulate

Plot
Sin k t

2 Sin t
,

Sin 2 k t

2 Sin t
, Cos 1 k t , t, 0, 8 , PlotRange 2,

PlotStyle Darker Gray , Darker Pink , Directive Thick, Black ,

GridLines Range 0, 8 , , , Ticks None,

Filling 1 Axis, 2 Axis , k, .4 , 0, 2

Out[28]=

k

3. Make the following Grid showing the plots of power functions, i.e., functions of the form
f x p xn, for real parameters p and n, with p positive and with domain 0 x 4. Include text

next to each plot indicating the values for the parameter n that will produce plots of the same
general shape.

3.8 Combining Graphics 111

Plot of p xn looks like: When: Plot of p xn looks like: When:

n 1 n 1

n 1 n 1

0 n 1 0 n 1

n 0 n 0

3.9 Enhancing Your Graphics
The time will soon come when you feel the irresistible desire to add some sort of graphic
enhancement to a plot. Maybe it will be something as minor as an arrow and some text. Maybe it
will be a stick figure. Maybe it will be hundreds of circles, polygons, and lines. Whatever the need,
the time will come. And if you read this section, you will be ready.

There are two basic ways to add information to an existing graphic: Use drawing tools and your
mouse to interactively add the elements you desire, or use the Graphics command and primitive
graphics elements to proceed programmatically. Each method has its advantages, and we’ll address
each in turn.

Drawing Tools
Drawing tools are found in the Graphics menu. The idea is simple and intuitive: elements are added
to a graphic using the Drawing Tools and your mouse. This approach is appropriate when you are
making a single image, or perhaps just a few, and when the placement of the elements on the
graphic allows some leeway. It’s great for adding labels with arrows pointing to items in a plot, for
example.

Let’s begin with a graphic produced by the Plot command.

In[1]:= Plot Sin x , ArcSin x , x,
2

,
2

, PlotStyle Automatic, Dashed ,

AspectRatio Automatic, AxesLabel x, y

112 Functions and Their Graphs

Out[1]=

1.5 1.0 0.5 0.5 1.0 1.5
x

1.5

1.0

0.5

0.5

1.0

1.5

y

Now go to the Graphics menu and select Drawing Tools. Begin by clicking once on the graphic you
wish to modify; an orange border appears around it. Now the tools on the palette are bound to a
target image. Explore the palette by mousing over its buttons. As you do, a tooltip will give a brief
description of that tool’s function. Generally speaking, click a tool button once to use that tool
once, or double click it to keep it active. If you click only once, the Selection tool will become active
immediately afterward. This is a good way to work in many cases; you push a palette button to
activate a tool, use the tool to add an element to your graphic, then (without another trip to the
palette) you can select and move or resize the new element. For example, in the graphic above let’s
add labels for the two curves and an arrow pointing from each label to the appropriate curve. Click
on the graphic. Then push the arrow button on the palette (left column, half way down) to activate
the arrow tool (or just type the letter “a” after clicking on the graphic). Now position the cursor over
the graphic where you want the tail of the arrow to appear, and (left) click once. Holding the mouse
button down, drag the cursor to where the arrowhead should be, and release. The arrow appears,
with an orange bounding box around it. The palette has now resorted back to the default Selection
tool (the cursor button in the upper right is now highlighted, not the arrow button). If you drag the
edge of the orange box surrounding the arrow, you can move it. If you drag the handle by either its
head or tail, you will move only that end of the arrow while the other end remains anchored. You
really have to try this to get a feel for it. After you have finished, click outside the graphic. Note that
you can continue to make adjustments on your arrow at any time in the future. Click once on the
graphic to select it, then click again on any element to select that element. The orange bounding
box appears, allowing you to move or resize it. Alternately, if you double click on an element, you
can edit it. Finally, if you push the Inspector button at the bottom of the Drawing Tools palette, a
second palette appears. Use this to fine-tune the appearance of any graphic element. Select any
item, such as an arrow, and you can adjust its thickness, color, opacity (how transparent it is when
overlaid on another element), and so on. With arrows you can easily adjust the size, shape, and
position of the arrowheads.

The best way to learn about the drawing tools is simply to use them. You can create a new (empty)
graphic by pushing the button in the upper left corner of the Drawing Tools palette, or by choosing
New Graphic in the Graphics menu. Then play to your heart’s content with the tools. Below we show
a few simple labels added to our previously generated plot:

3.9 Enhancing Your Graphics 113

sin x

sin 1 x

1.5 1.0 0.5 0.5 1.0 1.5
x

1.5

1.0

0.5

0.5

1.0

1.5

y

The Drawing Tools are a simple and powerful set of tools for creating all manner of creative and
revealing information graphics. With no training whatever and in a matter of minutes, our 13 year
old son Robert added the archer to the plot below:

0 50 100 150 200 250 300
0

10

20

30

40

50

Detailed information on each drawing tool can be had in the Documentation Center. Type “Editing
Mathematica Graphics” in the text field and follow the link to the Mathematica overview of that
name. Some of the most commonly used keyboard equivalents for the drawing tools are given in
Table 3.3.

Graphics Primitives
It is, of course, possible to forgo the freehand palette approach and work programmatically instead.
This method is painstaking when you want to add a simple label with an arrow, as above, but it is
absolutely essential when you have to add many elements, and at precise locations. We ask the
reader to be patient here; this section will introduce ideas that take some practice and perseverance
to master. The long term benefit, however, will be substantial.

114 Functions and Their Graphs

Type or click to Hold to

t open the Drawing Tools palette

1 create a new graphic at

the current selection point

i open the Graphics Inspector palette

o activate the Select Move Resize tool move horizontally vertically,

or resize preserving aspect ratio

l activate the Line tool make line horizontal or vertical

s activate the Line Segment tool make any segment s horizontal or vertical

a activate the Arrow tool make arrow horizontal or vertical

t activate the Text tool capitalize text

m activate the TraditionalForm Text tool capitalize text

g activate the Polygon tool make any segment s horizontal or vertical

c activate the Disk Circle tool make a circle aspect ratio 1

q activate the Rectangle tool make a square aspect ratio 1

p activate the Point tool

f activate the Freehand draw tool

Table 3.3 Tools in the DrawingTools palette

Let’s first meet the graphics primitives. These are the building blocks from which all two-dimensional
Mathematica graphics are constructed. They are: Point, Line, Rectangle, Polygon, Circle, Disk,
Raster, and Text. Let’s look at a few of these on their own. Later, we’ll show how to combine them
into a single graphic. We note that three-dimensional versions of some of these primitives (and
some new ones) exist as well; these will be discussed in Section 6.2 on page 276.

The most common elements you will use are points and lines. We will illustrate the ideas involved
by drawing lines; the other primitives work in a similar manner. Let’s first construct the line seg-
ments joining the points 0, 0 , 1, 1 , and 2, 0 . To join any finite collection of points in the plane,
feed a list of the Cartesian coordinates of the points as the sole argument to the Line command.
Individual points, such as 2, 0 , are input as lists of length two, like this: {2,0}.

3.9 Enhancing Your Graphics 115

In[2]:= Line 0, 0 , 1, 1 , 2, 0

Out[2]= Line 0, 0 , 1, 1 , 2, 0

Not too interesting yet. To view any primitive graphics element, wrap it in the Graphics command:

In[3]:= Graphics Line 0, 0 , 1, 1 , 2, 0

Out[3]=

The visual appearance of any primitive object or objects can be tweaked using graphics directives
(these were introduced in Section 3.3, in the subsection How to Add Color and Other Style Changes:

Graphics Directives on page 63). Some commonly used directives are Red, Thick, Opacity .5 , and

Dashed. The syntax works like this: put the graphics primitive(s) in a list whose first item is the
directive. If there is more than one directive, wrap them in the Directive command:

In[4]:= Graphics Directive Thick, Dashed , Line 0, 0 , 1, 1 , 2, 0

Out[4]=

Note that Graphics will accept many of the same options discussed for the Plot command:

In[5]:= Graphics Directive Thick, Dashed , Line 0, 0 , 1, 1 , 2, 0 , Axes True

Out[5]=

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

And combining primitive elements is as simple as putting them all into one big list within the
Graphics command:

116 Functions and Their Graphs

In[6]:= Graphics

Directive Thick, Gray , Line Table x, Sin x , x, 0, 6.3, .1 ,

Directive Dashed, Blue , Line 2, 0 , 2, Sin 2 , 0, Sin 2 ,

Directive PointSize .02 , Yellow , Point 2, Sin 2

, Axes True

Out[6]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

Note that the order in which the individual elements are specified matters. The first item is rendered
first, and each additional item is placed “on top” of earlier items. The point above, for instance,
would be obscured by the thick, gray sine curve had it been listed first.

Finally, it may be the case that you wish to include some primitive elements with the output of, say,
the Plot command. There are a few ways to do this. One is to take advantage of the Epilog option in
the Plot command. Set this option to any list of primitives that you could feed to the Graphics
command. The effect is to overlay the primitives on top of the plot.

In[7]:= Plot Sin x , x, 0, 2 , AspectRatio Automatic,

Epilog Directive Dashed, Blue , Line 2, 0 , 2, Sin 2 , 0, Sin 2

Out[7]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

And now, at last, we demonstrate the true benefit of understanding Graphics primitives. Below we
combine a (static) plot of the sine function with a dynamically controlled point that the user can
adjust with Manipulate:

3.9 Enhancing Your Graphics 117

In[8]:= Manipulate Plot Sin t , t, 0, 2 , Ticks Range 0, 2 ,
6

, Sin Range
2

,
2

,
6

,

Epilog Dashed, Line x, 0 , x, Sin x , 0, Sin x ,

Red, PointSize .015 , Point x, Sin x , x,
2

3
, 0, 2

Out[8]=

x

6 3 2

2

3

5

6

7

6

4

3

3

2

5

3

11

6

2

1

3

2

1

2

1

2

3

2

1

One final word is in order that pertains to printing. If you would like to produce a quality print of
that beautiful graphic you spent hours getting just right, wouldn’t it be nice to lose the cell label
Out[117]= that appears to its left? There are two simple means of achieving this. First, you can high-
light the cell label and hit the delete key. Mission accomplished. Alternately, wrap your input with
the Print command, and the same output will appear but without the label. Note that Print will not
send your output to a printer; rather, it “prints” an unlabeled cell in your notebook.

In[9]:= Print Plot Sin x 5 Cos x5 , x, 3, 3

3 2 1 1 2 3

2

1

1

2

The same comment applies to that wonderful table you produced with Grid. One may use
Print Style Grid , "Text" to generate a table with textual styling in an unlabeled cell, suitable

for inclusion in the finest of publications.

118 Functions and Their Graphs

Exercises 3.9
1. Make the following figure using the commands Graphics, Rectangle, and Circle, and including

the Graphics option setting Frame True. You will want to look up Circle in the Documenta-
tion Center to find out how to draw an ellipse. Do not use the Drawing Tools palette.

4 2 0 2 4

2

1

0

1

2

2. In this exercise you will explore various graphics directives using Manipulate.

a. The following command will produce a red disk of radius 1 centered at the origin. Type and
enter it:

Graphics Red, Disk

b. Replace Red by Lighter[Blend[{Blue, Red}, .3], .4].

c. Finally, make this into a Manipulate, replacing .3 and .4 above by the control variables r and
s, respectively. Investigate the effects.

d. Make two disks of radius 1 centered at 0, 0 and 1, 0 with the commands Disk and
Disk[{1,0}, 1], respectively. Make the first disk blue. Place them in a Manipulate with a single
control variable that determines the Opacity of the second disk (with values that range from 0
to 1).

e. Repeat the previous part, but make the second disk (the one with varying opacity) orange. If
you are not a University of Virginia fan, feel free to use other colors.

3. Make a smiley face as follows:

a. Create a Manipulate using Circle 0, 0 , 1, r , , 2 for 0.01 r 1 and note the behav-

ior.

b. Using Graphics primitives such as Disk, create a yellow smiley face that can be manipulated.

c. Add eyebrows that can be manipulated.

4. In this exercise we explore a family of ellipses.

a. Using Circle, construct Graphics showing the ellipse x2

4

y2

9
1 together with the coordinate

axes.

b. Construct Graphics showing together the family of ellipses x2

k n k 1

n 2

y2

n k 1 n k 2

n 1 n 2

1 with n 20,

and with k assuming integer values from 1 to 20. Note: A forthcoming paper by undergraduate
Liza Lawson and Bruce Torrence shows that for any real number r, the roots of the kth deriva-
tive of f z z r n z2 1 will either be real or will lie on the kth ellipse in this family (where

z x y in the complex plane).

c. For one of the values of k above, the ellipse appears to be an honest circle. Is it? Find the value
of k, and investigate.

3.9 Enhancing Your Graphics 119

d. For which value of k is the semimajor axis longest?

3.10 Working with Data
In situations where you have numerical data, you will want to enter the data into the computer to
study it. How is this most easily accomplished with Mathematica? Here is an example. These data
specify the temperature of a cup of coffee as it cools over time. The first column shows the number
of minutes that have elapsed, while the second column indicates the temperature of the coffee,
measured in degrees Fahrenheit:

In[1]:= data

0 149.5

2 141.7

4 134.7

6 128.3

8 122.6

10 117.4

12 112.7

14 108.5

16 104.7

18 101.3

20 98.2

22 95.4

24 92.9

26 90.5

28 88.5

30 86.6

;

When recording data a spreadsheet-type interface is desirable. To enter these data into Mathematica,
first type data = (any name will do, but “data” seems convenient), then select Table/Matrix New...
from the Insert menu. A dialog box will appear. In the top left portion select Table. To the right
specify the number of rows (in this case 16) and columns (in this case 2). It is possible to add and
delete more rows and columns later, so these numbers need not be exact. Ignore the remaining
settings and hit the OK button. A rectangular array, a sort of mini-spreadsheet of the dimensions
you specified, will appear in your notebook, and a very long, vertical, blinking cursor will appear to
its right. Type ; so that when you eventually enter this cell the output will be suppressed. Now click
on the placeholder in the upper left corner of your table (or hit the key to jump there) and enter
the first data value. When you are finished use the key to move to the next placeholder. Con-
tinue to enter your data in this fashion. Additional rows or columns can be added at any time; just
look in the Insert Table/Matrix menu for Add Row or Add Column. When all the data have been
typed in, enter the cell.

When you enter data in this way, Mathematica stores it as a list of ordered pairs (one pair for each
row in the table). Technically, it’s a list of lists. If you don’t put a semicolon after your data table,

1 Functions and Their Graphs

you will see it displayed in this form upon entering it. Or you will see it in this form if you ask for it
by name:

In[2]:= data

Out[2]= 0, 149.5 , 2, 141.7 , 4, 134.7 , 6, 128.3 , 8, 122.6 , 10, 117.4 , 12, 112.7 , 14, 108.5 ,

16, 104.7 , 18, 101.3 , 20, 98.2 , 22, 95.4 , 24, 92.9 , 26, 90.5 , 28, 88.5 , 30, 86.6

You won’t need to work with the data in this form, but it’s good to see it once so you know how
Mathematica interprets it.

The command for plotting such a list of ordered pairs is ListPlot:

In[3]:= ListPlot data

Out[3]=

5 10 15 20 25 30

100

110

120

130

140

150

ListPlot takes a single argument: a list of two-tuples. Each two-tuple is interpreted as a point in the
coordinate plane, and these points are then plotted. If your list of points is very short, you may find
it easiest to type it directly into ListPlot rather than first making a data table:

In[4]:= ListPlot 1, 1 , 2, 3 , 3, 2 , 4, 3

Out[4]=

1.5 2.0 2.5 3.0 3.5 4.0

1.5

2.0

2.5

3.0

It is an annoying fact of life that ListPlot will often hide one or more of your points behind the
coordinate axes. In the plot above, the point 1, 1 is at the intersection of the two axes! One way to
alleviate this masking effect is to “connect the dots.” The option Joined True accomplishes this.
Also, one may specify another symbol to indicate the data points using the PlotMarkers option.
Here we used the symbol (from the Shapes and Icons portion of the SpecialCharacters palette).

3.10 Working with Data 121

In[5]:= ListPlot 1, 1 , 2, 3 , 3, 2 , 4, 3 , Joined True,

PlotMarkers , AxesOrigin 0, 0 , PlotRange 0, 3.5

Out[5]=

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

But ListPlot also accepts most of the options that the Plot command does, so it is a simple matter to
produce as elaborate a graph as you desire. Here we assign the name scatterplot to our plot so that we
can refer to it later. The x and y values in AxesOrigin were chosen just a bit smaller than the small-

est x and y values appearing in the data; this pulls the axes off any data points. Finally, wrapping

Tooltip around the data itself has the convenient effect of producing a tooltip showing a data
point’s exact coordinates when you mouseover that point (you’ll have to try this to experience it).

In[6]:= scatterplot ListPlot Tooltip data , AxesLabel "min", "temperature F " ,

PlotStyle Directive PointSize Small , Blue ,

Filling Axis, AxesOrigin 1, 80

Out[6]=

You can have Mathematica find the best-fitting polynomial for your data (according to the criteria of
least squares) using the Fit command. Here is the best fitting linear function for the coffee cooling
data. We assign it the name fitLine:

In[7]:= fitLine Fit data, 1, x , x

Out[7]= 141.332 2.03257 x

Here is the best quadratic:

In[8]:= fitQuadratic Fit data, 1, x, x2 , x

Out[8]= 148.465 3.56107 x 0.0509498 x2

The Fit command takes three arguments. The first is the data (a list of two-tuples). The second is a
list of the terms requiring coefficient values in the polynomial. The last is the name of the variable,

122 Functions and Their Graphs

in this case x.

Once we have named these best-fit functions, we can view them against our data. A quick and dirty
way to display the Plot of a function together with data points is as follows (the Epilog option is
discussed in Section 3.9 on page 117):

In[9]:= Plot fitQuadratic, x, 0, 30 , Epilog Point data

Out[9]=

5 10 15 20 25 30

100

110

120

130

140

A more nuanced image can be had by using Plot and ListPlot to generate separate graphics, and
then using Show to display them together:

In[10]:= Show scatterplot, Plot fitLine, fitQuadratic , x, 0, 30 , Filling True

Out[10]=

Here we display them individually:

In[11]:= Show scatterplot, Plot fitLine, x, 0, 30 , PlotLabel Style fitLine, 8

Show scatterplot, Plot fitQuadratic, x, 0, 30 , PlotLabel Style fitQuadratic, 8

Out[11]=

3.10 Working with Data 123

Out[12]=

A more efficient means of entering the input above, where we have a list of nearly identical Show
items, is to use Table to generate the list:

In[13]:= GraphicsRow

Table Show scatterplot, Plot f, x, 0, 30 , PlotLabel f ,

f, fitLine, fitQuadratic

Out[13]=

The FindFit command may be used in place of Fit when a more complex form of approximating
function is sought than a polynomial (or sum of basis functions). For instance, while the quadratic
above seems to fit the coffee cooling data rather well, a moment’s thought tells us that this function
will fare poorly if we use it to predict the coffee’s temperature, say, when the time x is equal to 60

minutes. For quadratics with a positive coefficient on the x2 term open upward, and so will eventu-
ally (for sufficiently large values of x) turn from decreasing to increasing functions. The coffee, on
the other hand, is not going to get warmer as time progresses. It is a well known principle of physics
that bodies cool exponentially toward the ambient temperature of the surrounding medium. Hence
the form of the cooling function ought to be f x a b cx, where a, b, and c are positive constants

with 0 c 1, and where a is the ambient temperature of the room.

FindFit requires four arguments. The first is the data. The second specifies the form of the fitting
function (in this case a b cx), the third is a list of the parameters whose values we seek in this
expression (in this case a, b, c), and the last is the independent variable (in this case x). Any or all
of the parameters in the third argument may be given as an ordered pair of the form {parameter,
guess}, where guess is a rough estimate of the correct value of that parameter. Below we use .5 as an

124 Functions and Their Graphs

initial guess for the decay parameter c, since we know that c is between 0 and 1. This helps Mathemat-
ica refine its search for optimal values of the parameters in question.

In[13]:= FindFit data, a b cx, a, b, c, .5 , x

Out[13]= a 69.348, b 80.1489, c 0.95015

The output of FindFit is a list of replacement rules giving the values of the parameters. Replacement
rules are discussed in Section 4.2 on page 153; for now we simply read off the values of the parame-
ters, and note that the fit is excellent:

In[14]:= Show scatterplot, Plot 69.348 80.148 0.95015x, x, 0, 30

Out[14]=

Moreover, this approach allows us to use the coffee data to determine that the ambient temperature
of the room is approximately a 69.35 Fahrenheit.

Exercises 3.10
1. For the data given below, find the best-fitting line (according to the criteria of least-squares), and

plot this line together with the data.

x 1 2 3 4 5
y 1.2 2.3 3.6 4.9 5.9

2. For the same data used in the previous exercise, find the best-fitting power function. That is, find
the best-fitting function of the form f x p xn for real parameters p and n.

3. For the functions in each of the previous two exercises, find the residuals. That is, for each x-
coordinate in the data, find the difference between the actual y value in the data and the value

predicted by the fit function. Geometrically, these residuals indicate the vertical distance
between a data point and the graph of the fit function. A residual is positive if and only if the
data point lies above the graph of the fit function.

4. Enter the following input to create a command that will plot a collection of data, a fit-function,
and the residuals for the data and the given function. Test the command on the data from the

3.10 Working with Data 125

first exercise and the fit-function f x 3 .25 x .125 x2.

residualPlot data , function , x , xmin , xmax , opts Rule :

Show ListPlot data, Table x, function , x, data All, 1 , Filling 1 2 ,

FillingStyle Red, Green , PlotMarkers " ", "" , opts ,

Plot function, x, xmin, xmax

5. When a Manipulate has a Locator controller, it’s possible (and often desirable) to modify the
Locator’s default appearance in the image pane. A simple way to do this is to display a Graphics
object of your choosing at the position of the Locator, and add the option setting
Appearance None to the iterator for the Locator control. Enter the following input, explore

the output, and then change things so that the Locator appears as a Thick, Blue, Circle.

Manipulate

Graphics Directive PointSize .03 , Red , Point pt , Axes True, PlotRange 1 ,

pt, 0, 0 , Locator, Appearance None

3.11 Managing Data—An Introduction to Lists
You will often need to modify or transform the data with which you started. For instance, you
might begin with a large table of data and wish only to work with a few rows or columns of it. Or
you might wish to transform a particular row or column in a large table of data by applying the
natural logarithm to each item in that row or column. In this section we introduce a few techniques
to help with such tasks.

We mentioned in Section 3.5 that a list in Mathematica is a collection of items separated by commas
and enclosed in curly brackets, such as {2, 5, 9, 7, 4}. Our first task will be to master the art of extract-
ing one or more items from a list.

In[1]:= myList Table 2k, k, 10

Out[1]= 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

In[2]:= myList 5

Out[2]= 32

If you type the name of a list followed by [[5]], you will extract the fifth part of the list. You can also

use the button on the BasicMathInput palette (in the lower right portion of the top half of the

palette) to produce myList 5 , which has the same meaning. One may also type from the keyboard

 [[and]] to produce the double square bracket symbols and , which also have the
same meaning.

126 Functions and Their Graphs

In[3]:= myList 5

Out[3]= 32

In[4]:= myList 5

Out[4]= 32

We’ll use this last notation throughout this section as it is easy to read, but remember that you may
simply use double square brackets (which are easier to type). A negative number inside the double
square brackets indicates an item’s position relative to the end of the list. For instance, here is the
second to last item:

In[5]:= myList 2

Out[5]= 512

To extract a sequential portion of a longer list, one may indicate a Span of positions as follows:

In[6]:= myList 1 ;; 4

Out[6]= 2, 4, 8, 16

The most commonly specified items in a list are the first and last. There are, for convenience, special
commands to extract these items (although myList 1 and myList -1 work just as well):

In[7]:= First myList

Out[7]= 2

In[8]:= Last myList

Out[8]= 1024

Most of Mathematica’s arithmetic operations have the Listable attribute. This means they will be
“mapped over lists.” In other words, each item in the list will be operated upon individually by these
commands, and the list of results will be displayed. This is extremely handy. For example:

In[9]:= 1, 2, 3, 4 1

Out[9]= 2, 3, 4, 5

In[10]:= 2 myList

Out[10]= 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048

In[11]:= Log 2, myList

Out[11]= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

To find out if a command has the Listable attribute, type ?? followed by the command name,

3.11 Managing Data — An Introduction to Lists 127

and evaluate the cell. All the attributes of the command will appear (along with a brief
description of the command and a list of its default option settings).

Recall that Mathematica stores a two-dimensional data table as a list of lists. That is, the data table is
stored as one long list, the members of which are the rows of the table. Each row of the table is in
turn stored as a list:

In[12]:= data

1 214

11 378

21 680

31 1215

41 2178

51 3907

Out[12]= 1, 214 , 11, 378 , 21, 680 , 31, 1215 , 41, 2178 , 51, 3907

In[13]:= data 3

Out[13]= 21, 680

To extract the item in row 3, column 2, do this:

In[14]:= data 3, 2

Out[14]= 680

To extract an entire column of a two-dimensional table, use All in the first position within the
double bracket:

In[15]:= data All, 2

Out[15]= 214, 378, 680, 1215, 2178, 3907

If your data happens to contain many columns, and you want to extract, say, only the second and
fourth columns, type data All, 2, 4 .

The importance of these extraction commands manifests itself in situations that call for a transforma-
tion of the data. In most cases this will amount to performing some arithmetic operation on every
item in a column of your data table. For instance, one column of a table may comprise the x coordi-
nates of your data points, while another contains the corresponding y coordinates. You may want to

subtract 70 from all the x coordinates, or take the logarithm of all the y coordinates. How can this be

accomplished?

The simplest situation is one in which the same operation is to be applied to every member of a data
table. The listable attribute of most operations makes this a one-step process. For instance:

128 Functions and Their Graphs

In[16]:= Log data Grid

Out[16]=

0 Log 214

Log 11 Log 378

Log 21 Log 680

Log 31 Log 1215

Log 41 Log 2178

Log 51 Log 3907

If you wish to operate on just one of the columns, things are almost as simple. Suppose, for
instance, that you want to take the logarithm of only the second column. One might proceed as
follows (where we make a duplicate copy of the original data, then overwrite the second column in
this copy):

In[17]:= newData data;

newData All, 2 Log data All, 2 ;

newData Grid

Out[19]=

1 Log 214

11 Log 378

21 Log 680

31 Log 1215

41 Log 2178

51 Log 3907

Another method of accomplishing the same task invokes the useful Transpose command, which
switches rows and columns in a two-dimensional table.

In[20]:= Transpose data All, 1 , Log data All, 2 Grid

Out[20]=

1 Log 214

11 Log 378

21 Log 680

31 Log 1215

41 Log 2178

51 Log 3907

This latter approach suggests a useful means of extracting a few columns from a larger table of data
and applying transformations to them selectively. Here, for example, is a somewhat random collec-
tion of data:

3.11 Managing Data — An Introduction to Lists 129

In[21]:= data Table x, RandomInteger 10 , RandomReal 10 , RandomComplex , x, 6 ;

Grid data, Dividers Gray

Out[22]=

1 4 1.96983 0.201769 0.55101

2 10 8.8533 0.388002 0.537243

3 7 1.79462 0.873406 0.754408

4 7 8.99804 0.338286 0.392776

5 0 5.90026 0.903198 0.78486

6 7 1.71122 0.610062 0.528001

And here is a new data table comprised only of the first column and the natural logarithm of the
third column:

In[23]:= newData Transpose data All, 1 , Log data All, 3 ;

Grid newData, Dividers Gray

Out[24]=

1 0.677946

2 2.18079

3 0.584791

4 2.19701

5 1.775

6 0.537204

So, for instance, one may now apply ListPlot or Fit to the newData, as discussed in the previous
section.

Exercises 3.11
1. Suppose that data is input as a Table with 120 rows and 6 columns.

a. What command could you use to extract only columns 2 and 6?

b. What command could you issue to extract only the last 119 rows of columns 2 and 6 (for
instance, imagine that the first row contains headings for the columns and not actual data)?

c. What command could you issue to extract only the last 119 rows of columns 2 and 6, and
then replace column 6 with the natural logarithm of its values?

130 Functions and Their Graphs

3.12 Importing Data
The simplest means of bringing external data into Mathematica is by utilizing the “paclet”
technology introduced in version 6. Many collections of data are curated regularly and stored on
servers at Wolfram Research. Mathematica has built-in access to these data (provided your computer
has internet access). That is, many built-in commands will simply call up these servers and deliver
hot, fresh data paclets to your current Mathematica session.

An example is in order. The command CountryData is used to access data about countries, conti-
nents, and so forth. Like the other data commands, CountryData may be called with empty argu-
ment to produce a list of basic data objects. You will notice a slight delay before the output appears,
but this will only happen the first time a data command is evaluated in a session; this is when the
data is transferred from the central server to your computer.

In[1]:= Short CountryData , 3

Out[1]//Short= Afghanistan, Albania, 233 , Zambia, Zimbabwe

In[2]:= CountryData Length

Out[2]= 237

Many of the data commands allow the single argument "Properties", which will list the properties

available for each of the countries (or for the primary data objects of the data command you are
using). At the time of this writing, there are 225 properties available for the country data:

In[3]:= Short CountryData "Properties" , 3

Out[3]//Short= AdultPopulation, AgriculturalProducts, 222 , WaterwayLength

The typical usage of CountryData takes the form CountryData "tag", "property" , where "tag" is a

string (i.e., it is enclosed in double quotation marks) representing a country or group of countries
(such as "UnitedStates" or "G8"), and "property" is a string representing the desired property for that
country. A similar syntax applies to the other data commands. For instance:

In[4]:= CountryData "UnitedStates", "Population"

Out[4]= 2.98213 108

One may specify a date or a range of dates for the property as follows. In the latter case the output is
suitable for inclusion in the DateListPlot command:

In[5]:= CountryData "UnitedStates", "Population", 1970

Out[5]= 2.10111 108

3.12 Importing Data 131

In[6]:= DateListPlot CountryData "Kuwait", "Population", 1970, 2006

Out[6]=

1970 1980 1990 2000

1. 106

1.5 106

2. 106

2.5 106

Here is the gross domestic product of Germany, in US dollars, at the official exchange rate in place
at the time of this writing:

In[7]:= CountryData "Germany", "GDP"

Out[7]= 2.79486 1012

Here is Greenland’s oil consumption in barrels per day:

In[8]:= CountryData "Greenland", "OilConsumption"

Out[8]= 3850.

And here we generate a list giving the name, gross domestic product, and oil consumption for every
country. To accomplish this we use Table, where c ranges over the list of all possible countries. To
save space, we use 1;;6 to take only the first six rows of data:

In[9]:= Table c, CountryData c, "GDP" , CountryData c, "OilConsumption" ,

c, CountryData 1 ;; 6 Grid

Out[9]=

Afghanistan 6.50383 109 5000.

Albania 8.53753 109 25200.

Algeria 1.02257 1011 246000.

AmericanSamoa 3.338 108 4000.

Andorra 3.0909 109 Missing NotAvailable

Angola 2.88526 1010 46000.

Note the syntax used for missing data. With a bit of effort one can tweak the input above to produce
a nicely formatted table. To save space, we again use 1 ;; 6 to take only the first six rows of data:

132 Functions and Their Graphs

In[10]:= Text Grid

Prepend

Table c, CountryData c, "GDP" , CountryData c, "OilConsumption" ,

c, CountryData 1 ;; 6 ,

Table Style x, FontWeight "Bold" ,

x, "Country", "Gross Domestic Product US dollars ",

"Oil Consumption Barrels per day "

,

Dividers Center, False, True , Spacings 2, Alignment Left, Center

Out[10]=

Country Gross Domestic Product US dollars Oil Consumption Barrels per day

Afghanistan 6.50383 109 5000.

Albania 8.53753 109 25 200.

Algeria 1.02257 1011 246 000.

AmericanSamoa 3.338 108 4000.

Andorra 3.0909 109 Missing NotAvailable

Angola 2.88526 1010 46 000.

In the exercises we illustrate how to Sort the rows of such a table, for instance by oil consumption,
how to throw out rows containing missing data, and how to Select only rows, for instance, in which
gross domestic product exceeds a certain value. In short, the commands Sort and Select are needed
for such manipulations.

Here we make a ListPlot of the full data table above, showing each country’s annual gross domestic
product in U.S. dollars in the x coordinate, and that country’s oil consumption in barrels per day in
the y coordinate. A logarithmic scale is used on each axis. Missing data are simply not shown.

In[11]:= ListLogLogPlot Table CountryData c, "GDP" ,

CountryData c, "OilConsumption" , c, CountryData

Out[11]=

108 109 1010 1011 1012 1013

100

1000

104

105

106

107

A slight modification allows us to add a Tooltip showing the name of each country as you mou-
seover its dot on the graphic. You’ll have to experience this in a live session to appreciate it. Essen-
tially, a tooltip such as this adds another dimension of content to your information graphic.

3.12 Importing Data 133

In[12]:= ListLogLogPlot

Table Tooltip CountryData c, "GDP" , CountryData c, "OilConsumption" ,

CountryData c, "Name" , c, CountryData

Out[12]=

Many of the data commands can produce graphical content. One can easily produce a map of each
country, for example:

In[13]:= CountryData "Greece", "Shape"

Out[13]=

In[14]:= GraphicsGrid Partition Table CountryData c, "Shape" , c, CountryData "G8" , 4 ,

Dividers All, ImageSize 320

Out[14]=

Many of the data commands load gigantic collections of data. AstronomicalData, for instance,
which has information on over 100,000 celestial bodies, is astronomical in size. ChemicalData has
information on over 18,000 chemicals. FinancialData has up-to-date information on over 186,000
securities. Each data command has its own unique syntax conventions, so the Documentation
Center page for each such command is a must read. But there are also many similarities between
commands; if you become familiar with one command, others will be easy to learn. For instance,

134 Functions and Their Graphs

after reading this section the input and output below should be self-explanatory, with only the units
in need of explanation (in this case the units are seconds):

In[15]:= AstronomicalData "Earth", "OrbitPeriod"

Out[15]= 3.1558149 107

Here we illustrate a pattern first deduced by Kepler—there is a mathematical relation between a
planet’s orbital period and its distance to the sun:

In[16]:= data Table AstronomicalData p, "OrbitPeriod" ,

AstronomicalData p, "SemimajorAxis" , p, AstronomicalData "Planet" ;

In[17]:= ListLogLogPlot data, AspectRatio .3, ImageSize 244

Out[17]=

5 107 1 108 5 108 1 109 5 109

1 1011
2 1011

5 1011
1 1012
2 1012

5 1012

In[18]:= FindFit data, a xb, a, b , x

Out[18]= a 1.496467 106, b 0.6667315

In[19]:= Show Plot 1 496476 x2 3, x, 0, 1010 , ListPlot data

Out[19]=

2. 109 4. 109 6. 109 8. 109 1. 1010

1. 1012

2. 1012

3. 1012

4. 1012

5. 1012

6. 1012

7. 1012

Hence orbital “radius” is proportional to orbital period
2 3

, or as Kepler put it, radius3 period2. The

point is simply that facility with one data command makes the other data commands a quick study,
and that facility with lists and data fitting makes the work of finding meaningful relations in data a
snap.

In addition to built-in data commands, it is common practice to import data from other sources,
such as a spreadsheet or text file, or directly from a web page. Suppose, for instance, you find a
collection of raw data on a web page. For example, if you were to visit the URL
http://www.census.gov/genealogy/names/dist.male.first you would find a collection of curated data

3.12 Importing Data 135

from the 1990 United States census in which male first names are ranked by frequency. The web
page is simply a plain text file containing four columns of data, with one or more spaces separating
data values on each row, and with a return character at the end of each row. Use the Import com-
mand with a single argument, a string containing the URL for the web site, to bring the data into
Mathematica.

In[20]:= data Import "http: www.census.gov genealogy names dist.male.first" ;

There are over 1200 rows of data here. To save space we display only the top-ten list of male first
names:

In[21]:= Text

Grid Join "Most Popular Male First Names from the 1990 Census", SpanFromLeft ,

"Name", "Frequency ", "Cumulative Frequency ", "Rank" ,

data 1 ;; 10 , Dividers Gray

Out[21]=

Most Popular Male First Names from the 1990 Census
Name Frequency Cumulative Frequency Rank
JAMES 3.318 3.318 1
JOHN 3.271 6.589 2
ROBERT 3.143 9.732 3
MICHAEL 2.629 12.361 4
WILLIAM 2.451 14.812 5
DAVID 2.363 17.176 6
RICHARD 1.703 18.878 7
CHARLES 1.523 20.401 8
JOSEPH 1.404 21.805 9
THOMAS 1.38 23.185 10

The ListPlot below shows the cumulative frequency distribution for the entire data set. Note that
when a single list of numerical values is given as the argument to ListPlot, the x-coordinate values
1, 2, 3, … are used. This allows us to easily see that there are slightly more than 1200 data points. It
also reveals that the 200 most popular male names account for over 70% of all males in the U.S.

In[22]:= ListPlot data All, 3 , Joined True

Out[22]=

0 200 400 600 800 1000 1200

60

70

80

90

136 Functions and Their Graphs

This same import technique works for many types of raw files that are found online, even graphic
files:

In[23]:= pic Import

"http: faculty.rmc.edu btorrenc bt bikeclub images PoorFarm ConesBW10 99.

JPG", ImageSize 180

Out[23]=

The InputForm of this image reveals it to be a Raster of a matrix of pixel values. Once imported,
one could apply a transformation to the matrix of numerical values to alter the image.

In[24]:= Short InputForm pic , 3

Out[24]//Short=

Graphics Raster 255, 679 , 519 , 3 , 3

When the data you’re after is found in a formatted table on a web page, add "Data" as a second
argument to Import, like this: Import "URLstring" , " Data " . For instance, here we import a web

page showing U.S. News and World Report’s list of top liberal arts colleges.

Import

"http: colleges.usnews.rankingsandreviews.com usnews edu college rankings

brief t1libartco brief .php", "Data"

The output is rather large, so we don’t show it here. One simply copies and pastes (and if necessary,
edits) the list of data values from what is imported, and uses it as desired. Here, for instance, are the
top few colleges from this page at the time of this writing; we copied the relevant data from the
Import output, and pasted it into the Grid command below (evidently Carleton and Middlebury are
tied, as are Pomona and Bowdoin):

3.12 Importing Data 137

In[25]:= Text Grid "1.", "Williams College MA " ,

"2.", "Amherst College MA " , "3.", "Swarthmore College PA " ,

"4.", "Wellesley College MA " , "5.", "Carleton College MN " ,

"5.", "Middlebury College VT " , "7.", "Pomona College CA " ,

"7.", "Bowdoin College ME " , "9.", "Davidson College NC " ,

"10.", "Haverford College PA " , Alignment Right, Left

Out[25]=

1. Williams College MA
2. Amherst College MA
3. Swarthmore College PA
4. Wellesley College MA
5. Carleton College MN
5. Middlebury College VT
7. Pomona College CA
7. Bowdoin College ME
9. Davidson College NC
10. Haverford College PA

You may also Import data from a file on your local hard drive. Suppose you have a spreadsheet
containing data that you want to analyze using Mathematica. The first step when importing a file is
to tell Mathematica where to look for it. This is accomplished with the SetDirectory command.
There are many ways to use this command. Its argument is a string representing the complete path of
the directory (i.e., the folder) containing the file. Of course this can be tedious to type if the file is
many levels from the top, and if the file is later moved, then its new path will be needed. Instead we
advocate the following approach: save your notebook if you have not already done so, and then
place the file you wish to import into the same directory containing your Mathematica notebook.
Then type and enter the following into this notebook:

In[26]:= SetDirectory NotebookDirectory ;

This will set the current directory to be that of the notebook in which you are working. Even if you
later move this directory (containing the Mathematica notebook and your data file) to another
location, even to a different computer running a different operating system, the command above
will still set the directory correctly.

Now you are ready to Import your file. Here we use an Excel spreadsheet that we downloaded from
the data pages at the Math Forum maintained by Drexel University:

http://mathforum.org/workshops/sum96/data.collections/datalibrary/index.html.

We placed this spreadsheet into our notebook directory, as described above. The spreadsheet shows
the 2005 National League baseball salaries. Note that Import recognizes the file-type by the suffix
.xls, so no additional input is needed.

In[27]:= baseballData Import "NLBB.salaries.2005.xls" ;

138 Functions and Their Graphs

Excel spreadsheets typically have multiple “sheets.” Mathematica will import spreadsheets in the
form {sheet1, sheet2, sheet3,…}, where each sheet is imported as a standard list of lists, suitable for
display by Grid. In particular, if all of the data resides on the first sheet (a very typical scenario),
there will be an extra set of curly brackets around your data. That is the case with this file, so we use
First to access the first (and only) sheet, and display the top 20 rows of data:

In[28]:= Text Grid First baseballData 1 ;; 20 , Alignment Left

Out[28]=

National League Baseball Salaries 2005

Team Name Salary Position

Arizona Diamondbacks Aquino, Greg 325000. Pitcher
Arizona Diamondbacks Bruney, Brian 322500. Pitcher
Arizona Diamondbacks Choate, Randy 550000. Pitcher
Arizona Diamondbacks Cintron, Alex 360000. Shortstop
Arizona Diamondbacks Clark, Tony 750000. First Baseman

Arizona Diamondbacks Clayton, Royce 1.35 106 Shortstop

Arizona Diamondbacks Counsell, Craig 1.35 106 Second Baseman

Arizona Diamondbacks Cruz Jr, Jose 4. 106 Outfielder

Arizona Diamondbacks Estes, Shawn 2.5 106 Pitcher
Arizona Diamondbacks Gil, Jerry 318 000. Shortstop

Arizona Diamondbacks Glaus, Troy 9. 106 Third Baseman

Arizona Diamondbacks Gonzalez, Luis 1.00833 107 Outfielder
Arizona Diamondbacks Gosling, Mike 317500. Pitcher

Arizona Diamondbacks Green, Shawn 7.83333 106 First Baseman
Arizona Diamondbacks Halsey, Brad 317500. Pitcher
Arizona Diamondbacks Hill, Koyie 318 000. Catcher

A careful look at the data indicates that the actual data values begin on row 5, and that the last 3
rows are empty. Noting this, we can now make a histogram of all of the 2005 National League
baseball salaries:

In[29]:= Needs "Histograms`" ;

3.12 Importing Data 139

In[30]:= Histogram First baseballData 5 ;; 4, 3

Out[30]=

5 000 000 10 000 000 15 000 000 20 000 000

50

100

150

200

We easily calculate that the mean salary exceeds a quarter million dollars, while the median is a
paltry $800,000:

In[31]:= Table f First baseballData 5 ;; 4, 3 , f, Mean, Median

Out[31]= 2.5858 106, 800000.

Import will work with over 120 file formats. File types are recognized by the suffix on the filename,

so simply try Import "filename" , (where your filename includes the appropriate suffix) and chances

are good that you will have success. Here is a quick list of formats that are recognized at the time of
this writing:

In[32]:= $ImportFormats

Out[32]= 3DS, ACO, AIFF, ApacheLog, AU, AVI, Base64, Binary, Bit, BMP, Byte, BYU, BZIP2,

CDED, CDF, Character16, Character8, Complex128, Complex256, Complex64, CSV,

CUR, DBF, DICOM, DIF, Directory, DXF, EDF, ExpressionML, FASTA, FITS, FLAC,

GIF, Graph6, GTOPO30, GZIP, HarwellBoeing, HDF, HDF5, HTML, ICO, Integer128,

Integer16, Integer24, Integer32, Integer64, Integer8, JPEG, JPEG2000, JVX, LaTeX,

List, LWO, MAT, MathML, MBOX, MDB, MGF, MOL, MPS, MTP, MTX, MX, NB,

NetCDF, NOFF, OBJ, ODS, OFF, Package, PBM, PCX, PDB, PDF, PGM, PLY, PNG,

PNM, PPM, PXR, QuickTime, RawBitmap, Real128, Real32, Real64, RIB, RSS, RTF,

SCT, SDTS, SND, Sparse6, STL, String, SXC, Table, TAR, TerminatedString, Text,

TGA, TIFF, TSV, UnsignedInteger128, UnsignedInteger16, UnsignedInteger24,

UnsignedInteger32, UnsignedInteger64, UnsignedInteger8, USGSDEM, UUE, VCF,

WAV, Wave64, WDX, XBM, XHTML, XHTMLMathML, XLS, XML, XPORT, XYZ, ZIP

140 Functions and Their Graphs

Exercises 3.12
1. This exercise makes use of the ElementData command.

a. Construct a table with 118 rows and 3 columns. Each row should contain the name of an
element, its atomic weight (in atomic mass units), and its molar volume (in moles, obviously).
Use the first 118 elements listed in ElementData.

b. Make a ListPlot of molar volume versus atomic weight for your data.

c. Add a Tooltip to your ListPlot so that the name of each element is displayed as you mou-
seover it.

2. Visit the web site http://www.census.gov/genealogy/names/names_files.html.

a. Find the file giving the distribution of female first names, and make a table of female first
names, ranked by frequency.

b. With male first names, we showed in the text that roughly 70% of all males had one of the
top 200 names. What proportion of females have one of the top 200 names?

3. Visit the web site http://research.stlouisfed.org/fred2/data/FEDFUNDS.txt. It shows the effective
federal funds rate each month from 1954 to the present. Like the census site in the previous
exercise, this page contains raw data suitable for display in a Grid. Unlike the census site, how-
ever, the first 13 lines of text on this page describe the data that follows. That is, the file contains
more than just the straight data.

a. Use Import with the URL above as the first argument, and "Table" as the second argument.

b. Extract the data (starting on line 12, so that the column headers are included), and name it
data.

c. Use DateListPlot and Rest to view the data.

4. The Select command will apply a function to each member of a list. The syntax is:
Select[list,function]. It will return all items in the list for which the function returns the value

True. Typically the function is given as a pure function (these are discussed in Section 8.4). For our

purposes, just remember that the Slot character # represents the variable for the function, that is,
the items in the list. Enter the input below to find all of the properties available to CountryData
which contain the substring "Product":

Select CountryData "Properties" , StringMatchQ , "Product" &

5. Use Select to find all chemicals listed in ChemicalData that contain the substring "ButylEther".

6. How many cities in the U.S. have a population exceeding 100,000? Hint: Use the CityData
command together with Select to produce a list of such cities, then use Length to get the answer.

7. There are two standard ways of removing Missing data values from a list. One is to use Select,
and another is to use Cases together with Except.

a. Enter the two inputs below to see an example of each.

3.12 Importing Data 141

Select 1, 2, Missing "NotAvailable" , 4 , NumberQ &

Cases 1, 2, Missing "NotAvailable" , 4 , Except Missing

b. List all countries in CountryData for which the "OilConsumption" property is given as
numerical value (i.e., for which it is not Missing).

c. List all countries in CountryData for which both the "OilConsumption" and the "Popula
tion" properties are given as numerical values.

8. The Sort command is used to rearrange the items in a list. With a list given as its argument, Sort
will arrange the list in standard order (ascending order for a list of numbers, alphabetical order
for a list of strings, etc.).

a. Use Sort to put the list {10,7,9,8} in ascending order.

b. A second argument may be added to Sort. It specifies the sorting function to use. This is typi-
cally given as a Function with two arguments, #1 and #2. Pairs of list members are given as
the two arguments, and the function should return True precisely if the item #1 should
precede #2 in the sorting order. Enter the inputs below to sort the rows of a table according
the values in the third column (by oil consumption). Note that we first remove missing values
from the data as discussed in the previous exercise.

Select CountryData , NumberQ CountryData , "OilConsumption" &&

NumberQ CountryData , "Population" & ;

Table c, CountryData c, "Population" , CountryData c, "OilConsumption" , c, ;

Sort , 1 3 2 3 & Grid

c. Make a Grid with two columns. The first gives the name of a country. The second gives the oil
consumption per capita, in units of barrels per year per person. Sort the rows of the table so that
the countries with the greatest per capita oil consumption are listed first.

d. Where does the U.S. rank in per capita oil consumption?

3.13 Working with Difference Equations
A sequence is a function whose domain consists of the positive integers. In other words, it is a
function s whose values can be listed: s 1 , s 2 , s 3 , …. A more traditional notation for these values
is s1, s2, s3, ….

It is often possible to define a sequence by specifying the value of the first term (say s 1 3), and
giving a difference equation (also called a recurrence relation) that expresses every subsequent term as a
function of the previous term. For instance, suppose the first term in a sequence takes the value 3,
and each term that follows has a value twice that of its predecessor. We could express this via the
difference equation s n 2 s n 1 for each n 1. A sequence defined this way is said to be defined
recursively. Computers make it easy to calculate many terms of recursively defined sequences. Here’s
a means for harnessing Mathematica for such a purpose:

142 Functions and Their Graphs

In[1]:= Clear s, n ;

s n Integer :
s 1 3 n 1

s n 2 s n 1 n 1

Let’s walk through this carefully, as it makes nontrivial use of all three types of equal signs. First, the
left hand side is of the form s[n_Integer]. This indicates that the variable n must be an integer in
order for the definition that follows to be applied. This is a safety feature, as it will prevent the
inadvertent use of the function s being applied, for instance, to n .5 or to any other non-integer
input. Next we see the SetDelayed operator :=. This indicates that the expression to its right will
only be evaluated when the function s is called. We also see that the expression to its right is a

Piecewise defined function, as described in Section 3.6 on page 94. There are two distinct defini-
tions of s according to whether the input n is equal to 1 or greater than 1. These two conditions (on
the far right) will, for any value of n, evaluate to either True or False. Note the double equal sign
here; it is a condition to be tested, not an assignment being made to the symbol n, so the double
equal sign is needed. Finally, what happens when s n is called with a specific value of n? Let’s see:

In[3]:= s 4

Out[3]= 24

Here is what is now stored in memory for the symbol s:

In[4]:= ? s

Global`s

s 1 3

s 2 6

s 3 12

s 4 24

s n Integer : Piecewise s 1 3, n 1 , s n 2 s n 1 , n 1

Here’s what happened: s 4 was evaluated as 2 s 3 , which was in turn evaluated as 2 2 s 2 ,
which in turn was evaluated as 2 2 2 s 1 , which was finally evaluated as 2 2 2 3 24,
with the assignment s[1]=3 being made. At this point, the intermediate assignments s[2]=6, s[3]=12,
s[4]=24 were made in turn. If you were to ask for s 4 again, it would be a one-step process and the
value 24 would be returned immediately, for at this point the assignment s[4]=24 has already been
made. This is very important, for if you were to then ask for, say, s 5 , it would be a quick calcula-
tion: 2 s 4 2 24 48. This is the reason for the Set operator = in each of the two lines of the
Piecewise definition of s; it prevents long chains of calculations being repeated.

3.13 Working with Difference Equations 143

The only down side to this approach is that after, for instance, s 20 is evaluated, the assignments
s[1]=3, s[2]=6, … , s[20]=1572864 are all stored in memory. If s 200 is called, you literally have
hundreds of assignments stored in memory. Fortunately, they are all associated with the symbol s,
and so can be Cleared in one line:

In[5]:= Clear s

In[6]:= ? s

Global`s

Here are three things you can do with a sequence: compute an individual value (such as s 4 above),
make a table of values, or make a plot. These are easy, and will be discussed below. More subtle is
the task of trying to find a solution to a difference equation—an explicit representation of s n as a

function of n. For instance, the function in our example above has the solution s n 3 2n 1 . The

task of solving difference equations is addressed in Section 4.8 on page 189.

Let’s use a different example to illustrate the remaining topics. It is vitally important that we Clear
the symbol s when moving from one function to the next, as the myriad of intermediate assign-
ments from an earlier definition could easily pollute calculations to be made with a newer defini-
tion. For this reason it’s always a good idea to include a Clear statement when defining a function
recursively.

In[7]:= Clear s ;

s n Integer :
s 1 2 n 1

s n 3 s n 1 .05 s n 1 2 n 1

Finding individual values is simple. For instance:

In[9]:= s 20

Out[9]= 37.0838

However, there is one subtlety. Mathematica has a safety mechanism in place to prevent calculations
from falling into an infinite loop. It will not allow, by default, any recursively defined command
from calling itself more than 256 times. In practice, this means that you cannot ask for s n when n
is more than 256 units greater than the largest n with which s was previously called. For example, if
you want to know s 1000 , you can’t just ask for it and receive an answer. But you can work up to it
by evaluating s 250 , then s 500 , then s 750 , and then s 1000 :

In[10]:= s 250 , s 500 , s 750 , s 1000

Out[10]= 39.1038, 39.3646, 39.481, 39.5505

The system parameter $RecursionLimit is by default set to 256. Another means of making
more than this number of recursive calculations is to assign a new value to this parameter. For

144 Functions and Their Graphs

instance, you may simply type $RecursionLimit 1024, or whatever value you need, prior to
evaluating your sequence term.

Making a table of sequence values is accomplished exactly as it is for any other type of function:

In[11]:= Text Grid Table n, s n , n, 10 , Alignment Right, Left , Spacings 2

Out[11]=

1 2
2 5.8
3 15.718
4 34.8012
5 43.8474
6 35.4125
7 43.5353
8 35.8398
9 43.2948
10 36.1624

ListPlot may be used as discussed in Section 3.10 for plotting the values of a sequence.

In[12]:= ListPlot Table n, s n , n, 50 ,

AxesLabel "n", "sn" , AxesOrigin 0, 0 , PlotRange All

Out[12]=

10 20 30 40 50
n

10

20

30

40

sn

The option setting Joined True will connect the dots. In this case, it helps to clarify the oscillatory
nature of this sequence.

In[13]:= ListPlot Table n, s n , n, 50 , AxesLabel "n", "sn" ,

AxesOrigin 0, 0 , PlotRange All, Joined True

Out[13]=

10 20 30 40 50
n

10

20

30

40

sn

3.13 Working with Difference Equations 145

To generate several terms of a sequence defined by a first-order difference equation it is quite
efficient to use NestList with a pure function as its first argument, rather than using Piecewise

to define the sequence and Table to generate values. NestList is discussed in Section 8.7 and

pure functions are discussed in Section 8.4. Here’s an example showing how to generate the

first ten terms of the sequence in the last example with only a few keystrokes. The first
argument is a pure function that will generate a member of the sequence from the previous
term. The second argument is the initial value in the sequence. The final argument is how
many iterations you desire.

In[14]:= NestList 3 .05 2 &, 2, 9

Out[14]= 2, 5.8, 15.718, 34.8012, 43.8474, 35.4125, 43.5353, 35.8398, 43.2948, 36.1624

Exercises 3.13
1. Consider the sequence s n with s 1 100, and with the remaining terms defined by the differ-

ence equation s n 1.05 s n 1 .

a. Enter this into Mathematica.

b. Find s 20 .

c. Make a ListPlot of the first 30 terms of the sequence.

d. Assuming that the solution to this difference equation is of the form s n p bn for real

parameters p and b, use FindFit and the data used in the ListPlot above to find a solution.

4
Algebra

4.1 Factoring and Expanding Polynomials
A polynomial in the variable x is a function of the form:

 f x a0 a1 x a2 x2 an xn,

where the coefficients a0, a1, … , an are real numbers. Polynomials may be expressed in expanded or

in factored form. Without a computer algebra system, moving from one form to the other is a
tedious and often difficult process. With Mathematica, it is quite easy; the commands needed to
transform a polynomial are called Expand and Factor.

In[1]:= Clear f, x ;

f x : 12 3 x 12 x3 3 x4

In[3]:= Plot f x , x, 2, 5

Out[3]=

2 1 1 2 3 4 5

100

200

300

Here we see the graph of a polynomial that appears to have roots at x 1 and x 4 (that is, the
function appears to assume the value 0 when x 1 and x 4 . We can confirm this by factoring the
polynomial:

In[4]:= Factor f x

Out[4]= 3 4 x 1 x 1 x x2

Observe that when x assumes the value 4, the linear factor 4 x is zero, making the entire product
equal to zero. Similarly, if x 1, the linear factor 1 x is zero, and again the product is zero. Roots
of a polynomial are often easily identified by determining the linear factors in the factored form of
the polynomial.

The task of finding the roots of a given function f is a vitally important one. Suppose, for instance,

that you need to solve an equation in one variable, say 12 x3 3 x4 3 x 12. Equations such as
this arise in a wide variety of applied contexts, and their solution is often of great importance. But
solving such an equation is equivalent to finding the roots of a function—just subtract from each
side of the given equation everything on the right hand side. In this case we get

12 3 x 12 x3 3 x4 0, so the solutions of this equation are the roots of the function

f x 12 3 x 12 x3 3 x4, which we have just found (via factoring) to be 4 and 1. Solving equa-

tions and finding roots are essentially the same task.

You can expand a factored polynomial with the Expand command. This will essentially “undo” the
factoring. One way to use this command is to open the AlgebraicManipulation palette (look for
palettes in the Palettes menu). Use your mouse to highlight the factored output above, then push

the Expand button. Another way is to type:

In[5]:= Expand

Out[5]= 12 3 x 12 x3 3 x4

The expanded form gives us different information about the function. The constant term (in this
case 12) represents the y intercept of the polynomial’s graph. It’s simply the value of the function

when x 0. The leading coefficient (in this case 3, the coefficient of x4) is positive. Since the 3 x4

summand will dominate the others for large values of x, a positive leading coefficient tells us that
the function values will get large as x gets large.

It is important to note that some polynomials have real roots that will not be revealed by the Factor
command:

In[6]:= Plot 1 3 x x2, x, 5, 3

Out[6]=

4 2 2

5

10

15

In[7]:= Factor 1 3 x x2

Out[7]= 1 3 x x2

The graph clearly indicates two real roots, the x intercepts, yet there are no linear factors present in
the factored form of the polynomial. Why? The Factor command will not extract factors that
involve irrational or complex numbers unless such numbers appear as coefficients in the polynomial
being factored. Since the coefficients in the above polynomial are all integers, only factors with
integer coefficients will be extracted. To get approximations to the real roots, simply replace one of

148 Algebra

the integer coefficients in the original polynomial by its decimal equivalent by placing a decimal
point after it. In doing this you are telling Mathematica that decimals are acceptable in the output:

In[8]:= Factor 1. 3 x x2

Out[8]= 1. 0.302776 x 3.30278 x

 The real roots are approximately .302776 and 3.30278. You can easily check that this is consistent
with the graph (and of course, you should).

Lastly, note that as always Mathematica makes a distinction between decimals and fractions when
factoring:

In[9]:= Factor x2 0.25

Out[9]= 1. 0.5 x 0.5 x

In[10]:= Factor x2
1

4

Out[10]=
1

4
1 2 x 1 2 x

Exercises 4.1
1. Let f x 1 5 x 2 x3 10 x4.

a. Use a Plot to estimate the real roots of f x .

b. Use Factor to find the real roots of f x .

2. Factor the following expressions and explain the differences in the resulting factorizations.

a. 1 xn xm xn m and 1 x x3 x4

b. 1 x3 and 1 xn

c. 1 x4 and 1 x2 n

4.2 Finding Roots of Polynomials with Solve and NSolve
The Factor command together with the Plot command are a powerful set of tools for discovering
the real roots of polynomials. But there are a few shortcomings. Notice, for instance, that we can
only approximate real roots that happen to be irrational (inexpressible as a quotient of integers). In
addition, complex roots (involving the imaginary number , the square root of 1) are completely
inaccessible. For these reasons we introduce the NSolve and Solve commands.

4.2 Finding Roots of Polynomials with Solve and NSolve 149

Let’s take another look at the polynomial 1 3 x x2 from the previous section:

In[1]:= NSolve 1 3 x x2 0, x

Out[1]= x 3.30278 , x 0.302776

NSolve provides approximate numerical solutions to equations. It takes two arguments, separated as
always by a comma. The first argument is an equation. Note that the double equal sign is used for
equations; this is because the single equal sign is used to assign values to expressions, an essen-

tially different operation. You may also use the button on the BasicMathInput palette. The second

argument in the NSolve command (x in the example above) specifies the variable for which we
want to solve. It may be obvious to you that you wish to solve for x, but it’s not to the computer.
For instance, there may be occasions when the equation you are solving involves more than one
variable (we’ll see an example later in this section). Lastly, the NSolve command can take an
optional third argument which specifies the number of digits of precision that you desire:

In[2]:= NSolve 1 3 x x2 0, x, 15

Out[2]= x 3.30277563773199 , x 0.30277563773199

Now what about the output? First notice that it is in the form a list (a sequence of items separated
by commas with a set of curly brackets around the whole thing). This is because there are typically
numerous solutions to a given equation, so it is sensible to present them in a list. Now let’s focus on
the items in this list. Each is of the form x solution . This looks strange at first, but it is easy
enough to interpret. It is an example of a structure called a replacement rule, which will be explored
later in this section.

You can smarten the appearance of the list of solutions by making a Grid of the results. As discussed
in the last chapter (Section 3.5, see page 87) when Grid is applied to a such a list it will produce a
neatly formatted column:

In[3]:= NSolve 1 3 x x2 0, x, 35 Grid

Out[3]=
x 3.3027756377319946465596106337352480

x 0.3027756377319946465596106337352480

Can Mathematica produce exact solutions to polynomial equations? The answer is sometimes. It is a
mathematical fact that some polynomial equations involving powers of x that exceed 4 cannot be
solved algebraically, period. However, if an equation can be solved algebraically, the Solve com-
mand is the ticket. Here are the precise roots of the polynomial above:

In[4]:= Solve 1 3 x x2 0, x Grid

Out[4]=

x 1

2
3 13

x 1

2
3 13

150 Algebra

Remember the quadratic formula? That’s all that’s happening here. In fact, if you ever forget the
quadratic formula, you can have Mathematica derive it for you:

In[5]:= Clear a, b, c, x ;

Solve a x2 b x c 0, x Grid

Out[6]=

x b b2 4 a c

2 a

x b b2 4 a c

2 a

Note the space between a and x2, and between b and x in the last input line; they are needed to
indicate multiplication. This example also makes it clear why the second argument to the Solve
command is so important; this is an equation that could be solved for a, for b, for c, or for x. You
have to specify the variable for which you wish to solve.

Let’s look at a few more examples of these commands in action. We’ll start with the NSolve command
and later address some special considerations for using the Solve command:

In[7]:= Plot x 3 x2 x3, x, 3, 1

Out[7]=

3 2 1 1

2

2

4

In[8]:= Factor x 3 x2 x3

Out[8]= x 1 3 x x2

In[9]:= NSolve x 3 x2 x3 0, x

Out[9]= x 2.61803 , x 0.381966 , x 0.

Note that the factor x corresponds to the root x 0, but that the other roots are not revealed by the
Factor command (although they would have been found had we replaced the x by 1.*x in the
polynomial). The NSolve command reveals all roots, always.

Now let’s tweak things a little. We can shift the graph of this function up by one unit by adding 1 to
its expression, and the resulting function should have only one real root (the dip on the right of the
graph will be entirely above the x-axis):

4.2 Finding Roots of Polynomials with Solve and NSolve 151

In[10]:= Plot 1 x 3 x2 x3, x, 3, 1

Out[10]=

3 2 1 1

2

2

4

6

In[11]:= Factor 1 x 3 x2 x3

Out[11]= 1 x 3 x2 x3

This didn’t do a thing; the new function has no rational roots. What happens if we replace one of
the integer coefficients with its decimal equivalent?

In[12]:= Factor 1. x 3 x2 x3

Out[12]= 1. 2.76929 x 0.361103 0.230708 x x2

This reveals a real root near x 2.76929. But what about the quadratic factor?

In[13]:= NSolve 1 x 3 x2 x3 0, x

Out[13]= x 2.76929 , x 0.115354 0.589743 , x 0.115354 0.589743

Mathematica is reporting three roots. The first root reported is the x-intercept that we see in the plot.
The second two are complex numbers; they are each expressions of the form a b , where is the
imaginary number whose square is 1. They are purely algebraic solutions to the polynomial
equation, bearing no obvious geometric relationship to its graph. Although you may not care to
contemplate complex roots of equations, the Solve and NSolve commands will always display them
if they exist. It is a fact that every polynomial whose highest power of x is n will have exactly n
roots, some of which may be complex numbers (see the fundamental theorem of algebra in Section 4.4

on page 169). It is also true that any complex roots of a polynomial (whose coefficients are all real)
come in conjugate pairs; one will be of the form a b , the other a b , as in the output above.

How can you extract one solution from a list of solutions? For instance, you may only need a real
solution, or the context of the problem may dictate that only positive solutions be considered. You
can extract a single solution from the list of solutions using double square brackets. This was dis-
cussed in Section 3.11 on page 126. Here’s an example to illustrate:

In[14]:= sols Solve x2 225 0, x

Out[14]= x 15 , x 15

We have given the list of solutions the name sols (note the assignment operator = assigns the name
sols to the output, while the equation operator is used to produce equations). Here’s how to

152 Algebra

extract the first element from a list (type [[to get , or you may also just use two square
brackets back to back):

In[15]:= sols 1

Out[15]= x 15

and the second element:

In[16]:= sols 2

Out[16]= x 15

This method works for any list:

In[17]:= a, b, c, d, e 2

Out[17]= b

You may also use the button on the BasicMathInput palette to extract an item from a list.

To use one of the solutions provided by the NSolve or Solve command in a subsequent calculation,
you need to understand the syntax of replacement rules. The symbol /. tells Mathematica to make a
replacement. It is shorthand for a command called ReplaceAll. You first write an expression involv-
ing x, then write /. and then write a replacement rule of the form x solution. The arrow is found
on the BasicMathInput palette. You may type -> (the “minus” sign followed by the “greater than”
sign) in place of the arrow if you wish:

In[18]:= x2 . x 3

Out[18]= 9

This last input line can be read as “Evaluate the expression x2, replacing x by 3.”

Here’s how you can use replacement rules to extract solutions generated by the Solve command:

In[19]:= x . sols 1

Out[19]= 15

In[20]:= x . sols 2

Out[20]= 15

In[21]:= x2 . sols 2

Out[21]= 225

If you don’t specify which solution you want, you will get a list where x is replaced by each solution
in turn:

4.2 Finding Roots of Polynomials with Solve and NSolve 153

In[22]:= x . sols

Out[22]= 15, 15

You can do all of this in one step, generating output that is a list of solutions rather than a list of
replacement rules:

In[23]:= x . Solve x2 225 0, x

Out[23]= 15, 15

You may also use replacement rules to test whether an equation holds for a particular value of x:

In[24]:= x2 225 0 . sols 1

Out[24]= True

In[25]:= x2 225 0 . x 10

Out[25]= False

Replacement rules take some getting used to, but they are enormously convenient. Here, for
instance, we plot a polynomial, and include an Epilog to place a Point at each of the roots (this will
work when all roots are real):

In[26]:= f x : 12 4 x 15 x2 5 x3 3 x4 x5

In[27]:= Plot f x , x, 4, 3 , Epilog PointSize .02 , Point x, 0 . NSolve f x 0, x

Out[27]=
4 3 2 1 1 2 3

40

20

20

40

Now let’s look at the Solve command in greater detail. Note that you can find the exact roots
(without any decimal approximations) for any polynomial whose degree is four or less:

In[28]:= Grid Solve x4 x 2 0, x , Alignment Left

154 Algebra

Out[28]=

x 1

x 1

3
1 2 2

47 3 249

1 3
1

2
47 3 249

1 3

x 1

3

1

3
1 3 2

47 3 249

1 3
1

6
1 3 1

2
47 3 249

1 3

x 1

3

1

3
1 3 2

47 3 249

1 3
1

6
1 3 1

2
47 3 249

1 3

Wow, this is powerful stuff! But be careful when using the Solve command. If you just need an
approximate decimal solution to an equation you will be better served using NSolve. In particular, if
you want a numerical approximation to a solution generated by the Solve command, as you might
with the output generated above, it is not a good idea to apply the N command to the result. In
some cases, for instance, you may end up with complex numbers approximating real roots (try

solving x3 15 x 2 0; it has three real roots, yet applying N to the output of the Solve command
produces complex numbers—see Exercise 2). The moral of the story: Use Solve to generate exact
answers; use NSolve to generate numerical solutions to any required degree of accuracy.

Another consideration to be aware of when using the Solve command is that equations involving
polynomials of degree 5 or more (i.e., where the highest power of x is 5 or more) may not have
explicit algebraic solutions. This is a mathematical fact; there are equations of degree five with roots
that cannot be represented in radicals. Here is what the output will look like in these situations:

In[29]:= Solve x5 x 1 0, x

Out[29]= x Root 1 1 15 &, 1 , x Root 1 1 15 &, 2 , x Root 1 1 15 &, 3 ,

x Root 1 1 15 &, 4 , x Root 1 1 15 &, 5

The output here is comprised of Root objects, which are a means of cataloging the (in this case five)
roots that cannot be expressed in algebraic form using radicals. When Root objects arise, it is always
possible to apply N to the output to get numerical approximations. Alternately, NSolve can be used
to get the same result:

In[30]:= Grid NSolve x5 x 1 0, x , Alignment Left

Out[30]=

x 1.1673

x 0.181232 1.08395

x 0.181232 1.08395

x 0.764884 0.352472

x 0.764884 0.352472

After all this you may wonder why the Solve command is ever used, since NSolve seems to be more
versatile and robust. The answer is that it depends on your purposes. For numerical solutions to
specific problems, NSolve is probably all you need. But for exact algebraic solutions or the deriva-
tion of general formulae, Solve is indispensable. Here are two more examples to illustrate the power

4.2 Finding Roots of Polynomials with Solve and NSolve 155

of this command. The first provides the general formula for the roots of a cubic equation of the

form x3 b x c, where b and c may be any numbers:

In[31]:= Clear b, c, x ;

Grid Solve x3 b x c 0, x , Alignment Left

Out[32]=

x
2

3

1 3
b

9 c 3 4 b3 27 c2
1 3

9 c 3 4 b3 27 c2
1 3

21 3 32 3

x
1 3 b

22 3 31 3 9 c 3 4 b3 27 c2
1 3

1 3 9 c 3 4 b3 27 c2
1 3

2 21 3 32 3

x
1 3 b

22 3 31 3 9 c 3 4 b3 27 c2
1 3

1 3 9 c 3 4 b3 27 c2
1 3

2 21 3 32 3

The next example illustrates how Solve may be used to put a given formula into a different form. It
is a rather trite computation, but it illustrates the versatility of the Solve command:

In[33]:= Clear e, m, c ;

Solve e m c2, m

Out[34]= m
e

c2

One last comment about the Solve command is in order. As you may expect, it will distinguish
between decimals and fractions in the input, and adjust its output to match:

In[35]:= Solve x2 0.25 0, x

Out[35]= x 0.5 , x 0.5

In[36]:= Solve x2
1

4
0, x

Out[36]= x
1

2
, x

1

2

Exercises 4.2
1. In Exercise 1 of Section 4.1 we used Factor to find the real roots of f x 1 5 x 2 x3 10 x4.

a. Use Solve to find the real roots of f x and compare your solutions with the values you found
in Exercise 1 of Section 4.1.

156 Algebra

b. Use NSolve to approximate the real roots of f x and compare your solutions with the values
you found in Exercise 1 of Section 4.1.

2. Use Solve followed by N to approximate the roots of the polynomial x3 15 x 2. Then find the
roots using NSolve. Which gives the better approximation?

3. Fix two real numbers p and q, and consider the following quadratic equation in the variable z:

z2 q z 1

27
p3 0.

a. Solve this equation in terms of p and q (use Mathematica, or work by hand using the quadratic
formula).

b. Consider the expression
z2 q z

1

27
p3

z
, which has the same roots as the quadratic above. Use

replacement rules to replace z by w3, then w by 1

6
3 y 3 4 p 3 y2 , and then p by

b a2

3
 and q by 2 a3 9 a b 27 c

27
, and finally, y by x a

3
. Simplify the result and Collect the

terms as ascending powers of x. What do you get?

c. Use the information in parts a and b to develop a means of using the quadratic formula to
solve the general cubic equation x3 a x2 b x c 0. That is, take the solution to the qua-
dratic in part a and transform it into a root of the cubic x3 a x2 b x c using the transforma-
tions in part b. The idea to use these successive replacements for the purpose of solving a
cubic was perfected in the 1500s by Italian mathematicians such as Cardano and Tartaglia.

d. Compare the output to that of Solve x3 a x2 b x c 0, x 1 .

4.3 Solving Equations and Inequalities with Reduce
The Reduce command provides another means for solving equations. The input syntax is like that
used for Solve and NSolve, but the output is expressed in a very different way.

In[1]:= Reduce x2 100, x

Out[1]= x 10 x 10

The values of x are given as equations rather than as replacement rules. The double vertical bar ||
stands for the word “or.” So the output here reads, “Either x is equal to 10, or x is equal to 10.”

The reason for the different output format is that Reduce is designed to consider special conditions
on all parameters appearing in an equation, whereas Solve will ignore conditions on any parameter
whose solution is not explicitly being sought. For example, the solution below only makes sense
when the parameter a 0:

In[2]:= Solve a x b, x

Out[2]= x
b

a

4.3 Solving Equations and Inequalities with Reduce 157

Reduce takes into account the possibility that a could be zero:

In[3]:= Reduce a x b, x

Out[3]= b 0 && a 0 a 0 && x
b

a

Note that the double ampersand && stands for the word “and,” so this reads, “Either a and b are

both equal to 0, or a is nonzero and x b

a
.” The output syntax is designed to handle subtle

expressions like this.

Another point where Reduce and Solve differ arises when an equation has an infinite number of
discrete solutions, such as cos x 0. We all know that the cosine function is equal to zero when its
argument is of the form 2 k

2
, where k is any integer. Solve will not attempt to display them all.

Rather it will send a warning message suggesting that you try Reduce instead:

In[4]:= Solve Cos x 0, x

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[4]= x
2

, x
2

Okay, let’s try it:

In[5]:= Reduce Cos x 0, x

Out[5]= C 1 Integers && x
2

2 C 1 x
2

2 C 1

The output says precisely what it should, but we first need to understand the syntax. We said earlier
that the solution set is comprised of all numbers 2 k

2
, where k is an integer. Reduce uses the

generic name C[1] (rather than k) when it has to introduce a constant. It’s a rather unsightly name,
but something like this is necessary. For instance, in an output where fifty such constants are
needed, they will be called C[1], C[2], and so on; the numerical piece guarantees that the notation is
capable of handling arbitrarily many such constants. Next, we see the symbol . This is standard
mathematical notation; it reads “is an element of.” Hence the output above says: “C 1 is an element
of the set of integers, and x 2 C 1

2
.” The output concisely describes all of the roots of the

cosine function.

Reduce is also effective at expressing inequalities:

In[6]:= Reduce x2 1 0, x

Out[6]= x 1 x 1

If you were asked to describe the natural domain (among all real numbers) for the function

158 Algebra

f x x2 7 x 3

x3 4 x2 2 x 1
, you would want to know for which values of x the polynomial

x3 4 x2 2 x 1 0. Reduce can handle this:

In[7]:= Reduce x3 4 x2 2 x 1 0, x

Out[7]= x Root 1 2 1 4 12 13 &, 1

The solution is given in terms of a Root object, which at first glance may seem both intimidating
and unhelpful. A careful inspection shows that Root simply writes the polynomial in the form of a

pure function (see Section 8.4 page 403 for a discussion of these) for its first argument. The second

argument gives an index number for the root in question. Essentially, Root objects are a means of
cataloging roots of polynomials. What is important for us here is the fact that using N, we can
numerically approximate any Root object with ease:

In[8]:= Reduce x3 4 x2 2 x 1 0, x N

Out[8]= x 3.51155

If an exact answer is preferred, one can specify for cubic or quartic polynomials that an explicit
expression in radicals be given (instead of Root objects); just set the option Cubics (or Quartics in
the case of a polynomial of degree 4) to True:

In[9]:= Reduce x3 4 x2 2 x 1 0, x, Cubics True

Out[9]= x
4

3

1

3

83

2

3 321

2

1 3

1

3

1

2
83 3 321

1 3

A plot is consistent with the result that x 3.51:

In[10]:= Plot
x2 7 x 3

x3 4 x2 2 x 1

, x, 0, 5

Out[10]=

1 2 3 4 5

8

6

4

2

Note that Mathematica can also express the output generated by Reduce using standard notation
from the field of mathematical logic. In this notation, the symbol means “and” and the symbol
means “or.” If you have experience with this notation, you may find it easier to read. A constant is
also represented as c1 rather than C 1 . In all, it reads a bit more nicely. To get your output in this
form, simply apply TraditionalForm to the output of Reduce.

4.3 Solving Equations and Inequalities with Reduce 159

In[11]:= Reduce Cos x 0, x TraditionalForm

Out[11]//TraditionalForm=

c1 x 2 c1
2

x 2 c1
2

Here is a more complicated example in which there are two constants. The symbol denotes the set
of integers, as is traditional in mathematical notation.

In[12]:= Reduce Sin 1 Cos x 1, x TraditionalForm

Out[12]//TraditionalForm=

c1 c2 x 2 c2 cos 1
1

2
4 c1 2 x cos 1

1

2
4 c1 2 2 c2

While the output for Reduce reads very nicely, it is not obvious how one could work programmati-
cally with it to perform some follow-up work. It is certainly possible to copy and paste portions of
the output, but there are other ways. First note that just as you can extract parts from a List, you can
extract parts from a logical expression like the one above:

In[13]:= Reduce Sin 1 Cos x 1, x 1

Out[13]= C 1 C 2 Integers

In[14]:= ans Reduce Sin 1 Cos x 1, x 2

Out[14]= x ArcCos
1

2
2 4 C 1 2 C 2 x ArcCos

1

2
2 4 C 1 2 C 2

One can take this second part (or any other such logical combination of equations) and use ToRules
to turn it into a list of replacement rules, suitable as input to other commands:

In[15]:= ToRules ans

Out[15]= x ArcCos
1

2
2 4 C 1 2 C 2 ,

x ArcCos
1

2
2 4 C 1 2 C 2

Finally, one can replace the constants by numerical values, and hence obtain a usable list of
replacement rules. Flatten is applied to this list to remove extra curly brackets.

160 Algebra

In[16]:= rules Flatten Table ToRules ans . C 1 0, C 2 k , k, 1, 1 , 1

Out[16]= x 2 ArcCos
1

2
2 , x 2 ArcCos

1

2
2 ,

x ArcCos
1

2
2 , x ArcCos

1

2
2 ,

x 2 ArcCos
1

2
2 , x 2 ArcCos

1

2
2

Here, for example, is a plot of the function f x sin 1 cos x with the solutions to the equation

f x 1 shown as large points via the Epilog:

In[17]:= Plot Sin 1 Cos x , x, 10, 10 , Epilog PointSize .02 , Point x, 1 . rules

Out[17]=

10 5 5 10

0.2

0.4

0.6

0.8

1.0

As with Solve and NSolve, it may be the case that complex numbers are generated by Reduce.

In[18]:= Reduce x3 x 2 0, x, Cubics True

Out[18]= x
9 78

1 3

32 3

1

3 9 78
1 3

x
1 3 9 78

1 3

2 32 3

1 3

2 3 9 78
1 3

x
1 3 9 78

1 3

2 32 3

1 3

2 3 9 78
1 3

In the next section we discuss a means for dispensing with non-real output.

4.3 Solving Equations and Inequalities with Reduce 161

Exercises 4.3

1. Find the largest possible domain in the real numbers for the function f x x3 5 x2 4 x 5

x2 2 x 3
. Make a

plot of f over a valid domain in the positive real numbers, along with the function

x4 8 x3 20 x2 34 x 58 . What do you notice?

2. Reduce can be used to solve systems of equations. A system of equations is a collection of several
equations, each in several variables. A solution to such a system is a set of values for the variables
for which all the equations are satisfied.

a. A system of equations can be entered in several ways. One can either type a list of equations,
or an equation of lists like the input below. Type and enter this input.

Reduce Cos y Cos x Cos y , x Cos x Cos y Sin y 0, 0 , x, y , Reals

b. The output is a bit intimidating at first. This is unavoidable for the simple reason that the
solution set happens to be rather complex. If we regard a particular solution x0, y0 as a point

in the x y plane, then this output is comprised of both discrete points and entire curves in the

plane. Read the output carefully and identify the discrete points. ListPlot them in the plane.

c. Use ContourPlot to sketch the solutions of both equations.

3. We can also use Reduce to solve a single equation with more than one variable. Use Reduce to

find the set of points in the plane that are solutions of 8 x y2

1 y2 2
4 x

1 y2 and then use ContourPlot to

graph the set of solutions.

4.4 Understanding Complex Output
You’ve noticed by now that complex numbers sometimes appear in Mathematica’s output. They can

pop up in a variety of places, even when you don’t expect them. In Section 3.2 on page 57, for

instance, we saw that Mathematica regards the cube root of a negative number as a complex number.

In[1]:= 8 1 3 N

Out[1]= 1. 1.73205

In high school and early college courses it is more common to work with the real-valued cube root
function, which would return the value 2 (instead of the complex number above) as the cube root
of 8. Here are a few other instances where complex numbers can pop up in the context of a real
computation:

In[2]:= Log 2

Out[2]= Log 2

162 Algebra

In[3]:= ArcSin 2.

Out[3]= 1.5708 1.31696

In[4]:= Solve x2 4, x

Out[4]= x 2 , x 2

In[5]:= Reduce 1 x 3 x2 x3 0, x, Cubics True

Out[5]= x 1
9 57

1 3

32 3

2

3 9 57
1 3

x 1
1 3 9 57

1 3

2 32 3

1 3

3 9 57
1 3

x 1
1 3 9 57

1 3

2 32 3

1 3

3 9 57
1 3

Now this sort of output ought to make you hungry to learn about the complex numbers. If you are
even a bit curious, ask your instructor about them. And even if you are not particularly interested in
such matters be mindful that you are now using a grown-up software package, so you are going to
have to deal with them from time to time. Let’s deal with the inputs above individually. We’ll
discuss the cube root function at length later in this section. The next two inputs simply extend the
domains of the logarithm and inverse sine functions beyond what we ordinarily allow. Doing so
results in complex output. In a precalculus or calculus course, the likelihood of encountering com-
plex numbers in this way is small. The next outputs, however, will be more difficult to avoid. We
have already seen instances in which Solve and NSolve will find complex solutions to equations,
even when every quantity appearing in those equations is real. Whereas Solve and NSolve are
designed to always report complex solutions when they exist, the command Reduce allows one to
specify that only real values are to be considered. Simply set the optional third argument of Reduce
to Reals. If there are no real solutions, it will return False.

In[6]:= Reduce x 2, x, Reals

Out[6]= False

In[7]:= Reduce Sin x 2, x, Reals

Out[7]= False

4.4 Understanding Complex Output 163

In[8]:= Reduce x2 4, x, Reals

Out[8]= False

In[9]:= Reduce x3 8, x, Reals

Out[9]= x 2

In[10]:= Reduce 1 x 3 x2 x3 0, x, Reals, Cubics True

Out[10]= x 1
9 57

1 3

32 3

2

3 9 57
1 3

The lesson here is that if you are interested only in real solutions to equations, using Reduce with
Reals as its third argument is a good strategy.

Another subtle issue that can arise from time to time is illustrated below:

In[11]:= Reduce x3 15 x 2 0, x, Reals, Cubics True

Out[11]= x
5

1 2 31
1 3

1 2 31
1 3

x
5 1 3

2 1 2 31
1 3

1

2
1 3 1 2 31

1 3

x
5 1 3

2 1 2 31
1 3

1

2
1 3 1 2 31

1 3

Here we have asked only for real roots, and yet Reduce has returned three expressions involving .
The output is correct; each of these numbers is indeed a real number (one could verify this with a
plot of this cubic—its graph crosses the x-axis three times). But just as one can write the real number

1 as 2, it is possible to express other real numbers in a manner that makes use of the complex
number . That’s what has happened here. In some cases it is possible to algebraically manipulate
such numbers so that all the ’s go away. The command that can accomplish this is called Complex
Expand. It will attempt to break a knotty complex number into its real and imaginary components.
In this case, the imaginary part of each of the numbers above should be exactly zero. One could
apply simply append //ComplexExpand to the previous input, but we will apply it just to the first
root reported above to make the output easier to read:

164 Algebra

In[12]:= ComplexExpand
5

1 2 31
1 3

1 2 31
1 3

Out[12]= 5 Cos
1

3
ArcTan 2 31 5 Cos

1

3
ArcTan 2 31

5 Sin
1

3
ArcTan 2 31 5 Sin

1

3
ArcTan 2 31

Notice the structure of the output; it is of the form a b. If this is indeed a real number, it had
better be the case that b 0. Now your first impression upon seeing intricate output like this may be
to both marvel at what Mathematica can do, and simultaneously to glaze over and fail to examine
the output critically. Pause for a moment to take a good look at it, and focus your attention on the

imaginary component b. You will find that b is indeed zero. It is of the form 5 sin c 5 sin c ,

and since sin c sin c , the entire quantity is zero. In the next section the Simplify command
will be discussed. It can be invoked to carry out this simplification as well:

In[13]:= Simplify 5 Sin
1

3
ArcTan 2 31 5 Sin

1

3
ArcTan 2 31

Out[13]= 0

Note also that the opposite issue can arise—certain non-real complex numbers may be expressed
using only real numbers. At first glance they don’t betray their complexity:

In[14]:= Reduce x3 1, x

Out[14]= x 1 x 1 1 3 x 1 2 3

Again, ComplexExpand is the ticket for putting a complex number into standard form:

In[15]:= ComplexExpand

Out[15]= x 1 x
1

2

3

2
x

1

2

3

2

 Real-valued Versus Complex-valued Rational Powers
We have already noted that there are different definitions of the cube root function. In precalculus
and calculus courses, where the complex number system is not utilized, one defines the cube root of

any real number to be its real cube root. So, for instance, 8 1 3 2. Mathematica uses a different

definition, which we will discuss in this section. Under this definition 8 1 3 1 3 .

4.4 Understanding Complex Output 165

In[16]:= ComplexExpand 8 1 3

Out[16]= 1 3

The reality is that when complex numbers are taken into account, there are three numbers whose
cube is 8:

In[17]:= Reduce x3 8, x

Out[17]= x 2 x 1 3 x 1 3

So in defining the cube root, one of these three must be chosen. Mathematica chooses the last of
these. Note that the underlying command used to raise a number to a power is called Power:

In[18]:= xp FullForm

Out[18]//FullForm=

Power x, p

It is the definition of this basic arithmetic operation that is at issue. When a negative number is
raised to a rational power, and the denominator of that rational power is an odd number (e.g., 3, for
the rational power 1 3), you might like to have a power expression evaluate to a real number, as
would be expected in a a precalculus or calculus course. In Section 3.2 on page 58 an alternate power
command called realPower was defined that can be used to emulate the real-valued power func-
tions commonly encountered in such a course.

We now discuss a topic that falls outside of the standard precalculus and calculus curricula: why on

earth does Mathematica report that 8 1 3 1 3 when it would be so much simpler to say that

the cube root of 8 is just 2? What possible reason could there be for such insanity? This will take
a bit of careful thought, and a page or two of explanation, so make yourself comfortable before
reading on. We’ll see that there is indeed a compelling reason.

Let’s suppose, for the sake of argument, that the cube root of 8 is 2. What consequences follow?
Well, raising any negative real number to the power 1 3 would, in a similar manner, produce a
negative real number. In fact, raising any negative real number to the power 1 n, where n is an odd
positive integer, would produce a negative real number. Now suppose we raise this result to the mth
power, where m is a positive integer; that is, our original negative number is raised to the rational
power m n. If m is odd the result is another negative number, while if m is even the result is a posi-
tive number (since squaring a negative number results in a positive number). To summarize: raising
a negative number to a positive rational power with odd denominator produces a real number. This
number is negative or positive according to the parity (odd or even) of the numerator. So far so
good, but there’s a problem.

Just as the exponential function g x 2x is continuous, in a just world we would also expect the

function f x 2 x to be continuous. What happens when x is a rational number with odd denomi-

nator? Are we to accept a state of affairs in which 2 311 99 is a negative real number, but 2 312 99 is

166 Algebra

a positive real number? The two exponents are very close to each other, yet they are producing

values that are not close to each other (you can check this). Furthermore, noting that 311

99

312

99
,

how would we define 2 ? It simply cannot be done when we operate under this convention that
a negative number raised to a rational power with odd denominator is real.

And of course, under such a convention it does not even make sense to raise a negative number to a
rational power with even denominator. For instance, using the power 1 2, the square root of a
negative number is … what? It is certainly not a real number. That’s a strong indication that one
may need to consult the complex number system.

The complex numbers are in fact rather simple. They include the imaginary number , which has

the property that 2 1. There are many other complex numbers whose squares are real. For

instance, 2 2 22 2 4. Using multiples of like this, one can find square roots of any negative
real number. In general, a complex number has the form a b , where a and b are real. a is referred
to as the real part of this complex number, and b is its imaginary part. At this point, let’s note that
every complex number a b can be represented as an ordered pair a, b , and so can be geometri-
cally identified with a point in the plane. The complex plane refers to this model of the complex
numbers. The real number 1 has coordinates 1, 0 , and the complex number has coordinates 0, 1 .

The correct definition of the powers of a negative real number necessarily entails the complex
number system. Just as every positive real number has two square roots (one positive and one
negative), every negative number also has two square roots. But neither of them are real numbers,
both are complex. And just as we choose, for any positive real number a, one of its two square roots

to be a1 2 (we define a1 2 to be the positive square root of a), we must also choose one of the two

complex square roots of a to be a 1 2. Which is the square root of a? We choose the complex
root whose argument is least, the so-called principal square root. That is, if one were to draw rays
from the origin, one to each of the square roots of a in the complex plane, and for each measure
the angle counterclockwise from the positive real axis to each ray (this angle is the argument of the
complex number), the ray with the smallest angle corresponds to the principal root. Under this

convention, for instance, 1 1 2 1 .

Higher roots are even more subtle. In the complex number system, every nonzero number has three
cube roots. One is real, and the other two are complex. The correct definition of the cube root of any

real number a (that is, the definition of a1 3) is the principal cube root, the one whose argument is

smallest. When a 0, this is the real cube root that we know and love. For instance, 81 3 2. The
argument of 2 is zero radians after all, so it must be the principal cube root. But when a 0, the real
cube root is negative, and so its argument is radians. It so happens that one of the complex roots

has argument 3. This is the principal cube root of a. This is the one that we designate to be a1 3.

So, in particular, working in the complex numbers as Mathematica does, 8 1 3 is not 2. Here is a
graphic showing all three roots of 8 in the complex plane. Each is shown at the end of a ray
projecting from the origin. The root in the first quadrant has the smallest argument. It is the princi-

pal cube root of 8, so it is 8 1 3.

4.4 Understanding Complex Output 167

In[19]:= Graphics

Thick, Blue, Line 0, 0 , Re x , Im x . NSolve x3 8, x ,

Red, PointSize .03 , Point Re x , Im x . NSolve x3 8, x ,

Axes True, AxesLabel "real", "imaginary"

Out[19]=

2.0 1.5 1.0 0.5 0.5 1.0
real

1.5

1.0

0.5

0.5

1.0

1.5

imaginary

This notion of using the principal nth root as the proper definition of a1 n has long been accepted by
the mathematical community. The most immediate benefit is the continuity of exponential func-

tions, such as f x 2 x. Note that for values of x that are close to each other, the values of this

function, while complex, are also close to each other.

In[20]:= N 2 311 99, 2 312 99 Column

Out[20]=
7.96732 3.79246

7.89809 4.07175

This means that it is possible to define powers with irrational exponents to be limits of powers with
rational exponents. That is, for each irrational power (such as), there is one and only one value of

2 that is consistent with nearby rational powers. For instance:

In[21]:= N 2 311 99, 2 , 2 312 99 Column

Out[21]=

7.96732 3.79246

7.96618 3.7974

7.89809 4.07175

It is easy, in fact, to witness the continuity (and the beauty) of the complex-valued function

f x 2 x on the domain 4 x 0, by making a table of values for this function, and then

produce a graphic of these numbers in the complex plane, joining adjacent values with line
segments:

168 Algebra

In[22]:= pwrs Table 2 x, x, 4, 0, .01 ;

Graphics Line Table Re z , Im z , z, pwrs ,

Axes True, AxesLabel "real", "imaginary"

Out[23]= 0.4 0.2 0.2 0.4 0.6 0.8 1.0
real

0.6

0.4

0.2

0.2

imaginary

Note that the function assumes real values at precisely those points where this graph crosses the x-
axis. You would be correct to speculate that it does so on this domain when the input variable
assumes the integer values 4 through 0. Can you calculate the values of this function at those
points?

One last word regarding the complex numbers is in order. If you’ve made it this far, you deserve to
know one final fact. This fact is so important that it is commonly known as the fundamental theorem
of algebra. We won’t prove it, but we will tell you what it says. It states simply that every polynomial
of degree n (with real or complex coefficients) can be factored completely over the complex numbers
into n linear factors. It follows that for any positive integer n, and any real number r, the polynomial
xn r has n linear factors. It so happens that the factors will all be distinct in this case. In other
words, every real number r has precisely n nth roots. This is why all real numbers have three cube

roots. Letting r 8, we reconstruct the polynomial x3 r x3 8 from the three cube roots of 8:

In[24]:= x 2 x 1 3 x 1 3 Expand

Out[24]= 8 x3

The fundamental theorem also explains why Solve and NSolve will always report n roots for a
polynomial of degree n. Here is an example in which we display the eight roots of an eighth-degree
polynomial as eight points in the complex plane (of which two happen to be real):

4.4 Understanding Complex Output 169

In[25]:= Graphics Directive Red, PointSize .02 , Point Re x , Im x .

NSolve x8 9 x5 x 1 0, x , Axes True, PlotRange 2

Out[25]=
2 1 1 2

2

1

1

2

Exercises 4.4
1. Use the following Manipulate to guess the value of c for which the polynomial c 6 x 8 x3 has

precisely two real roots. Test your guess. Note that by default, TraditionalForm is applied to the
PlotLabel in any Plot.

In[26]:= Manipulate Plot c 6 x 8 x3, x, 1.1, 1.1 ,

PlotLabel Reduce c 6 x 8 x3 0, x, Reals , PlotRange 4, 8 , c, 0., 4

Out[26]=

c

1.0 0.5 0.5 1.0

4

2

2

4

6

8
x 0.866025 x 0 x 0.866025

2. Use the command realPower defined in Section 3.2 on page 58 to produce the graph of the real-

valued function f x x2 5 on the domain 32 x 32 shown below. What is f 32 ?

170 Algebra

30 20 10 10 20 30

1

2

3

4

3. Use Reduce to find the roots of f x x4 x,

a. with the option setting Quartics True.

b. with the optional third argument Reals.

c. Explain how it can be that there are no ’s in the expressions representing the non-real roots.

d. Re-do this problem with the polynomial f x x4 x 1.

4. Consider the following input and output, and use the fundamental theorem of algebra to formu-
late a plausible explanation for the apparent redundancy:

In[27]:= Solve x 2 3 0, x

Out[27]= x 2 , x 2 , x 2

5. Make a Manipulate that displays the roots of a fifth degree polynomial

x5 ax4 bx3 cx2 dx e in the complex plane. Make sliders for each of a, b, c, d, and e, which
assume values from 2 to 2. Set the PlotRange to 4.

6. Make a Manipulate that displays the roots of the nth degree polynomial xn 1 in the complex
plane, where there is a SetterBar displaying values of n from 1 to 10. These will be graphical
depictions of all the nth roots of 1.

7. Make a Manipulate that displays a Line joining a Table of values for the function k x on the
domain 4 x 0 in the complex plane. Make a slider for k which assumes values from 0.1 to 4.
Set the PlotRange to 2.

4.5 Working with Rational Functions

Solving Equations
The Solve and NSolve commands are built for polynomials, but they will also work for equations
involving rational functions (quotients of polynomials). Essentially, the roots of the numerator that
are not also roots of the denominator will be reported:

In[1]:= Solve
x 3 x 1

x 1
0, x

Out[1]= x 3

4.5 Working with Rational Functions 171

Thus all the remarks in Section 4.2 apply to equations involving rational functions as well to those

involving only polynomials.

Simplifying Rational Expressions
When you are working with a rational function, you may want to use the Simplify command to,
well … simplify things:

In[2]:= Simplify
1 x5

1 x

Out[2]= 1 x x2 x3 x4

The Simplify command, like Expand and Factor, takes an expression as input and returns an
equivalent expression as output. Simplify attempts a number of transformations and returns what it
believes is the most simple form. In the case of rational functions, Simplify will cancel the common
factors appearing in the numerator and denominator. In the example above, the linear expression
1 x can be factored out of the numerator. You can easily check the result:

In[3]:= Expand x 1 1 x x2 x3 x4

Out[3]= 1 x5

You can also guide Mathematica through such a simplification step by step. The best way to do this
is by opening the AlgebraicManipulation palette (in the Palettes menu). Use your mouse to highlight a
certain portion of an algebraic expression, and then feed that portion of the expression to one of the
algebraic manipulation commands. This essentially allows you to drive Mathematica step by step
through an algebraic manipulation. Here, for instance, is a rational function:

x4 5 x3 8 x2 7 x 3

3 x4 14 x3 18 x2 10 x 3

Rather than simplify it in one go with the Simplify command, let’s drive through it step by step.

First, use the mouse to highlight the numerator, then push the Factor button on the

AlgebraicManipulation palette. The cell will then look like this:

x 1 x 3 x2 x 1

3 x4 14 x3 18 x2 10 x 3

Now repeat the process to factor the denominator:

x 1 x 3 x2 x 1

x 1 x 3 3 x2 2 x 1

There is clearly some cancellation that can be done. Highlight the entire expression and push the

Cancel button:

172 Algebra

x2 x 1

3 x2 2 x 1

The results are the same as if you had simplified the original expression using the Simplify com-
mand. The difference is that you know exactly how the simplification took place:

In[4]:= Simplify
3 7 x 8 x2 5 x3 x4

3 10 x 18 x2 14 x3 3 x4

Out[4]=
1 x x2

1 2 x 3 x2

This sort of interactive manipulation puts you in the driver’s seat. You will sharpen your algebraic
skills without falling into the abyss of tedium and silly mistakes (such as dropped minus signs) that
can occur when performing algebraic manipulations by hand.

A rational function and the function that results from its simplification are identical, except that the
original rational function will not be defined at those values of x that are roots of both the numera-
tor and denominator. In the example above, the original function is not defined at x 1 and
x 3, while the simplified function is defined at those points. For all other values of x the two
functions are identical.

Formatting Output Using TraditionalForm
By default, Mathematica will always write a polynomial with ascending powers of x as you read it
from left to right. It can be an annoyance reading 3 x rather than x 3 , but the former adheres
to the ascending powers of x convention, and so that’s what you will get.

In[5]:= x 3

Out[5]= 3 x

However, any expression produced by Mathematica can be displayed in several ways. Append //Tradi
tionalForm to any input, and it will be displayed using traditional notation (which, for a
polynomial, means descending powers of x):

In[6]:= x 3 TraditionalForm

Out[6]//TraditionalForm=

x 3

You can also convert an output into TraditionalForm by selecting its cell bracket with your mouse,
and then choosing Cell Convert To TraditionalForm in the menus.

4.5 Working with Rational Functions 173

Vertical Asymptotes
Roots of the denominator that are not also roots of the numerator will yield vertical asymptotes in
the graph of a rational function. Here, for example, is a function with vertical asymptotes at x 3
and x 3:

In[7]:= k x :
x4 3 x3 x2 5 x 4

x2 9

In[8]:= Plot k x , x, 10, 10 , Exclusions x2 9 0 ,

ExclusionsStyle Directive Gray, Dashed

Out[8]=

10 5 5 10

100

50

50

100

150

200

Long Division of Polynomials
Another manipulation that is useful when working with rational functions is long division. It can be

done by hand, and you may have discovered that it is a tedious process. Every rational function f x

h x

can be expressed in the form q x r x

h x
, where q x and r x are polynomials, and r x has degree less

than h x . The term q x is called the quotient, and the numerator r x is called the remainder. When x

gets sufficiently large, r x

h x
 assumes values close to zero (since r x has lesser degree than h x), so the

rational function f x

h x
 and the polynomial q x are asymptotic to each other as x gets large. Here’s

how to get Mathematica to calculate the quotient and remainder:

In[9]:= k x :
x4 3 x3 x2 5 x 4

x2 9

The commands Numerator and Denominator can be used to isolate the numerator and denomina-
tor of any fraction. You can then use these to find the quotient q x and the remainder r x with the

commands PolynomialQuotient and PolynomialRemainder:

In[10]:= num Numerator k x

Out[10]= 4 5 x x2 3 x3 x4

In[11]:= den Denominator k x

Out[11]= 9 x2

174 Algebra

In[12]:= q x PolynomialQuotient num, den, x

Out[12]= 8 3 x x2

In[13]:= r x PolynomialRemainder num, den, x

Out[13]= 68 32 x

The commands PolynomialQuotient and PolynomialRemainder each take three arguments. The
first and second are polynomials representing the numerator and denominator of a rational func-
tion, respectively. The third is the name of the independent variable. In this example we have
computed that:

x4 3 x3 x2 5 x 4

x2 9
8 3 x x2 68 32 x

x2 9

You can check that Mathematica has done things correctly. The following computation accomplishes
this. Can you see why?

In[14]:= Expand 8 3 x x2 x2 9 68 32 x

Out[14]= 4 5 x x2 3 x3 x4

Here is a plot of k together with the quotient polynomial, which in this case is a parabola. We see
that the graph of k is asymptotic to the parabola as x approaches :

In[15]:= Plot k x , q x , x, 15, 15 , Exclusions x2 9 0 ,

ExclusionsStyle Directive Gray, Dashed

Out[15]=

15 10 5 5 10 15

200

100

100

200

300

Partial Fractions
One final manipulation that is sometimes useful when working with rational functions is known as
partial fraction decomposition. It is a fact that every rational function can be expressed as a sum of
simpler rational functions, each of which has a denominator whose degree is minimal. The
Mathematica command that can accomplish this decomposition is called Apart:

4.5 Working with Rational Functions 175

In[16]:= Apart
x4 3 x3 x2 5 x 4

x2 9

Out[16]= 8
82

3 3 x
3 x x2

14

3 3 x

The command that puts sums of rational expressions over a common denominator (i.e., the com-
mand that does what Apart undoes) is called Together. Both can be found in the AlgebraicManipula–
tion palette. If you take your mouse and highlight the output cell above, and then push the

Together button, an input cell will be created that will look like this:

4 5 x x2 3 x3 x4

3 x 3 x

Exercises 4.5

1. The rational function 6 7 x x2 x3 x4

2 x x2 has no vertical asymptotes in its graph. Explain why.

2. The rational function 6 7 x x2 x3 x4

4 x x2 has two vertical asymptotes in its graph. Identify them, and

explain why. Plot this function along with the quadratic function to which it is asymptotic for
large values of x. Use 10 x 10 as your domain, and used Dashed lines for the vertical
asymptotes.

4.6 Working with Other Expressions
The commands found in the AlgebraicManipulation palette can be applied to all sorts of expressions
other than polynomials and rational functions. Like Expand and Factor, the commands in this
palette are given an algebraic expression as input, and return an equivalent algebraic expression as
output. In this section we give examples how some of these commands can be used.

Simplifying Things
The Simplify command can handle all types of expressions as input. Any time you have a messy
expression, it won’t hurt to attempt a simplification. The worst that can happen is nothing; in such
cases the output will simply match the input:

In[1]:= Simplify 1 Tan x 4

Out[1]= Cos 2 x Sec x 4

176 Algebra

In[2]:= Simplify 1 Tan x 4

Out[2]= 1 Tan x 4

The Simplify command can also accept a second argument specifying the domain of any variable in
the expression to be simplified. For instance, consider the following example:

In[3]:= Simplify Log x

Out[3]= Log x

This seems odd; you may recall having been taught that the natural logarithm function and the
exponential function are inverses of one another—their composition should simply yield x. The
problem is that this is not necessarily true if x is a complex number, and Mathematica does not
preclude this possibility. To restrict the domain of x to the set of real numbers, do this:

In[4]:= Simplify Log x , x Reals

Out[4]= x

The character can be read “is an element of. ” It can be found on the BasicMathInput palette (in
the same row with and). This paradigm in which Simplify is called with a second argument
restricting the domain of one or more parameters is extremely useful. The second argument may
also be an inequality, such as x 0. In this case it is implied that x is a positive real number. That is,
including a variable in an inequality means it is not necessary to state that the variable is real.

In[5]:= Simplify x2

Out[5]= x2

In[6]:= Simplify x2 , x 0

Out[6]= x

In[7]:= Simplify x2 , x 0

Out[7]= x

It is also possible to restrict variables to the set of integers. To learn about other choices for this
second argument, look up Assumptions in the Documentation Center.

Here is another example of how the Simplify command might be used. Note carefully the distinct
uses of := (for defining functions), (for writing equations), and = (for assigning names):

In[8]:= Clear f, x ;

f x : x3 2 x 9

4.6 Working with Other Expressions 177

In[10]:= Solve f x 0, x

Out[10]= x 2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3
,

x 1 3
2

3 81 6465

1 3
1 3 1

2
81 6465

1 3

2 32 3
,

x 1 3
2

3 81 6465

1 3
1 3 1

2
81 6465

1 3

2 32 3

In[11]:= realroot x . 1

Out[11]= 2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3

When you plug a root of a function into the function, you had better get zero:

In[12]:= f realroot

Out[12]= 9 2 2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3

2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3

3

Really?

In[13]:= Simplify

Out[13]= 0

That’s better.

178 Algebra

The command FullSimplify works like Simplify, but it applies more transformations to the expres-
sion (and consequently it may take longer to execute). In certain instances, it will be able to reduce
an expression that Simplify cannot.

Manipulating Trigonometric Expressions
There is a suite of commands specifically designed to deal with trigonometric expressions. They are
TrigExpand, TrigFactor, TrigReduce, ExpToTrig, and TrigToExp. They really shine when you’re
working with trigonometric functions, and they’re great for helping you remember your
trigonometric identities:

In[14]:= Clear , , , x ;

TrigExpand Cos

Out[15]= Cos Cos Sin Sin

Of course we all know that identity. But what about this one?

In[16]:= TrigExpand Cos

Out[16]= Cos Cos Cos Cos Sin Sin Cos Sin Sin Cos Sin Sin

Here are examples of some other commands:

In[17]:= TrigFactor Cos Cos

Out[17]= 2 Cos
2 2

Cos
2 2

In[18]:= TrigReduce 1 Tan x 4

Out[18]=
1

4
3 Sec x 4 Cos 4 x Sec x 4

TrigExpand and TrigFactor are analogous to Expand and Factor, but they are designed to deal
with trigonometric expressions. TrigReduce will rewrite products and powers of trigonometric
functions in terms of trigonometric functions with more complicated arguments.

Any of the commands on the AlgebraicManipulation palette can be used in an interactive manner as
explained in the previous section, where a method for individually factoring the numerator and
denominator in a rational expression was discussed. Here’s another example:

Cos x 2 2 Cos 2 x 3

Highlight the first summand, cos2 x , with your mouse and push the TrigReduce button on the

AlgebraicManipulation palette. The cell will then look like this:

4.6 Working with Other Expressions 179

1

2
1 Cos 2 x 2 Cos 2 x 3

There is now clearly some combining of like terms that can occur. Do it in your head, or else high-

light the entire expression and push the Simplify button. The cell will then look like this:

1

2
7 5 Cos 2 x

You can keep manipulating an expression as much as you like. For instance, if you highlight the

entire expression and push the TrigExpand button you will have this:

1

2
7 5 Cos x 2 5 Sin x 2

The point is that you have a great degree of control in manipulating expressions. You might con-
tinue to operate on an expression until it reaches a form that reveals some interesting property that
was less than obvious before the expression was put in that form.

Here is an example where we will demonstrate why cos 9 is a root of the polynomial

f x 8 x3 6 x 1. First we state the (rarely seen) triple angle formula for the cosine function:

In[19]:= Clear a ;

Cos 3 a TrigExpand

Out[20]= Cos a 3 3 Cos a Sin a 2

Next, use a replacement rule to manually replace sin2 a with 1 cos2 a :

In[21]:= Cos 3 a TrigExpand . Sin a 2 1 Cos a 2

Out[21]= Cos a 3 3 Cos a 1 Cos a 2

Finally, expand this out and combine like terms:

In[22]:= Cos 3 a TrigExpand . Sin a 2 1 Cos a 2 Expand

Out[22]= 3 Cos a 4 Cos a 3

If a
9
, then cos 3 a cos

3

1

2
. Hence we have 4 cos a 3 3 cos a 1

2
. Multiply each side by 2,

and we see that indeed, cos
9

 is a root of the cubic 8 x3 6 x 1. Reduce confirms this:

In[23]:= Reduce 8 x3 6 x 1 0, x, Cubics True 2 ComplexExpand

Out[23]= x Cos
9

180 Algebra

As useful as these commands are, it is important to realize that they are not a panacea. Most alge-
braic identities are at best difficult to uncover through blind application of the suite of commands
provided in the AlgebraicManipulation palette. Rather, as in the previous example, they are best used
when guided by a clear purpose. Here is another example. It is true that

4
arctan 1

2
arctan 1

3

yet no amount of manipulation of the right hand side using only the tools in the
AlgebraicManipulation palette will produce the value

4
. How can these tools be used to explore, or to

uncover, such an identity? The answer is subtle. First, recognize that they are only tools. They must
be used carefully, with due deliberation and forethought. Owning a hammer doesn’t make one a
carpenter. That’s the bad news. The process is much like traditional pencil-and-paper mathematics
in that you pursue an idea and see if it bears fruit. The good news is that the pursuit is made less
tedious with Mathematica working for you.

Let’s explore the identity above. First, for sanity’s sake, let’s see if it can possibly be true:

In[24]:= ArcTan
1

2
ArcTan

1

3
N

Out[24]= 0.785398

In[25]:=
4

N

Out[25]= 0.785398

Okay, it’s believable. Now can we derive a general formula, for which the above identity is but a
special case? As a first attempt, we might try commands such as TrigExpand, TrigFactor, and
TrigReduce on the expression ArcTan a ArcTan b . We find that none has any effect. For
instance:

In[26]:= Clear a, b ;

ArcTan a ArcTan b TrigExpand

Out[27]= ArcTan a ArcTan b

Now we are at a critical juncture in our investigation. We have made no progress, except to learn
that Mathematica does not appear to have the magic command that will provide us with the type of
formula we seek. It is at this point that we need to stop and think. What else might we try? Well,
what if we took the tangent of the expression ArcTan a ArcTan b , then tried to expand that?
Believe it or not, this gets us somewhere:

4.6 Working with Other Expressions 181

In[28]:= Clear a, b ;

Tan ArcTan a ArcTan b TrigExpand

Out[29]=
a

1 a2 1 b2 1

1 a2 1 b2

a b

1 a2 1 b2

b

1 a2 1 b2 1

1 a2 1 b2

a b

1 a2 1 b2

In[30]:= Simplify

Out[30]=
a b

1 a b

This tells us that

a b

1 a b
tan arctan a arctan b

or, taking the inverse tangent of each side, that

arctan a b

1 a b
arctan a arctan b

It is a simple matter to see that when a 1

2
 and b 1

3
, the left-hand side is equal to arctan 1 , which

is
4
, and so this reduces to the identity mentioned previously. This formula is a generalization of

that identity. The final task is determining for which values of a and b the formula is valid. We leave
this task to the reader.

Exercises 4.6
1. Use TrigExpand to examine patterns in the nth angle formulas for the sine function, i.e., identi-

ties for sin n x .

2. Use the AlgebraicManipulation palette to derive the trigonometric identity
sin a t sin 2 a t

2 sin t
cos 1 a t .

3. Derive a quadruple angle formula for the cosine function, and use it to show that cos 12 is a

root of 16 x4 16 x2 1.

182 Algebra

4.7 Solving General Equations
The Solve and NSolve commands are built for polynomials. They will also work for equations
involving rational functions, and they will sometimes work with equations involving other types of
functions. Reduce is even more inclusive, and can sometimes be used to describe solutions to
equations when Solve fails. These are the commands to start with when you need to solve an
equation. However, there are still a few things you can do if you don’t get the answer you desire.

Often Solve and NSolve can be effectively used to solve equations involving powers that are rational

numbers. For instance, since raising a quantity to the power 1

2
 is the same as taking its square root,

equations involving square roots fall into this category:

In[1]:= Solve 1 x x2 2, x Grid

Out[1]=

x 1

2
1 13

x 1

2
1 13

In[2]:= Solve x
1

3 4 x, x Grid

Out[2]=

x 0

x 1

8

Solve and NSolve may be able to find solutions to simple equations with the variable appearing
inside a logarithm or as an exponent:

In[3]:= x . Solve 400 Log 10, x 2, x

Out[3]= 101 200

In[4]:= x . Solve 200 1 r x 300, x

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[4]=

Log 3

2

Log 1 r

Here we are warned that although one solution was found, there may be more. In fact, for this
example no other real solution exists, but we have no way of knowing that on the basis of this
output. Fortunately Reduce is effective here, working either over the complex numbers (which it
does by default), or over the reals where we see that the solution above is indeed unique:

4.7 Solving General Equations 183

In[5]:= Reduce 200 1 r x 300, x

Out[5]= C 1 Integers && 1 r 0 && Log 1 r 0 && x
2 C 1 Log 3

2

Log 1 r

In[6]:= Reduce 200 1 r x 300, x, Reals

Out[6]= Log 1 r 0 && r 1 && x
Log 3

2

Log 1 r

On occasion these solving commands may come up empty, even when a unique solution exists:

In[7]:= Solve Sin x 2 x2, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[7]= Solve Sin x 2 x2, x

In[8]:= NSolve Sin x 2 x2, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[8]= NSolve Sin x 2 x2, x

In[9]:= Reduce Sin x 2 x2, x

Reduce::nsmet : This system cannot be solved with the methods available to Reduce.

Out[9]= Reduce Sin x 2 x2, x

There are powerful numerical techniques for approximating solutions to equations such as this.
FindRoot is the final equation-solving command that we introduce. It is your last line of defense. It
is very robust, and adapts its methodology according to the problem it is fed. It’s tenacious, but it’s
also old-school. To use it you must give it a numerical value as a starting point. Like a hound dog it
will hunt down a single solution from this starting point, iteratively using its current position to
zero in on it. It is likely to hone in to the solution nearest the starting point, so choosing a good
starting point is key. A plot is helpful in this endeavor. A simple approach is to Plot two functions,
the left side and right side of the equation you wish to solve. The solutions are the x coordinates of
the points where the curves intersect. For instance, here’s a view of the functions in the equation
above:

184 Algebra

In[10]:= Plot Sin x , 2 x2 , x, 2, 2

Out[10]=
2 1 1 2

2

1

1

2

We expect solutions near x 1.6 and x 1. To zero in on a solution once you know roughly where
it is, use the FindRoot command like this:

In[11]:= FindRoot Sin x 2 x2, x, 1.6

Out[11]= x 1.72847

In[12]:= FindRoot Sin x 2 x2, x, 1

Out[12]= x 1.06155

The first argument of the FindRoot command is an equation, the second is a list whose first mem-
ber is the variable to be solved for, and whose second member is a rough guess at the true root. To
have all internal calculations performed with n-digit precision you can use the optional argument
WorkingPrecision:

In[13]:= x . FindRoot Sin x 2 x2, x, 1 , WorkingPrecision 400

Out[13]= 1.06154977463138382560203340351989934205887417838924148608498893580932536
58078013681605147722169795200205523517584438182489915752386795185105198

01898497141789694624781317887368590739943328390244768652889979635131820
54066331171612084604692146632416602626438286949734162187208102212531109
55046026055069360793013098705252533458512558323397412062383035427145357

98284624484729386618537019854165883676711994

This technique of first estimating a solution with a plot and then using FindRoot to zero in on it is
very robust in that it will work on almost any equation you wish to solve (provided that a solution
exists). It does have several drawbacks, however. First, it is a strictly numerical command; it cannot
be used when there are more variables than there are equations. For instance, it won’t be able to
solve x y 1 for x; the solution must a number (or a list of numbers if there are several equations).

Second, it may be tedious to find an appropriate domain for a plot, one in which a point of intersec-
tion resides. Third, it is often difficult to discern whether or not other intersection points might be
present to the left or right of those you have already found. And finally, for some equations the
algorithm will fail altogether. For instance, FindRoot relies at times on a well-known algorithm, the
Newton-Raphson method, to produce its solutions. It is also well known that this method doesn’t
work for all combinations of equations and initial guesses, even when a unique solution exists:

4.7 Solving General Equations 185

In[14]:= FindRoot 200 1.05 x 300, x, 2700

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations.

Out[14]= x 650.407

The output here is not correct (so the warning message is welcome). You can usually avoid this sort
of thing if you make a reasonable initial guess. This sort of problem is unlikely if you follow our
advice and make a few plots first, using the plots to generate reasonable initial guesses for FindRoot.

In[15]:= Plot 200 1.05 x, 300 , x, 0, 15

Out[15]=

2 4 6 8 10 12 14

250

300

350

400

In[16]:= FindRoot 200 1.05 x 300, x, 8

Out[16]= x 8.31039

Let’s look at another example: solve the equation log x x3 x:

In[17]:= Solve Log x x3 x, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[17]= Solve Log x x x3, x

In[18]:= NSolve Log x x3 x, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[18]= NSolve Log x x x3, x

In[19]:= Reduce Log x x3 x, x

Reduce::nsmet : This system cannot be solved with the methods available to Reduce.

Out[19]= Reduce Log x x x3, x

186 Algebra

You shouldn’t allow these outputs to let you to give up your hunt for a solution. Solve, NSolve, and
Reduce may be unable to find a solution but that doesn’t mean one does not exist. In your dealings
with computers, you should live by the maxim made famous by Ronald Reagan: “Trust, but verify.”
In that spirit, we endeavor to make a plot and see what is going on:

In[20]:= Plot Log x , x3 x , x, 0, 10

Out[20]=

2 4 6 8 10

100

200

300

400

500

600

One of the functions is barely visible. It is not uncommon for one function to dwarf another when
viewed over certain domains. To make things clearer we render the Log function thick, dashed, and
blue, and the cubic red.

In[21]:= Plot Log x , x3 x , x, 0, 10 , PlotStyle Directive Thick, Dashed, Blue , Red

Out[21]=

2 4 6 8 10

100

200

300

400

500

600

Suspicion confirmed: the Log function is quite flat compared to the cubic on this domain. Perhaps
they intersect over on the left, somewhere between 0 and 2. Try again: edit the iterator above,
specifying the new plot domain, and reenter the cell:

In[22]:= Plot Log x , x3 x , x, 0, 2 , PlotStyle Dashed, Red

Out[22]=
0.5 1.0 1.5 2.0

2

1

1

2

 Bingo! Let's see if FindRoot can find these solutions:

4.7 Solving General Equations 187

In[23]:= FindRoot Log x x3 x, x, 0.4

Out[23]= x 0.699661

In[24]:= FindRoot Log x x3 x, x, 1

Out[24]= x 1.

Is x 1 an exact solution? Yes: plug it in by hand to the original equation, or do this:

In[25]:= Log x x3 x . x 1

Out[25]= True

It is worth noting that you can manipulate any equation into the form expression 0 simply by
subtracting the original quantity on the right from each side of the equation. Solving the resulting
equation is then a matter of finding the roots of expression. The obvious advantages to this approach
is that the roots are easy to read off of a plot, since they fall directly on the labeled x axis. Here is the
graph for the last example when presented this way. Note that we still plot two functions, one of
which is the x-axis. This guarantees that the x-axis will be included in the output graphic, even if
you are unlucky enough to choose a domain on which there are no solutions.

In[26]:= Plot Log x x3 x, 0 , x, 0, 2

Out[26]=

0.5 1.0 1.5 2.0

3

2

1

The roots, of course, are the same as the solutions we found earlier. FindRoot will report the same

output regardless of whether you input the equation Log x x x3 or the equation

x x3 Log x 0. In fact you can simply use x x3 Log x (and forgo the 0) when using

FindRoot. The name “FindRoot” makes good sense in this light. You can use whichever approach
seems easier to you.

Exercises 4.7
1. Approximate the solutions to the equation 1 x2 sin x.

2. Approximate three of the solutions to the equation x2
sin x.

3. Is it true that
2

sin ?

188 Algebra

4.8 Solving Difference Equations
Difference equations (also called recurrence relations) were discussed in Chapter 3 (Section 3.13, see

page 142). Suppose we are given a difference equation for a sequence a n . Let’s say that the nth

term of the sequence is always twice the previous term, so the difference equation is a n 2 a n 1 .
How can we find an explicit formula for a n , not in terms of a n 1 , but as a function of n? It is not
difficult in this example to find a solution by hand, but how can Mathematica be employed for the
purpose of solving this or any other difference equation? The command that you need is called
RSolve.

In[1]:= Clear a, n ;

RSolve a n 2 a n 1 , a n , n

Out[2]= a n 2 1 n C 1

If no initial conditions are given (so the first argument is a difference equation and nothing else),
one or more constant terms may be generated, as seen above. C[1] represents the constant in the
output above. Any specific real or complex numerical value for this constant value will give, accord-
ing to the previous output, a solution to the difference equation. The first argument may also be a
list of equations. For instance, here we solve the same difference equation, but also specify the initial
value a 0 1 3.

In[3]:= RSolve a n 2 a n 1 , a 0 1 3 , a n , n

Out[3]= a n
2n

3

RSolve is most useful when dealing with somewhat more complicated difference equations. Here we
ask it to solve the difference equation that defines the Fibonacci numbers:

In[4]:= RSolve a n a n 1 a n 2 , a 1 1, a 2 1 , a n , n

Out[4]= a n Fibonacci n

Yes, these are indeed the Fibonacci numbers:

In[5]:= Table a n . 1 , n, 10

Out[5]= 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Here is a logistic growth difference equation that RSolve cannot handle:

In[6]:= RSolve a n 1 3 a n .05 a n 2, a n , n

Out[6]= RSolve a 1 n 3 a n 0.05 a n 2, a n , n

And here’s an example of a logistic growth equation that RSolve can handle:

4.8 Solving Difference Equations 189

In[7]:= RSolve a n 1 2 a n
1

3
a n 2, a n , n

Out[7]= a n 3 3 2n C 1

Adding an initial condition forces it to use Solve internally, and in this case it is not able to
determine if it has found a unique solution. We look at the first few values as a check:

In[8]:= RSolve a n 1 2 a n
1

3
a n 2, a 0 1 , a n , n

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[8]= a n 31 2n
22n

32n

In[9]:= Table a n . 1 , n, 0, 3

Out[9]= 1,
5

3
,

65

27
,

6305

2187

We can also look at the solution to the difference equation without the initial condition (three
outputs ago), and do the solving ourselves:

In[10]:= Reduce 3 3 c 1, c, Reals

Out[10]= c Log
3

2

So c ln 2

3
, and the solution is a n 3 3 2n ln

2

3 3 3 2 3 2n
. It is now clear from an algebraic

viewpoint that this function will quickly approach the value 3. A plot confirms this:

In[11]:= Plot 3 3 2 3 2n
, n, 0, 5

Out[11]=

1 2 3 4 5

1.5

2.0

2.5

3.0

Moreover, using NestList to generate the first few terms of the sequence generated by the original
difference equation, we see that it agrees with our solution. The use of NestList to generate terms of
a sequence defined by a difference equation is discussed at the end of Section 3.13 on page 146.

190 Algebra

In[12]:= NestList 2
1

3
2 &, 1, 3

Out[12]= 1,
5

3
,

65

27
,

6305

2187

In[13]:= Table 3 3 2 3 2n
, n, 0, 3

Out[13]= 1,
5

3
,

65

27
,

6305

2187

At times it may be helpful to note that the second argument to RSolve can be simply the
symbol a (rather than a[n]), and the output will be a pure function expression for a. Pure

functions are discussed in Section 8.4.

In[14]:= RSolve a n 2 a n 1 , a 0 1 , a, n

Out[14]= a Function n , 2n

Exercises 4.8
1. Suppose a $30,000 car was purchased with no money down, using a five-year loan with an

annual interest rate of 7%, compounded monthly. This means that each month interest is

compounded at the monthly rate of .07

12
, while the principle is reduced by the amount p of

the monthly payment.

a. Calculate the monthly payment.

b. Make a table breaking down each payment as principle and interest for the 60 month loan
period.

2. Suppose that the value of a new automobile is $30,000, and that it loses 10% of its value each
year. That is, at the end of each year it is worth only 90% of what it was worth at the beginning
of that year. When will it be worth $8,000?

4.9 Solving Systems of Equations
It is sometimes necessary to solve several equations simultaneously. For instance, what values of x
and y satisfy both 2 x 39 y 79 and 7 x 5 y 800? To find out, use Solve, NSolve, or Reduce with

a list of equations as the first argument and a list of variables to be solved for (such as {x,y}) as the
second argument:

4.9 Solving Systems of Equations 191

In[1]:= Solve 2 x 39 y 79, 7 x 5 y 800 , x, y

Out[1]= x
31 595

283
, y

1047

283

You can leave out the second argument entirely if you want to solve for all the variables appearing
in the equations:

In[2]:= Solve 2 x 39 y 79, 7 x 5 y 800

Out[2]= x
31 595

283
, y

1047

283

You can easily use generic coefficients to generate a general formula for solving similar systems:

In[3]:= Clear a, b, c, d, e, f, x, y ;

Solve a x b y c, d x e y f , x, y

Out[4]= x
c e b f

b d a e
, y

c d a f

b d a e

The Solve command works very well for linear equations (like those above). It also does a good job
with systems of polynomials. Here is an example showing the points of intersection of a circle and a
parabola:

In[5]:= ContourPlot x2 y2 4, y 1 x 1 2 , x, 2, 2 , y, 2, 2

Out[5]=

2 1 0 1 2
2

1

0

1

2

It turns out that there are two real solutions (you can see them on the plot) and two complex ones.
One of the real ones is the point (2, 0). The other is:

192 Algebra

In[6]:= Solve x2 y2 4, y 1 x 1 2 2 Column

Out[6]=

y 2

3

1

9 28 3 87
2 3

2

9 28 3 87
1 3

2

9
28 3 87

1 3
1

9
28 3 87

2 3

x 1

3
2 1

28 3 87
1 3 28 3 87

1 3

We won’t list the complex solutions, as they’re even nastier. Here’s another example:

In[7]:= ContourPlot y x2, y7 2 x2 1 , x, 2, 2 , y, 1.5, 4

Out[7]=

2 1 0 1 2

1

0

1

2

3

4

In[8]:= Reduce y x2, y7 2 x2 1 , x, y , Reals

Out[8]= x AlgebraicNumber Root 1 2 12 114 &, 2 ,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 x AlgebraicNumber

Root 1 2 12 114 &, 2 , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 && y x2

This output, while potentially useful, may make you cringe. In such situations, applying N to the
result will often provide a good numerical approximation:

In[9]:= x, y . ToRules N

Out[9]= 0.70448, 0.496292 , 0.70448, 0.496292

Similarly, NSolve can be used, but it will report both real and complex solutions.

4.9 Solving Systems of Equations 193

In[10]:= Grid NSolve y x2, y7 2 x2 1 , x, y , Alignment Left, Dividers Gray

Out[10]=

x 0.978813 0.298975 y 0.868688 0.585282

x 0.978813 0.298975 y 0.868688 0.585282

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.268914 1.05489 y 1.04048 0.56735

x 0.268914 1.05489 y 1.04048 0.56735

x 0.268914 1.05489 y 1.04048 0.56735

x 0.268914 1.05489 y 1.04048 0.56735

x 0.70448 y 0.496292

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.978813 0.298975 y 0.868688 0.585282

x 0.978813 0.298975 y 0.868688 0.585282

x 0.70448 y 0.496292

Just as there are single equations that can foil the Reduce, Solve and NSolve commands, there are
systems of equations that can as well. In such situations one can use FindRoot to approximate a
solution. Give as the first argument the list of equations. Follow that with an additional argument
for each variable. Each of these arguments is of the form {variable,guess}, where the guess is your best
estimate of the actual value for that variable. Use a plot to help you make your guess:

In[11]:= FindRoot y x2, y7 2 x2 1 , x, 1 , y, 0.5

Out[11]= x 0.70448, y 0.496292

Exercises 4.9
1. Use a graph to estimate the solutions to the system of equations y x2 and y 4 sin x . Then find

a command that will find or approximate the real valued solutions.

194 Algebra

5
Calculus

5.1 Computing Limits
An understanding of limits is fundamental to an understanding of calculus. Let’s start by defining a
few functions:

In[1]:= Clear f, g, x ;

f x :
Sin x

x
;

g x :
1

x

Note that x 0 is not in the domain of either of these functions. How do they behave as x approaches
0, that is, as x assumes values very close to 0? A plot is a sensible way to approach this question:

In[4]:= Plot f x , x, 10, 10

Out[4]=

10 5 5 10
0.2

0.2

0.4

0.6

0.8

1.0

In[5]:= Plot g x , x, 1, 1

Out[5]=
1.0 0.5 0.5 1.0

10

5

5

10

The two outcomes are strikingly different, and they illustrate the likely possibilities for similar
investigations. The function f x assumes values that approach 1 as x approaches 0. The function g

has a vertical asymptote at x 0; as x approaches 0 from the right, g assumes values that approach

, while as x approaches 0 from the left, g assumes values that approach .

We can check this numerically by making a table of values. Here is a table of values for f as x

approaches 0 from the right:

In[6]:= data Table N 10 n , N f 10 n , 15 , n, 1, 5 ; Text

Grid Prepend data, "x", "f x " , Alignment Left, Dividers Center, 2 True

Out[6]=

x f x
0.1 0.998334166468282
0.01 0.999983333416666
0.001 0.999999833333342
0.0001 0.999999998333333
0.00001 0.999999999983333

The Limit command provides an easy way to investigate the behavior of functions as the indepen-
dent variable approaches some particular value (such as 0):

In[7]:= Limit f x , x 0

Out[7]= 1

In[8]:= Limit g x , x 0

Out[8]=

The first argument to the Limit command is the expression for which you wish to find a limiting
value. The second argument (x 0 in these examples) specifies the independent variable and the
value which it will approach. You may use the symbol from the BasicMathInput palette or the
keyboard equivalent -> by hitting the “minus” sign followed by the “greater than” sign.

It is important to note that the Limit command by default computes one-sided limits, and these are
limits from the right. That is, the expression is examined with x values chosen slightly to the right of
the value that x approaches. In the limit for g as x 0, for instance, the output was . You can take

limits from the left by adding the option Direction 1. You can think of this as the direction in
which you need to move on a number line to get to the number 1 from the origin.

In[9]:= Limit g x , x 0, Direction 1

Out[9]=

In a strictly mathematical sense, a limit exists if and only if the limits from the left and right agree.
So the limit of the function g as x approaches 0 does not exist since the limit from the right is

while the limit from the left is . In Mathematica, the Limit command defaults to the limit from
the right to increase the likelihood of being able to find a limiting value. It is crucial to check that

196 Calculus

the limit from the left matches the limit from the right before concluding that a limit exists. A plot
is usually helpful in this regard. The only exception to this convention is a limit as x approaches
infinity (where the Limit command will by default compute limits from the left).

In[10]:= Limit g x , x

Out[10]= 0

Taking another glance at the graph of g, you can see that as the value of x gets large, the value of

g x approaches 0. A table of values is also useful in this regard:

In[11]:= data Table N 10n, g 10n , n, 1, 5 ; Text

Grid Prepend data, "x", "g x " , Alignment ".", Dividers Center, 2 True

Out[11]=

x g x
10. 0.1
100. 0.01
1000. 0.001
10000. 0.0001
100000. 0.00001

Note that you may use the symbol from the BasicMathInput palette, or type Infinity. Note also
that some functions will not have one-sided limits:

In[12]:= Limit Sin x , x

Out[12]= Interval 1, 1

The output here indicates that the sine function assumes values in the interval from 1 to 1 without
approaching a single limiting value as x approaches infinity. This is consistent with our knowledge
of the sine function; a plot provides additional confirmation:

In[13]:= Plot Sin x , x, 0, 30

Out[13]=
5 10 15 20 25 30

1.0

0.5

0.5

1.0

Piecewise functions provide the standard examples of functions for which the left and right direc-
tional limits differ.

5.1 Computing Limits 197

In[14]:= Plot
x2 x 1 x 0

Sin x x 0
, x, 1, 1

Out[14]=

1.0 0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

In[15]:= Limit
x2 x 1 x 0

Sin x x 0
, x 0, Direction 1

Out[15]= 1

In[16]:= Limit
x2 x 1 x 0

Sin x x 0
, x 0, Direction 1

Out[16]= 0

In some cases there may be one or more parameters appearing in an expression other than the one
whose limiting value we wish to determine. For instance, what happens to an expression of the form
1 xn

n
 as x 0?

In[17]:= Clear x, n ;

Limit
1 xn

n
, x 0

Out[18]= Limit
1 xn

n
, x 0

This should be interpreted to mean that without some further assumptions regarding the value of
the parameter n, it is simply impossible to determine the value of the limit. Assumptions can be
specified using an optional argument of that name:

In[19]:= Clear x, n ;

Limit
1 xn

n
, x 0, Assumptions n 0

Out[20]=
1

n

198 Calculus

In[21]:= Limit
1 xn

n
, x 0, Assumptions n 0

Out[21]=

Exercises 5.1

1. Use the Limit command to find limx 2
6 x 12

x2 4
 and limx 2

6 x 12

x2 4
. Then use a graph to explain

these answers.

2. Use a graph to examine the behavior of functions of the form y x sin b

x
 for large values of b and

use your graph to predict limx x sin b

x
. Use the Limit command to confirm your answer.

3. The function f x x2 2 x 3 x has very different behavior as x approaches and x

approaches . Use the Table command to examine this function for large positive and nega-
tive values of x.

5.2 Working with Difference Quotients

Producing and Simplifying Difference Quotients
It is easy to simplify difference quotients with Mathematica. (Get the character from the
BasicMathInput palette, and do not put a space between it and x, for you are creating a new symbol
whose name is x, rather than multiplying by x.)

In[1]:= Clear diffquot, x, x ;

diffquot f :
f x x f x

x

This is much more fun to do than to read about, so if possible get yourself started in a Mathematica
session. You first define a function, and then produce the difference quotient:

In[3]:= h x : x3;

diffquot h

Out[4]=
x3 x x 3

x

5.2 Working with Difference Quotients 199

You can now simplify it by typing and entering Simplify , but it’s much more fun (and informa-

tive) to “drive” Mathematica through it step by step. First use your mouse to highlight x x 3 in

the last output, and then hit the Expand button on the AlgebraicManipulation palette. You will then

have this:

x3 x3 3 x2 x 3 x x2 x3

x

Now highlight the entire numerator, and hit the Simplify button. The x3 cancels with the x3, and

x is factored out of the remaining three summands. You will have:

x 3 x2 3 x x x2

x

Lastly, select the entire output and hit the Cancel button. The x’s cancel and you are left with:

3 x2 3 x x x2

That’s it! You’ve just simplified an algebraic expression painlessly, with no dropped minus signs,
and without skipping a step. We encourage you to do this for five or six functions of your choosing;
you might even find it fun.

Average Rate of Change
Once you have entered the cell defining the diffquot command, you can work with specific values
of x and x to find the average rate of change of a function as the independent variable ranges from
x to x x:

In[8]:= Clear f, x, x ;

f x :
Sin x

x

In[10]:= diffquot f

Out[10]=

Sin x

x

Sin x x

x x

x

You can find the average rate of change of f from x 2 to x 2.5 as follows:

In[11]:= diffquot f . x 2, x 0.5

Out[11]= 0.8

Recall from the last chapter (Section 4.2, page 153) that the replacement rule /.{x 2, x 0.5}
instructs Mathematica to replace x by 2 and x by 0.5. The average rate of change of f from x 2 to

x 2.1 is:

200 Calculus

In[12]:= diffquot f . x 2, x 0.1

Out[12]= 1.47151

Here is a table of values for the difference quotient of f at x 2 for various small values of x:

In[13]:= data Table x, diffquot f . x 2, x N 10 n , n, 1, 5 ;

dataWithHeadings Prepend data, " x", "
f 2 x f 2

x
" ;

Text Grid dataWithHeadings, Alignment Left, Dividers Center, 2 True

Out[14]=

x f 2 x f 2
x

0.1 1.47151
0.01 1.56272
0.001 1.57001
0.0001 1.57072
0.00001 1.57079

Instantaneous Rate of Change
The instantaneous rate of change at x 2 is found by taking the limit as x approaches 0 of the
difference quotient at x 2:

In[15]:= diffquot f . x 2

Out[15]=
Sin 2 x

x 2 x

In[16]:= Limit , x 0

Out[16]=
2

In[17]:= N , 10

Out[17]= 1.570796327

Note that this result is consistent with the table that we computed above.

Exercises 5.2

1. Find the difference quotient for f x 1

x2 and use the AlgebraicManipulation palette to simplify

this expression.

5.2 Working with Difference Quotients 201

2. Find the limit of the difference quotient for f x 1

x2 as x 0.

3. Find the difference quotient for f x x and use the AlgebraicManipulation palette to simplify

this expression.

4. Find the limit of the difference quotient for f x x as x 0.

5.3 The Derivative
Of course there is a simpler way to take derivatives than to compute the instantaneous rate of
change as above. This is an instance where the Mathematica syntax matches that of traditional
mathematical notation. For the function f defined above, the derivative can be found as follows:

In[1]:= f ' x

Out[1]=
Cos x

x

Sin x

x2

If you check this using the quotient rule, your answer may look slightly different. You can simplify

the output above by highlighting it and pushing the Simplify button on the AlgebraicManipulation

palette, or by typing:

In[2]:= Simplify

Out[2]=
x Cos x Sin x

x2

This is exactly what you would obtain if you worked by hand using the quotient rule. We can
evaluate the derivative at any value of x:

In[3]:= f ' 2

Out[3]=
2

A plot of a function and the tangent line to the function at a point (at x 2, for example) can be
produced as follows. The expression representing the line is obtained from the point-slope formula
for a line, where the point on the line is 2, f 2 , and the slope of the line is f ' 2 . You can zoom in

(or out) by changing the bounds on the iterator. Try x, 1.9, 2.1 to zoom in on the two graphs near
x 2.

202 Calculus

In[4]:= Plot f x , f 2 f ' 2 x 2 , x, 1.5, 2.5

Out[4]=
1.8 2.0 2.2 2.4

0.5

0.5

You may also find it instructive to study the graph of a function and its derivative on the same set
of axes. Here the graph of f is black, while its derivative is gray. Of course you can use your favorite

colors.

In[5]:= Plot f x , f ' x , x, 0, 3 ,

PlotStyle Black, Gray

Out[5]= 0.5 1.0 1.5 2.0 2.5 3.0

4

3

2

1

1

2

3

There is another way to take derivatives of expressions with Mathematica that is useful in many
situations. The command is called D, and it takes two arguments; the first is an expression to be
differentiated, and the second is name of the variable with respect to which the differentiation is to
be performed:

In[6]:= D
Sin x

x
, x

Out[6]=
Cos x

x

Sin x

x2

A palette version of the D command exists and is sometimes useful. Go to the BasicMathInput

palette, and find the button. Type and highlight the expression you wish to differentiate, then

push this button. Now type x (as the subscript) to indicate that you wish to differentiate with
respect to x:

In[7]:= x Sin x

Out[7]= Cos x

The palette approach is most useful when the expression you wish to differentiate already exists on
your screen (as the output of some former computation, for instance). You can then highlight it and

5.3 The Derivative 203

push the button.

A word of warning regarding the palette button is in order. If you first hit the palette button and
then enter an expression to be differentiated in the position of the placeholder, you should put
grouping parentheses around the expression. Here’s an example of what can happen if you don’t:

In[8]:= x x2 x3

Out[8]= 2 x x3

You certainly don’t want to report that the derivative of x2 x3 is 2 x x3! With parentheses things
are fine:

In[9]:= x x2 x3

Out[9]= 2 x 3 x2

When you first highlight the expression to be differentiated, and then push the palette button,
Mathematica will add the grouping parentheses automatically.

D can be used to easily derive just about any differentiation rule. You just need to ask it to derive an
expression involving “dummy” functions (functions which have been given no specific definition).
Here is the product rule, for instance:

In[10]:= Clear f, g, x ;

D f x g x , x

Out[11]= g x f x f x g x

There are two points to remember about the D command. First, it is imperative that the variable (x
in the example above) be cleared of any value before it is used in the D command. Second, if you
plan to plot a derivative generated by the D command, you need to wrap it in the Evaluate com-
mand before plotting:

In[12]:= Plot Evaluate x2, D x2, x , x, 1, 1

Out[12]=
1.0 0.5 0.5 1.0

2

1

1

2

As a general rule of thumb, D is useful for differentiating unnamed expressions and for deriving
general formulae. For functions to which you have already given names (such as f), the “prime”

command f'[x] is generally easier to use than D.

204 Calculus

Exercises 5.3
1. Make a Manipulate that shows the tangent line to f x cos x at the point x a as a assumes

values from 4 to 4 .

2. Graph the derivatives of f x sin xn for n 2, 3, 4 and look for patterns in the graphs that are

reflected in the expressions for their derivatives.

5.4 Visualizing Derivatives
It can be instructive to create a dynamic visualization environment, using Manipulate, showing the
derivative function as the limit of a difference quotient. Moving the slider in the Manipulate below
demonstrates graphically that the derivative of sin x is cos x . Note the iterator for x is backwards;
it moves from a value of 2 when the slider is positioned on the left down to .01 when the slider is
moved all the way to the right.

In[1]:= Manipulate Plot
Sin x x Sin x

x
, Cos x , x, 2 , 2 , x, 2, .01

Out[1]=

x

6 4 2 2 4 6

1.0

0.5

0.5

1.0

The equivalence of the instantaneous rate of change and the slope of the tangent line can be visual-
ized by the following Manipulate. Here we see the graph of f x x and its tangent line at x 1.

As we move the slider we zoom down to the microscopic level where the curve and the tangent line
become indistinguishable.

5.4 Visualizing Derivatives 205

In[2]:= Manipulate Plot Exp x , Exp ' 1 x 1 Exp 1 , x, 1 , 1 ,

Frame True, Axes False, Epilog Red, Point 1, Exp 1 ,

GridLines Range 0, 2, .05 , Range 1, 8, .2 , GridLinesStyle Gray,

FrameTicks None, Filling 1 2 , , 1, "zoom" , 1, .01

Out[2]=

zoom

Exercises 5.4
1. Make a Manipulate like the first one in this section, showing the difference quotient for the

natural logarithm function ln x converging to 1

x
 as x 0.

2. Modify the zooming Manipulate at the end of this section so that it includes a Checkbox
control. The tangent line should display if the checkbox is checked, but not otherwise.

5.5 Higher Order Derivatives

In[1]:= Clear f, x ;

f x :
Sin x

x

The easiest way to take a second derivative is to do this:

In[3]:= f '' x

Out[3]=
2 Cos x

x2

2 Sin x

x3

2 Sin x

x

You must use two single quotation marks.

206 Calculus

Third derivatives?

In[4]:= f ''' x

Out[4]=
6 Cos x

x3

3 Cos x

x

6 Sin x

x4

3 2 Sin x

x2

 Another way to take a third derivative is to use the D command as follows:

In[5]:= D f x , x, 3

Out[5]=
6 Cos x

x3

3 Cos x

x

6 Sin x

x4

3 2 Sin x

x2

The D command is useful for producing general formulae as in the last section. For example, here is
the (seldom seen) second-derivative product rule:

In[6]:= Clear f, g, x

In[7]:= D f x g x , x, 2

Out[7]= 2 f x g x g x f x f x g x

And here is a product rule for third derivatives. Note that the StandardForm notation for the third

derivative of f[x] is f 3 x . A similar notation is employed for all derivatives beyond the second.

In[8]:= D f x g x , x, 3

Out[8]= 3 g x f x 3 f x g x g x f 3 x f x g 3 x

Exercises 5.5

1. Use the D command to find a general rule for the second derivative of y f x

g x
.

2. Use a Table to look for patterns in the higher order derivatives of Sec x .

5.5 Higher Order Derivatives 207

5.6 Maxima and Minima
A function can only attain its relative maximum and minimum values at critical points, points where
its graph has horizontal tangents, or where no tangent line exists (due to a sharp corner in the
graph, for instance). For a differentiable function there is a unique tangent line at each point in the
domain, so the critical points are all of the first type. To find a value of x for which f has a

horizontal tangent, one must set the derivative equal to 0 and solve for x. Having experience with
taking derivatives and solving equations with Mathematica, this shouldn’t be too difficult. In many
cases it’s not. Here’s an example:

In[1]:= Clear f, x ;

f x : x3 9 x 5

In[3]:= Reduce f ' x 0, x

Out[3]= x 3 x 3

In[4]:= Solve f ' x 0, x

Out[4]= x 3 , x 3

Recall from Section 4.2 on page 149 that the Solve command returns a list of replacement rules. Here
is how to use that output to get a list of the two critical points, each of the form x, f x . These are
the points in the plane where the graph of f assumes its extreme values:

In[5]:= extrema x, f x .

Out[5]= 3 , 5 6 3 , 3 , 5 6 3

And here is a plot of f , with the extreme points superimposed as large dots. They will appear as large

red dots on a color monitor:

In[6]:= Plot f x , x, 4, 4 , Epilog PointSize 0.02 , Red, Point extrema

Out[6]=

4 2 2 4

20

10

10

20

30

The Epilog option can be used with any command that produces graphics, such as Plot. It allows
you to overlay “graphics primitives,” such as points, on the graphic after it has been rendered. In
this case, the directive PointSize[.02] makes the points big (they are each 2% of the width of the

208 Calculus

graphic), the directive Red makes them red, and the Point[extrema] transforms the list of coordi-
nate pairs into a Graphics primitive Point object.

In any event, that little bit of technical typing produces a satisfying plot, and allows you to verify
visually that the points you found using the Solve command are really the extrema you sought.

We can confirm that an extreme point is a maximum or a minimum by using the second derivative:

In[7]:= f '' 3 0

Out[7]= True

The function is concave down at x 3 and so has a maximum at x 3 . Similarly, the

second derivative confirms that f has a minimum at x 3 :

In[8]:= f '' 3 0

Out[8]= True

Returning to the task at hand, the strategy that we followed above will fail precisely when the Solve
(or NSolve) command is unable to solve the equation f ' x 0, typically when f is something other

than a polynomial of low degree:

In[9]:= f x :
Sin x

x

In[10]:= Reduce f ' x 0, x

Reduce::nsmet : This system cannot be solved with the methods available to Reduce.

Out[10]= Reduce
Cos x

x

Sin x

x2
0, x

In[11]:= NSolve f ' x 0, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[11]= NSolve
Cos x

x

Sin x

x2
0, x

This is a clue that you need to follow an alternate strategy. One approach is to stare hard at the
equation f ' x 0 and see if you can find a solution by hand. There are rare occasions in which

there is an obvious solution that Mathematica will miss (there’s an example at the end of this sec-
tion). Try a few values of x, such as 0 or 1, and see if they work. If the Solve (or NSolve) command
does produce a solution, but warns you that inverse functions were used, work by hand to see if you

5.6 Maxima and Minima 209

can find other solutions. Bear in mind that this process of finding extrema cannot be reduced to a
single, simple, automated procedure; you have to remain fully engaged at every step. If your efforts
in solving f ' x 0 bear no fruit (as will probably be the case with the example above), don’t

despair. In such cases we resort to attacking the extreme points one at a time, using Plot and Find
Root, and settle for approximations to the actual extreme points.

The first step in this strategy is to produce a graph of f . In this example, we’ll look at the graph of f

between x 0 and x 3. If you are working on an applied problem, there is probably some specified
domain. That would be a good choice for your plot.

In[12]:= Plot f x , x, 0, 3

Out[12]=

0.5 1.0 1.5 2.0 2.5 3.00.5

0.5

1.0

1.5

2.0

2.5

3.0

There appears to be a relative minimum near x 1.5. Use that as an initial guess, and let FindRoot
do the rest:

In[13]:= FindRoot f ' x 0, x, 1.5

Out[13]= x 1.4303

The coordinates of the relative minimum can be easily recovered using replacement rules:

In[14]:= minpoint x, f x .

Out[14]= 1.4303, 0.68246

Note that this is an approximate, rather than an exact solution. This is the best that Mathematica can
do in such situations. Note also that when you use FindRoot, you can almost always get an answer,
but you have to settle for one solution at a time. If you need to find six extreme points, you need to
run FindRoot six times, each with a different initial guess (suggested by a plot).

Here’s how to produce a plot with the relative minimum shown. It will appear as a red dot on a
color monitor:

In[15]:= Plot f x , x, 0, 3 , Epilog PointSize 0.02 , Red, Point minpoint

Out[15]=

0.5 1.0 1.5 2.0 2.5 3.00.5

0.5

1.0

1.5

2.0

2.5

3.0

210 Calculus

Be mindful that a plot of some sort is important. For although relative extrema for a function f must

occur at values of x that satisfy f ' x 0, satisfying this equation is no guarantee that the point in

question is in fact a relative maximum or minimum. This will often happen when the equation
f ' x 0 has repeated roots:

In[16]:= f x : 8.01 12 x 6 x2 x3

In[17]:= NSolve f ' x 0, x

Out[17]= x 2. , x 2.

In[18]:= Plot f x , x, 1, 3 , Epilog PointSize 0.02 , Red, Point 2, f 2

Out[18]=

1.0 1.5 2.0 2.5 3.0

15.5

16.0

16.5

17.0

The plot suggests that even though f has a horizontal tangent when x 2, f takes points immedi-

ately to the left of 2 to values smaller than f 2 , and f takes points immediately to the right of 2 to

values greater than f 2 . In other words, f has no relative maximum or minimum at x 2. Without a

plot (or some careful mathematical reasoning) it is unclear whether a function f has extrema at

those values of x satisfying f ' x 0. Note that the second derivative confirms that the function is

neither concave up nor concave down at x 2:

In[19]:= f '' 2

Out[19]= 0

We next give an example of a function f for which Mathematica’s Solve command cannot produce a

real solution for the equation f ' x 0, but for which Reduce can. An exact solution can also be

found by hand.

In[20]:= f x : Cos x

In[21]:= f ' x

Out[21]=
x Sin x

5.6 Maxima and Minima 211

In[22]:= Solve f ' x 0, x

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[22]= x

Solve is likely to fail when the function in question is a transcendental function without an inverse.
We know from the expression for f that it will oscillate, and hence will have infinitely many local

extrema. In fact, a moment’s thought reveals that since the cosine function attains its extreme
values when its argument is an integer multiple of , this function will attain its extreme values
when x is the natural logarithm of an integer. This is precisely what Reduce tells us, provided we
instruct it to restrict x to the field of real numbers. It distinguishes between the cases when the
integer is odd and even. This is a remnant of the more general case when x is permitted to assume
complex values, where this distinction is necessary; it also neatly divides the solutions between
maxima and minima:

In[23]:= Reduce f ' x 0, x, Reals Simplify

Out[23]= C 1 Integers && C 1 1 && x Log 2 C 1 C 1 0 && x Log 1 2 C 1

Recall from Chapter 4 that C[1] Integers means that C[1] is an element of the set of integers. The
symbol && means “and” and the symbol || means “or.” Note that Reduce finds every solution. The
output may seem a bit difficult to read, but this is necessary. After all, there are infinitely many
solutions; a careful description is necessary. In this case, however, a more concise description is
possible: every solution to the equation f ' x 0 is of the form x ln c where c is a positive integer.

A plot confirms this:

In[24]:= Plot f x , x, 3, 3 ,

Epilog PointSize 0.02 , Red, Point Table Log c , f Log c , c, 20

Out[24]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

The moral of this example is that the process of finding extrema is not one that can be completely
automated. Rather, you must have a clear grasp of the underlying mathematical ideas, and the
flexibility to combine abstract mathematical thinking with the tools that Mathematica provides.

That said, however, Mathematica does have two built-in commands that go a long way toward
automating the process of finding extrema. The commands are called Maximize and Minimize. But

212 Calculus

be careful, these commands will return only global (a.k.a. absolute) minima and maxima, not local
extrema. For example, recall the first function discussed in this section.

In[25]:= Clear f, x ;

f x : x3 9 x 5;

Maximize f x , x

Maximize::natt : The maximum is not attained at any point satisfying the given constraints.

Out[27]= , x

We saw in the graph that this function does not attain a global maximum on its full domain. But we
can add constraints on the values to be considered by Maximize as follows:

In[28]:= Maximize f x , 4 x 0 , x

Out[28]= 5 6 3 , x 3

The output is a list of two items. The first gives the maximum value of the function, while the
second gives a replacement rule that indicates the point in the domain where the maximum occurs.
On the same interval the minimum occurs at the left endpoint.

In[29]:= Minimize f x , 4 x 0 , x

Out[29]= 23, x 4

Constraints can be inequalities or equations. When entering equations be sure you use double
equals (). These commands can be very useful when you want to find global extrema. Be warned
that in the case of finding extreme values for transcendental functions, they may not find all solu-
tions (this is the case for the previous example where f x cos x ; see Exercise 1). But for polyno-

mial equations, they are bulletproof. For instance, here is an optimization word problem of the type
frequently encountered in a calculus course:

A rectangular field is to be enclosed by a fence on three sides and by a straight stream on the fourth
side. Find the dimensions of the field with maximum area that can be enclosed with 1000 ft of fence.

We want to maximize the area, A x y, subject to the constraint 2 x y 1000.

In[30]:= Maximize x y, 2 x y 1000 , x, y

Out[30]= 125000, x 250, y 500

It is always a good idea to check any solution found with Maximize or Minimize by looking at a
graph. As always, don’t trust—verify! Here is a somewhat intricate Manipulate that provides a
graphical confirmation by showing the rectangular field on the left and its area on the right:

5.6 Maxima and Minima 213

In[31]:= Manipulate Module y ,

y : 1000 2 x;

GraphicsRow

Plot y, x, 0, 500 , AspectRatio .5,

Epilog Gray, EdgeForm Black , Polygon 0, 0 , x, 0 , x, y , 0, y ,

AxesLabel "x", "y" , Ticks 0, 250, 500 , Automatic ,

Plot x y, x, 0, 500 , AspectRatio .5,

Epilog PointSize .04 , Red, Point x, x y ,

AxesLabel "x", "Area of Rectangle" , ImageSize 400 ,

x, 250 , 0, 500

Out[31]=

x

250 500
x

200

400

600

800

1000

y

100 200 300 400 500
x

20 000

40 000

60 000

80 000

100 000

120 000

Area of Rectangle

A Module was used in the Manipulate above. While not strictly necessary, it is convenient. If
the line beginning with Module were eliminated (along with its closing square bracket on the
second-to-last input line), one would simply have to replace all occurrences of y with
1000 2 x. In fact, that was how we first made the Manipulate. But it was annoying having to
type 1000 2 x in five different places, and it made the code more difficult to read. Module is a
“scoping construct”; it allows one to define local variables. It is much like the command With,

(first seen in Section 3.2) but it is more flexible in that delayed assignments can be made. The

first argument is a list of all such variables (here there is only one, namely y). Then y is defined
using the SetDelayed operator :=. That’s it. The rest is simply a GraphicsRow containing the
two plots. Outside of this Module, the symbol y has no assigned value. Note also that switch-
ing to a different example, such as y 1500 3 x, would mean only having to change one line

of code. Module is discussed in Section 8.6.

Exercises 5.6
1. Read the example concerning the function f x cos x in this section. Use Maximize to find

extreme values of f on the domain 3 x 3. Compare the output to the graph in the text, and

comment on what you find.

2. Use Minimize to find the x-coordinate of the third occurrence of the y-value 1 for the function

214 Calculus

sin 5 x to the right of the y-axis.

3. Find the dimensions of the right circular cylinder of largest volume that can be inscribed in a
right circular cone with radius r and height h.

4. Find the minimum value of the function f x x2 3.

5.7 Inflection Points

In[1]:= Clear f, x ;

f x :
Sin x

x
The procedure for finding points of inflection mirrors that for finding relative extrema outlined in
the last section, except that second derivatives are used. A glance at the graph of f in the preceding

section on page 210, suggests that f has an inflection point near x 2. Let’s zero in on it with

FindRoot:

In[3]:= FindRoot f '' x 0, x, 2

Out[3]= x 1.89088

In[4]:= infpt x, f x .

Out[4]= 1.89088, 0.177769

In[5]:= Plot f x , x, 1, 3 ,

Epilog PointSize .02 , Red, Point infpt

Out[5]= 1.5 2.0 2.5 3.0

0.6

0.4

0.2

0.2

0.4

The plot confirms that f has an inflection point at approximately x 1.89088.

You may find it instructive to study the graph of a function and its derivatives on the same set of
axes. Here is the graph of f , and the graph of its derivative with filling added. Note that f is decreas-

ing on those intervals where f ' is negative, and increasing when f ' is positive. The zeros of f ' corre-

spond to the relative extrema of f .

5.7 Inflection Points 215

In[6]:= Plot f x , f ' x , x, 0, 3 , Filling 2 Axis

Out[6]=

And below we see f and f '' plotted together, where f '' has filling added. Note that f is concave down

on those intervals where f '' is negative, and concave up where f '' is positive. The zeros of f '' corre-

spond to the inflection points of f .

In[7]:= Plot f x , f '' x , x, 0, 3 , Filling 2 Axis

Out[7]=

Exercises 5.7

1. Plot the function f x sin x

x
 on the domain 3 x 3, then make a ContourPlot of the curve

f ' x 0, and superimpose the two graphics using Show. Describe what you see.

2. Plot the function f x sin x

x
 on the domain 3 x 3, then make a ContourPlot of the curve

f '' x 0, and superimpose the two graphics using Show. Describe what you see.

3. Repeat the first two exercises, but modify the ContourPlot input so that the first argument is not
an equation but instead simply f'[x] or f''[x]. Add the option settings Contours {0} and Color
Function "LightTerrain". This will have the effect of adding color to the vertical bands.
Within the Show command, list the ContourPlot first (otherwise the colored bands will be on
top of, and hence obscure, the Plot of f).

216 Calculus

5.8 Implicit Differentiation
For an implicitly defined function described by a simple equation, it is probably easier to work by
hand than to use a computer algebra system to differentiate. However, it is satisfying to have
Mathematica verify your work. For complicated expressions, on the other hand, the computer will

help you maintain your sanity. (To produce plots of implicitly defined functions, see Section 3.7 on

page 97.)

Here’s how to find dy

dx
 for the implicit equation cos x2 sin y2 . First, rewrite the equation with

every nonzero term on the left-hand side, so that it is of the form expression 0. In this case we get

cos x2 sin y2 0. The key to implicit differentiation is to tell Mathematica that y is to be regarded

as a function of x. This is accomplished by typing y[x] in place of y. We can now differentiate the
expression on the left-hand side with respect to x. For convenience, we name it lhs:

In[1]:= Clear x, y ;

lhs D Cos x2 Sin y x
2

, x

Out[2]= 2 x Sin x2 2 Cos y x 2 y x y x

It is important to remember that this derivative is equal to the derivative of 0 (the right-hand side of

our implicit equation), which is also 0. We can get an expression for dy

dx
 by solving this equation:

In[3]:= Solve lhs 0, y ' x

Out[3]= y x
x Sec y x 2 Sin x2

y x

 In traditional notation we replace y x by y, yielding dy

dx

x sec y2 sin x2

y
.

In some instances, you may be asked to differentiate an equation such as cos x2 sin y2 with

respect to a third variable, such as t. In this case we assume that each of x and y are functions of t,

and type x[t] and y[t] in place of x and y, respectively. The differentiation is carried out with respect
to t:

In[4]:= Clear x, y, t ;

lhs D Cos x t 2 Sin y t
2

, t

Out[5]= 2 Sin x t 2 x t x t 2 Cos y t 2 y t y t

Since this expression is equal to 0, we can find dx

dt
 and dy

dt
 as in the previous example:

5.8 Implicit Differentiation 217

In[6]:= Solve lhs 0, x ' t

Out[6]= x t
Cos y t 2 Csc x t 2 y t y t

x t

In[7]:= Solve lhs 0, y ' t

Out[7]= y t
Sec y t 2 Sin x t 2 x t x t

y t

Exercises 5.8

1. Find dx

dy
 for the implicitly defined function cos x2 sin y2 .

2. Find d2 y

d x2 for the implicitly defined function x y y2 3 as a function of x and y.

3. A ten foot ladder is leaning against a wall. The base of the ladder is sliding away from the wall at
3 feet per second when it is one foot from the wall. How fast is the top of the ladder sliding
down the wall?

4. Use Manipulate to make a movie of a tangent line rolling around a unit circle.

5.9 Differential Equations
There are many applied settings in which you can observe a relationship between a function and
one or more of its derivatives, even when an explicit algebraic expression for the function is
unknown. In such situations, it is often possible to find the algebraic expression for the function in
question by solving the differential equation that relates the function to its derivative(s). For instance,

suppose there is a function y t whose derivative is equal to 1

3
 times y t for each value of t. This sort

of situation can exist, for instance, in modeling population growth: the population at time t is
denoted by y t , and the rate of growth y ' t is proportional to the population at time t. As the

population gets larger, it grows faster, since there are more people available to reproduce. What kind
of function is y t ? What is its algebraic formula? You can solve a differential equation such as this

with the DSolve command:

In[1]:= Clear y, t ;

DSolve y ' t
1

3
y t , y t , t

Out[2]= y t t 3 C 1

218 Calculus

The DSolve command takes three arguments. The first is a differential equation, an equation that
includes a derivative. The second is the function whose algebraic expression you wish to find, and
the third is the name of the independent variable. The second and third arguments appear redun-
dant in an example like this one, but in more complex situations they are needed to avoid ambigu-
ity. In any event, you need to use them, always.

The output to DSolve is a list of replacement rules, exactly like those produced by the Solve com-
mand (see Section 4.2 in the previous chapter for a detailed description of the Solve command and
replacement rules). The C[1] in the output represents a constant. It can be replaced by any number
to produce an explicit solution. In applied settings, some other information is usually given that will
enable you to find the value of such a constant. For instance, if we use our population growth
model, we might have been told that initially, at time t 0, the population was 400. Then we see

that 400 y 0 0 C 1 C 1 . Thus we conclude that the algebraic expression for y t is

y t 400 t 3.

In[3]:= y t . 1 . C 1 400

Out[3]= 400 t 3

You can also use DSolve by giving a list of equations as the first argument. You can, for instance,
put the differential equation and an initial condition in the list. This makes life very easy indeed:

In[4]:= Clear y, t ;

DSolve y ' t
1

3
y t , y 0 400 , y t , t

Out[5]= y t 400 t 3

In[6]:= Plot y t . , t, 0, 10

Out[6]=

2 4 6 8 10

2000

4000

6000

8000

10 000

Here’s another example:

In[7]:= Clear y, t ;

DSolve y ' t
1

5
y t 100 , y t , t

Out[8]= y t 500 t 5 C 1

Here we have a family of solutions, with individual solutions determined by the values of the

5.9 Differential Equations 219

constant C[1]. For instance, here are several solutions for values of C[1] ranging from 500 to 500 in
increments of 50:

In[9]:= sols Table y t . 1 . C 1 n, n, 500, 500, 50

Out[9]= 500 500 t 5, 500 450 t 5, 500 400 t 5, 500 350 t 5, 500 300 t 5,

500 250 t 5, 500 200 t 5, 500 150 t 5, 500 100 t 5, 500 50 t 5, 500,

500 50 t 5, 500 100 t 5, 500 150 t 5, 500 200 t 5, 500 250 t 5,

500 300 t 5, 500 350 t 5, 500 400 t 5, 500 450 t 5, 500 500 t 5

We now have a list consisting of twenty-one functions, each a solution of our differential equation,
and each corresponding to a different numerical value of C[1]. Let’s plot these functions on the
same set of axes.

In[10]:= Plot sols, t, 0, 15

Out[10]=

2 4 6 8 10 12 14

300

400

500

600

700

800

Just as there is the NSolve command to complement the Solve command, there is the NDSolve
command to complement the DSolve command. Use NDSolve in situations where the DSolve
command is unable to provide an exact algebraic solution (or if DSolve seems to be taking all day).
Choose Abort Evaluation in the Evaluation menu to get Mathematica to stop a computation.

To use NDSolve, you need to specify both a differential equation and an initial condition in a list for
the first argument. The second argument is the function to be solved for, as with DSolve. The third
argument is an iterator, specifying the name of the independent variable and the range of values it is
to assume. As for the output, you will not get an explicit algebraic formula—only DSolve can
provide that. Rather, you get a nebulous object known as an interpolating function. It is a numerical
approximation to the true solution of the differential equation on the specified domain. It behaves
like an ordinary function in that it can be plotted, and can be used in calculations:

In[11]:= sol NDSolve y ' t 0.05 y t 0.0001 y t 2, y 0 10 , y t , t, 0, 200

Out[11]= y t InterpolatingFunction 0., 200. , t

220 Calculus

In[12]:= Plot y t . sol 1 , t, 0, 200

Out[12]=

50 100 150 200

100

200

300

400

500

You can also produce a table of values for such a function:

In[13]:= data Table t, y t . sol 1 , t, 0, 200, 20 ;

Text Grid Prepend data, "t", "y t " , Alignment ".", Dividers Gray

Out[14]=

t y t
0 10.
20 26.2797
40 65.5185
60 145.367
80 263.509
100 375.895
120 445.848
140 478.614
160 491.914
180 496.995
200 498.89

Exercises 5.9

1. Find the general solution to the differential equation dy

dx
4 x y2 and then plot several solutions

by choosing specific values of the constant.

2. Find the general solution for the second order differential equation d2 y

dx2

dy

dx
cos x and then

plot solutions for several values of the constants.

3. Use NDSolve to find the solution of d2 y

dx2

dy

dx
cos x subject to the initial conditions y 0 1

and y ' 0 .4 and then plot this solution.

5.9 Differential Equations 221

5.10 Integration
If you haven’t been impressed thus far, this is where Mathematica really pays for itself. Unlike
differentiation, which with perseverance can always be completed by hand, integration can be
exceedingly difficult. In most cases, however, if a function has a known antiderivative, Mathematica
can find it:

In[1]:=
1

1 x3
x

Out[1]=

ArcTan 1 2 x

3

3

1

3
Log 1 x

1

6
Log 1 x x2

The integration button can be found on the BasicMathInput palette. First type a function (1

1 x3 in the

example above), then highlight it with your mouse. Now press the button on the BasicMathIn–

put palette. Your function will be pasted inside the integral at the position of the black square, and
the cursor will be at the second placeholder. Here you type the variable with respect to which the
integration will be performed (x in the example above). Now enter the cell.

If the function you wish to integrate is already on your screen (in an output cell for instance),
highlight it using the mouse, then push the integration button. It will be pasted inside the integral
in a new input cell. You then enter the variable with respect to which the integration is to be
performed and enter the cell.

Some people find it more natural to use the palette in a slightly different way, first pushing the
integral button, and then typing the function in the position delimited by the first placeholder. This
is okay, but be careful. If the expression you want to integrate is a sum, you need to put grouping
parentheses around the whole thing. Here’s what happens if you don’t:

In[2]:= 1 x2 x

Integrate::nodiffd :

1 cannot be interpreted. Integrals are entered in the form f x, where is entered as dd .

You can probably make sense of this message: Mathematica sees the incomplete expression 1 from

which it is supposed to subtract x2 x. That’s nonsense. With the parentheses things work fine:

In[2]:= 1 x2 x

Out[2]= x
x3

3

Note also that you must be sure to Clear any previous assignment made to the integration variable.

222 Calculus

Here’s what to expect if you do not:

In[3]:= x 3

Out[3]= 3

In[4]:= 2 x x

Integrate::ilim : Invalid integration variable or limit s in 3.

Out[4]= 6 3

Clearing x is the remedy here:

In[5]:= Clear x

In[6]:= 2 x x

Out[6]= x2

You can produce the symbol without the palette by typing int , and you can produce the
symbol by typing dd . This will allow you to type an integral entirely from the keyboard.
Alternatively, you can use the Integrate command. It does the same thing as the palette button
described above; in fact the palette button provides a means of utilizing the standard syntax for
integrals, but when evaluated it simply calls the Integrate command. The standard Mathematica
syntax leaves no ambiguity as to the necessity of grouping parentheses; the integrand is simply the
first argument. The integration variable is the second.

In[7]:= Integrate ArcTan x , x

Out[7]= x ArcTan x
1

2
Log 1 x2

It is important to remember that if a function has one antiderivative, it has infinitely many others.
But given one, any other can be obtained by adding a constant to it. Mathematica always gives the
most simple antiderivative, the one whose constant term is zero.

One may also use Integrate to produce a general formula by using an integrand that includes one or
more symbolic parameters. Here, for instance, is the first integration formula one typically learns in
a calculus course:

In[8]:= Clear n, x ;

xn x

Out[9]=
x1 n

1 n

5.10 Integration 223

Note that this formula holds for almost all n (it fails if n 1). It is an intentional design feature to
not specify such special cases, like this one where there is a single exception to the general formula
provided. This means it’s left to you, the user, to critically contemplate the output, cognizant that
there may be exceptions. However it is also possible to get a piecewise function as the value of an
integral. This will occur when there are two or more measurable regions on which the integral
assumes different values. A typical example of this behavior is when the integrand is itself a piece-
wise function.

In[10]:=
n x 1 x 0

n x x 0
x

Out[10]=

n x

n
x 0

1

n
x 2

3
x n x True

All of the familiar integration formulae are at your fingertips. Here we see the chain rule, which is
the basis for the technique of substitution:

In[11]:= Clear F, u, x ;

F ' u x u' x x

Out[12]= F u x

A more subtle feature of the Integrate command is the manner in which real variables are handled.
By default, it is assumed that the integrand is a function that may assume complex values, and that
may accept complex input. In most cases this creates no issue whatever. But there are exceptions, so
it is important to know how to restrict the values of parameters to the field of real numbers. To do
so, follow the syntax of this example:

In[13]:= Assuming t Reals, t4 2 t2 1 t

Out[13]= t
t3

3

This input reads pretty much as one would say it out loud: assuming that t is an element of the
reals, integrate the function that follows with respect to t. Equivalently, you may add an Assump
tions option to the Integrate command:

In[14]:= Integrate t4 2 t2 1 , t, Assumptions t Reals

Out[14]= t
t3

3

The outputs above are simpler than that produced by a straight integration:

224 Calculus

In[15]:= t4 2 t2 1 t

Out[15]=

t 1 t2 2
3 t2

3 1 t2

This output is different since 1 t2 2
 does not necessarily simplify to 1 t2 when t is a complex

number. Every complex number has two square roots, and the radical indicates the principal square
root (see Exercise 2). More examples that make use of Assumptions are provided in the next section.

It is also worth noting that there are numerous “special” functions that cannot be defined in terms
of such elementary functions as polynomials, trigonometric functions, inverse trigonometric func-
tions, logarithms, or exponential functions, but that can be described in terms of antiderivatives of
such functions. If you use Mathematica to integrate a function and see in the output something
you’ve never heard of, chances are that Mathematica is expressing the integral in terms of one of
these special functions. Here’s an example:

In[16]:= Cos x2 x

Out[16]=
2

FresnelC
2

x

Let’s inquire about FresnelC:

In[17]:= ? FresnelC

FresnelC z gives the Fresnel integral C z .

Don’t be intimidated by such output. It simply says the integral you asked for cannot be expressed
in terms of elementary functions. It expresses the answer in terms of another such integral, one so
famous that it has its own name (like FresnelC). Augustin Fresnel (1788–1827) was a French mathe-
matical physicist who studied this and similar integrals extensively. There is a FresnelS integral as
well, it uses sine in place of cosine.

There is also the possibility that Mathematica will evaluate an integral producing an expression that
involves complex numbers. Such numbers can be recognized by the presence of the character in

the output, which denotes 1 . In cases such as this, the Assumptions option that we mentioned

earlier will not eliminate the appearance of complex numbers. Rather, they are necessary (even in
the real case) to express the antiderivative.

5.10 Integration 225

In[18]:= x x3 x

Out[18]=

2 x x3 x3 2 2 1 3 4 EllipticE ArcSinh 1 1 4 x , 1 EllipticF ArcSinh 1 1 4 x , 1

1 x2

5 x

In this example we also have an appearance by the special function EllipticE. What’s that?

In[19]:= ? EllipticE

EllipticE m gives the complete elliptic integral E m .

EllipticE , m gives the elliptic integral of the second kind E m .

If that’s not helpful, don’t worry about it. Suffice it to say that there is a whole universe of special
functions out there, and you’ve just caught a glimpse of a small piece of it. The bottom line is that
integration is difficult by nature. Mathematica doesn’t know whether or not you hold a Ph.D. in
mathematics. It does the best it can. You shouldn’t be surprised or discouraged if you occasionally
get a bit more back than you expected.

Another possibility when integrating is that Mathematica simply won’t be able to arrive at an
answer. Alas, some integrals are just that way. In such situations, the output will match the input
exactly:

In[20]:= ArcTan t t

Out[20]= ArcTan t t

Exercises 5.10
1. Evaluate the following integrals. Note that in many cases a constant a appears in the integrand,

and that in all cases the integration is with respect to the variable u. The results mimic many
standard integral tables (such as those found on the inside jackets of calculus textbooks).

a. a2 u2 u

b. a2 u2 u

c. a2 u2 3 2
u

d. u 2 a u u2 u

226 Calculus

e. sec u u

2. Show that for c 1 it is not the case that c2 c, then find another complex number c for

which the equation does not hold.

3. Consider the family of functions ln x, ln x 2, ln x 3, ln x 4, etc.

a. Integrate ln x n for integers n 1 through 5, identify the pattern, and propose a general
formula for ln x n x for any positive integer n.

b. Using pencil and paper, prove that the derivative (with respect to x) of the expression in your
formula reduces to ln x n. You will then have proved that your formula is correct. Congratula-
tions—you have just discovered and proved a mathematical theorem!

4. Integrate the following functions, and display the results in a table. Can you find a pattern
(among the latter outputs) that will enable you to predict the value of the next integral?

x, x 1 , x 1 1 , x 1 1 1 ,

x 1 1 1 1 , x 1 1 1 1 1

5.11 Definite and Improper Integrals

Computing Definite Integrals

You’ve probably already found the button on the BasicMathInput palette. Use the key to

move from one placeholder to the next:

In[1]:=
2

2

1 x2 x

Out[1]=
4

3

The same comments made in the last section with regard to grouping parentheses apply here as
well; in particular, if you push the palette button before typing the expression you wish to integrate,
it may be necessary to put grouping parentheses around that expression when you type it. If you
prefer typing to palettes, the command you need is Integrate. It works as it did in the last section,
but the second argument is now an iterator giving the name of the variable and the bounds of
integration.

5.11 Definite and Improper Integrals 227

In[2]:= Integrate 1 x2, x, 2, 2

Out[2]=
4

3

Here is a plot where the value of the definite integral corresponds to the signed area of the shaded
region—the area of the portion above the x axis minus the area of the portion below it:

In[3]:= Plot 1 x2, x, 2, 2 , Filling Axis

Out[3]=

As in the previous section, the option setting Assumptions may be used, or equivalently an integral
created using the palette may be placed as the second argument to the Assuming command. Here’s
an example:

In[4]:= Clear x, n ;

n

n

Abs x x

Out[5]= n Abs n

In[6]:= Assuming n 0,
n

n
Abs x x

Out[6]= n2

A little thought will reveal that the first output above is exactly right; if n is a negative number the
absolute value is an absolute necessity.

There is a special class of function that needs discussion. We saw in Sections 3.2 and 4.4 that

Mathematica’s cube root function x1 3 (internally this is Power[x, 1/3]) differs from the elementary
cube root function found in most calculus texts when x is negative. For instance, most calculus texts

use the real cube root function, for which 8 1 3 2. In Mathematica, the principal cube root

function is used instead, so that 8 1 3 1 3 , a complex number. In Section 3.2 an alternate

power command called realPower was defined that can be used to emulate the real-valued power
functions commonly encountered in such a course. We restate that definition here for convenience:

228 Calculus

In[7]:= realPower x , p : If x 0 && Element p, Rationals ,

If OddQ Denominator p , If OddQ Numerator p ,

Power x, p , Power x, p , Power x, p , Power x, p

If you need to integrate a power function where the power is a rational number with odd denomina-
tor, and the bounds of integration include negative numbers, you need to know which power
function to use. If you wish to use the real-valued power function (the one typically used in calculus
courses), you will want to use this realPower command rather than Mathematica’s default Power

command. The following example illustrates the difference (note that the antiderivative of x 2 3 is

3 x1 3):

In[8]:= Integrate x 2 3, x, 4, 0 ComplexExpand

Out[8]=
3

21 3

3 3

21 3

In[9]:= Integrate realPower x, 2 3 , x, 4, 0

Out[9]= 3 22 3

Note also that with complex numbers lingering just below the surface, it should be a comfort to
know that in many cases they simply cannot arise. For instance, if one has real numbers for both
upper and lower bounds (so that one is integrating over a real interval), and in addition the inte-
grand is a real-valued function on this interval, then the definite integral, if it converges, must
evaluate to a real number. Even if Mathematica produces complex output (the symbol can be seen),
you can be assured that the expression is using complex numbers to represent a real number. For
example, the following output must be a real number, as the integrand is real—it’s the square root
of a positive real number throughout the interval 0, 1 . In the next section we discuss how to
approximate such knotty numbers as the output below.

In[10]:=
0

1

t4 2 t2 2 t

Out[10]=
1

3
5 2 1 EllipticE ArcSinh

1

2 2
,

2 1 EllipticF ArcSinh
1

2 2
,

5.11 Definite and Improper Integrals 229

Riemann Sums
Mathematica makes the computation of Riemann sums easy with the Sum command. Sum works
very much like Table, but rather than producing a list of the specified items, it adds them:

In[11]:= Sum i2, i, 1, 4

Out[11]= 30

This is the same as adding 1 4 9 16. The advantage of using the Sum command for such addi-
tions can be seen when you want to add lots of numbers:

In[12]:= Sum i2, i, 1, 100

Out[12]= 338350

There is a palette version of the Sum command on the BasicMathInput palette that allows you to

employ the traditional summation notation. Use the button, and then use the key to move

from one placeholder to the next:

In[13]:=
i 1

100

i2

Out[13]= 338350

The cells below provide an example of a Riemann sum computation for a function f over the

interval from a to b, with n rectangles and f evaluated at the left endpoint of each subinterval. The

first cell sets the values of f , a, and b. It needs to be edited every time you move from one example

to the next:

In[14]:= Clear f, a, b, n, x, x, i ;

f x : Cos x ;
a 0;

b 2;

The following cell makes use of the values above and defines the appropriate Riemann sum as a
function of n. It does not need to be edited as you move from one example to the next:

In[18]:= x n :
b a

n
;

x i , n : a i x n ;

leftRsum n :
i 0

n 1

f x i, n x n N

230 Calculus

The function x returns the width of an individual rectangle—it is a function of n because its value
depends on the number of subintervals between a and b. The function x returns the right endpoint
of the ith subinterval. It is a function of both i and n. Lastly, leftRsum returns the Riemann sum for
your function between a and b, with the function evaluated at the left endpoint of each subinterval.
It is a function of n, for its value depends on the number of rectangles used. Here is the Riemann
sum for cos x on the interval 0, 2 with 50 rectangles:

In[21]:= leftRsum 50

Out[21]= 0.937499

Note that the values of i in the summation (from 0 to n 1) dictate that f be evaluated at the left

endpoint of each subinterval. To compute a Riemann sum with f evaluated at the right endpoint of

each subinterval you can change the bounds of the summation to 1 and n:

In[22]:= rightRsum n :
i 1

n

f x i, n x n N

In[23]:= rightRsum 50

Out[23]= 0.880853

Either sum can be viewed as an approximation to the definite integral of f over the interval from a

to b. It is not hard to modify the process to generate other approximations such as those employing
the trapezoidal rule or Simpson’s rule. The approximations tend to get better as the value of n
increases, as the following table shows:

In[24]:= data Table n, rightRsum n , n, 50, 400, 50 ;

dataWithHeadings Prepend data, "n", "Riemann Sum" ;

Text Grid dataWithHeadings, Alignment Left, Dividers Center, 2 True

Out[25]=

n Riemann Sum
50 0.880853
100 0.895106
150 0.899843
200 0.902209
250 0.903628
300 0.904574
350 0.905249
400 0.905755

Curious about the actual value of the integral?

5.11 Definite and Improper Integrals 231

In[26]:=
0

2
f x x N

Out[26]= 0.909297

Here is a plot where the value of the definite integral corresponds to the signed area of the shaded
region:

In[27]:= Plot f x , x, 0, 2 , Filling Axis

Out[27]=

Computing Improper Integrals
Just use as a bound of integration. You may use the button on the BasicMathInput palette, or

type inf , or type the word Infinity:

In[28]:=
x2

x

Out[28]=

In[29]:= Integrate
1

x3
, x, 1,

Out[29]=
1

2

Of course there is the possibility that an improper integral will fail to converge. Mathematica will
warn you in such circumstances:

In[30]:=
1

1

x
x

Integrate::idiv : Integral of
1

x
does not converge on 1, .

232 Calculus

In[31]:=
1

1

x
x

Integrate::idiv : Integral of
1

x
does not converge on 1, .

Out[31]=
1

1

x
x

Other improper integrals occur when a function has a vertical asymptote between the upper and
lower bounds. It is dangerous to evaluate these integrals by hand using the Fundamental Theorem of
Calculus without carefully considering the behavior of the function at the asymptotes. Luckily,
Mathematica is very careful and will tell you when these integrals do and do not converge.

In[32]:=
2

2 1

x2
x

Integrate::idiv : Integral of
1

x2
does not converge on 2, 2 .

Out[32]=
2

2 1

x2
x

In[33]:= Plot
1

x2
, x, 2, 2 , PlotRange 0, 500 , Filling Axis

Out[33]=

Mathematica is rightly reporting that the shaded area (were it not cut off at y 500) is infinite. Here

is another example:

5.11 Definite and Improper Integrals 233

In[34]:=

2

2
Csc x x

Integrate::idiv : Integral of Csc x does not converge on
2

,
2

.

Out[34]=

2

2
Csc x x

In[35]:= Plot Csc x , x,
2

,
2

, PlotRange 100, Filling Axis

Out[35]=

Students frequently argue that this integral should be zero due to the symmetry apparent in the
graph. But Mathematica is returning the correct answer. Since the area to the left of x 0 is not
convergent the entire integral is divergent.

In[35]:= Clear b ;

Limit
2

b

Csc x x, b 0, Direction 1

Out[36]=

In the previous examples the functions had asymptotes at x 0. In the next example the interval
also contains a vertical asymptote but the integral converges.

In[37]:=
3

5 1

x 3
x

Out[37]= 2 2

234 Calculus

In[38]:= Plot
1

x 3

, x, 3, 5 , PlotRange 0, 10 , Filling Axis

Out[38]=

Defining Functions with Integrals
It is possible to define functions by integrating dummy variables:

In[39]:= Clear a, t, v, s
a t : 32

In[41]:= v t :
0

t

a u u 20

In[42]:= s t :
0

t

v u u 4

In[43]:= s t

Out[43]= 4 20 t 16 t2

You simply need to remember that Integrate always returns the antiderivative whose constant term
is equal to zero, so constants need to be included in such definitions. The function v t above
satisfies the condition that v 0 20, while the function s t satisfies s 0 4. In the example above,
s t represents the height in feet above ground level of an object after t seconds if it is thrown
vertically upward at an initial velocity of 20 feet per second and from an initial height of 4 feet; v t
is the velocity of the object at time t, and a t is the object’s acceleration. Air resistance is ignored.

Some Integrals Are Bad
And as is the case with indefinite integrals, there are functions for which there is no way to express
an antiderivative in closed form, and consequently no way to evaluate the definite integral exactly:

In[44]:=
0

1
ArcTan t t

Out[44]=
0

1

ArcTan t t

5.11 Definite and Improper Integrals 235

Even in cases like this, you will often be able to get numerical approximations:

In[45]:= N

Out[45]= 0.629823

The next section explores a better way to get numerical approximations of definite integrals.

Exercises 5.11

1. Make the following sketch of the graph of f x 1

x2 , and evaluate the definite integral of f from

x 1 to x 3.

2. Evaluate the following definite integrals.

a.
0

1

t4 2 t2 1 t

b.
0

1

t4 2 t2 2 t

c.
0

cos t 10 t

3. Use a Riemann sum to approximate the second of the three integrals in the previous exercise.

a. Use n 100 subintervals and left endpoints.

b. Use n 100 subintervals and right endpoints.

c. Use n 100 subintervals and midpoints.

d. Make a Plot of f x x4 2 x2 2 and use it to decide which of the three approximations is
best.

236 Calculus

4. Your opponent chooses a number p strictly between 0 and 1. Your opponent then chooses a

second number q strictly between 2 and 2. To defeat your opponent, find a strictly increasing

function on the domain 0, 1 passing through 0, 0 and 1, 1 whose arc length exceeds q, and

whose integral over 0, 1 is

a. smaller than p.

b. greater than p.

Hint: Enter the following input:

Manipulate

Plot

1 a
a

x 0 x a

a
1 a

x 1 2 a
1 a

a x 1
, x, 0, 1 , PlotRange 0, 1 , 0, 1 ,

AspectRatio Automatic, Filling Axis , a, .75 , 0, 1

5. Under what conditions on a real number n does the integral
0
1xn x converge?

6. Assuming that a and b are real numbers, under what specific conditions on a and b can the

integral
a
b

t t be evaluated? What is does it evaluate to in this case?

7. Use Integrate to illustrate the two parts of the fundamental theorem of calculus.

8. Use D and Integrate to calculate a formula for d

dx a
g x f t t.

9. Sometimes Integrate will return output involving Root objects. Enter
0
1 t3 3 t 1 t into

Mathematica, and regardless of the output, explain why this integral must converge to a real (as
opposed to a complex) number.

5.12 Numerical Integration
Mathematica has a numerical integration command, NIntegrate, which is extremely effective at
providing numerical approximations to the values of definite integrals, even those (indeed,
especially those) that the Integrate command can’t handle:

In[1]:= Integrate ArcTan t , t, 0, 1

Out[1]=
0

1

ArcTan t t

5.12 Numerical Integration 237

In[2]:= NIntegrate ArcTan t , t, 0, 1

Out[2]= 0.629823

Here’s an example where using Integrate followed by N gives a different result than NIntegrate.
That can happen! In almost all cases, NIntegrate will provide a better result. Here, the antiderivative
provided by Integrate involves complex numbers, and when approximated by N a very small
imaginary component (at the threshold of machine precision) persists.

In[3]:=
0

1
t4 2 t2 2 t

Out[3]=
1

3
5 2 1 EllipticE ArcSinh

1

2 2
,

2 1 EllipticF ArcSinh
1

2 2
,

In[4]:= N

Out[4]= 1.67571 7.40149 10 17

NIntegrate does a better job:

In[5]:= NIntegrate t4 2 t2 2 , t, 0, 1

Out[5]= 1.67571

NIntegrate accepts arguments exactly as Integrate does for handling definite integrals. There is no
palette version of NIntegrate. It is important to understand that NIntegrate works in an entirely
different way from Integrate. Rather than attempt symbolic manipulation, NIntegrate produces a
sequence of numerical values for the integrand over the specified interval, and uses these values to
produce a numerical estimate for the integral. Although the algorithm used is quite sophisticated,
you can think of NIntegrate as producing something analogous to a Riemann sum. The good news
is that you now have at your disposal a means for estimating some very messy integrals. The bad
news is that NIntegrate can occasionally produce poor estimates. Just as the Plot command can
miss features of the graph of a function that are “narrow” relative to the domain over which it is
plotted, NIntegrate can miss such features also. Problems arise if points near the narrow feature are

not sampled (for a discussion of the Plot command in this context, see Section 3.2 on page 55). Here
is an example:

238 Calculus

In[6]:= Plot x 2 2
, x, 5, 5 , PlotRange 0, 1 , Filling Axis

Out[6]=

Here is the same function plotted over a much larger domai o much larger that the bump
disappears from view:

In[7]:= Plot x 2 2
, x, 5000, 5000 , PlotRange 0, 1 , Filling Axis

Out[7]=

4000 2000 0 2000 4000

0.2

0.4

0.6

0.8

1.0

In[8]:= NIntegrate x 2 2
, x, 5, 5

Out[8]= 1.77243

When NIntegrate is applied to this function over the larger domain, it also misses the bump:

In[9]:= NIntegrate x 2 2
, x, 5000, 5000

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near x

19.3758 . NIntegrate obtained 1.9195034084772933` and

1.1959812980962528` for the integral and error estimates.

Out[9]= 1.9195

5.12 Numerical Integration 239

The warning messages provide a hint that something might not be right, yet an incorrect output is
generated. This phenomenon can be even worse if the integrand has discontinuities, for in such
situations the actual definite integral may not have a real value, yet NIntegrate may report one. The
following integral, for example, does not converge:

In[10]:= NIntegrate
1

x 1 x 2
, x, 0, 3

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near x

1.99809 . NIntegrate obtained 7.353131720000712` and

10.725954889917318` for the integral and error estimates.

Out[10]= 0. 101

Taking the right and left limits of the exact integral as the upper and lower bounds, respectively,
approach 1 demonstrates nonconvergence:

In[11]:= Limit
0

b 1

x 1 x 2
x, b 1, Direction 1

Out[11]=

In[12]:= Limit
a

3 2 1

x 1 x 2
x, a 1, Direction 1

Out[12]=

If you know that the integrand has discontinuities in the interval over which you are integrating
(vertical asymptotes in the graph are a giveaway), you can instruct NIntegrate to look out for them
by replacing the iterator {x,xmin,xmax} with {x,xmin,x1,x2,x3,…,xmax}, where x1, x2, x3, … are the

points of discontinuity. Sometimes this won’t help, certainly not in those cases when the integral
does not have a real value:

240 Calculus

In[13]:= NIntegrate
1

x 1 x 2
, x, 0, 1, 2, 3

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near x 83 .

NIntegrate obtained 146.633 and 28.765504119209318` for the integral and error estimates.

Out[13]= 146.633

But if the integral has a value, NIntegrate will usually produce a very good approximation to it:

In[14]:= NIntegrate
1

x 1 24
, x, 0, 1, 3

Out[14]= 4.82843

In[15]:= Plot
1

x 1 24
, x, 0, 3 , PlotRange 0, 14 , Filling Axis

Out[15]=

One strategy to help you determine if NIntegrate is providing an accurate answer is to examine
carefully the plot of the integrand. If the numerical value provided by NIntegrate appears consis-
tent with the area in the plot, but you still have your doubts, you might try breaking up your
integral as a sum of integrals over various disjoint intervals whose union is the interval over which
you are integrating. Place short intervals around any discontinuities:

In[16]:= Assuming b 1,
0

b 1

x 1 24
x

Out[16]= 2 2 1 b

5.12 Numerical Integration 241

In[17]:= Limit , b 1, Direction 1

Out[17]= 2

In[18]:=
1

3 1

x 1 24
x

Out[18]= 2 2

In[19]:= Assuming a 1,
a

3 1

x 1 24
x

Out[19]= 2 2 1 a

In[20]:= Limit , a 1, Direction 1

Out[20]= 2 2

In[21]:= NIntegrate
1

x 1 24
, x, 0, 0.9

NIntegrate
1

x 1 24
, x, 0.9, 1, 1.1 NIntegrate

1

x 1 24
, x, 1.1, 3

Out[21]= 4.82843

Good. This is consistent with the previous output. As usual, it is up to you to test and decide on the
efficacy of results produced with the computer.

Exercises 5.12

1. Use NIntegrate to produce a numerical approximation to
0
1 t3 3 t 1 t.

5.13 Surfaces of Revolution
Surfaces of revolution are often difficult for calculus students to visualize. The command Revolution
Plot3D makes this easy once you understand how it works. RevolutionPlot3D always rotates the
curve about the vertical axis. A student in single variable calculus can interpret this as rotation about

the y-axis. The plot below shows y x2, for the x values 0 through 2, rotated about the y-axis a full

360 degrees.

242 Calculus

In[1]:= RevolutionPlot3D x2, x, 0, 2

Out[1]=

Once you have generated a plot you can grab it with your mouse and rotate it to view it from any
angle. With a little work you can use this feature to display a curve as if it has been rotated about the
x-axis. To do this it helps to fully understand the command RevolutionPlot3D. The basic syntax for
this command is RevolutionPlot3D[f(t),{t,tmin,tmax}]. This generates a surface with height f t at

radius t rotated about the vertical axis. To get a plot of the surface generated by revolving y x2 for

the x values 0 through 2 about the x-axis you must first generate the graph below:

In[2]:= RevolutionPlot3D y , y, 0, 4

Out[2]=

 Now use your mouse to orient the surface so that it appears to be a revolution about the x-axis as
below:

5.13 Surfaces of Revolution 243

We used y above since it is the inverse of x2. As x goes from 0 to 2, y goes from 0 to 4.

Sometimes it can be easier to visualize a surface by cutting it open and peering inside. You can do

this by plotting it on less than a full revolution. The plot below shows the revolution of both x2 and

x about the y-axis through only 270 degrees. Note that we need to use radians to indicate our

angle of revolution.

In[3]:= RevolutionPlot3D x , x2 , x, 0, 1 , , 0,
3

2
, ViewPoint 4, 5, .5

Out[3]=

Consider the region shaded below.

In[4]:= Plot 2 x2, x , x, 0, 1 , Filling 1 2

Out[4]=

244 Calculus

To display the surface formed when this region is revolved about the y-axis enter:

In[5]:= RevolutionPlot3D 2 x2 , x , x, 0, 1 , ,
4

,
3

2

Out[5]=

To display the surface formed when this region is revolved about the x-axis enter the command
below, and then maneuver the plot appropriately with your mouse.

In[6]:= RevolutionPlot3D
y 0 y 1

2 y 1 y 2
, y, 0, 2 , , 0,

3

2
, BoxRatios 1

Out[6]=

Exercises 5.13
1. Use RevolutionPlot3D to plot y sin x on the interval 0 to 4 and revolve the surface through

330 degrees.

2. Use RevolutionPlot3D to plot a sphere of radius 6.

5.13 Surfaces of Revolution 245

5.14 Sequences and Series
Convergent sequences can be investigated with the Limit command (discussed in Section 5.1 on

page 196). To type you can either type Infinity or find the symbol in the BasicMathInput

palette, or just type inf .

In[1]:= Limit
n

nn
, n

Out[1]= 0

In[2]:= Limit n Sin n , n

Out[2]=

There are several powerful commands for dealing with series. The first and most simple is the Sum
command, discussed earlier in this chapter—see the subsection “Riemann Sums” in Section 5.11 on

page 230. If you haven’t yet used this command (to compute a Riemann sum, for instance), it’s not
hard. It works like the Table command, but rather than creating a list of the specified items, it adds
them.

The really amazing thing about this command is that it can accept as a bound, meaning that it
can find the value of an infinite series.

In[3]:=
n 1

1

n2

Out[3]=

2

6

In[4]:= N

Out[4]= 1.64493

Of course some series fail to converge, and others have solutions that Mathematica will not be able to
find. Solutions to the latter type can be approximated by summing a large number of terms. Here is
a series that doesn’t converge:

In[5]:=
n 1

Cos n

Sum::div : Sum does not converge.

Out[5]=
n 1

Cos n

Here is an example of a series involving an independent variable x. Note that the nonpalette version

246 Calculus

of the Sum command is more flexible than its palette counterpart in that the iterator can be

adjusted to skip certain terms. Here is the sum 1 x2 x4 :

In[6]:= Clear x ;

Sum xn, n, 0, , 2

Out[7]=
1

1 x2

In this example Mathematica reported a solution, but did not specify which values of the indepen-
dent variable x are acceptable. In particular, note that if x 1 the denominator will be zero, and
the solution makes no sense. Mathematica reports the solution you most probably need in such
situations, but it is up to you to determine the region of convergence, those values of the independent
variable for which the solution is valid. In the example above, x must fall strictly between 1 and 1
for the solution to be valid.

The Mathematica command that more or less undoes what the Sum command does is the Series
command. Here are the first few terms (those with degree not exceeding five) of the Taylor series

expansion of 1 1 x2 :

In[8]:= Series
1

1 x2
, x, 0, 5

Out[8]= 1 x2 x4 O x 6

The Series command requires two arguments. The first is the function for which you wish to find a
power series expansion. The second is a special iterator, one whose form is variable, x0, power}, where

variable names the independent variable, x0 is the point about which the series is produced, and

power specifies the highest power of the variable to be included in the output. The output includes a
big O term, indicating that there are more terms in the series than those being shown. To get rid of
the big O term, use the Normal command:

In[9]:= Normal

Out[9]= 1 x2 x4

You can produce a plot of this polynomial and the function. Note that the polynomial provides a
good approximation to the function when x is near x0 (x0 0 in this example):

5.14 Sequences and Series 247

In[10]:= Plot ,
1

1 x2
, x, 1, 1

Out[10]=

1.0 0.5 0.5 1.0

1.5

2.0

2.5

3.0

3.5

4.0

Note that you can get the formula for a Taylor series expansion for an arbitrary function (such as f)

about an arbitrary point (such as a). Here are the first four terms of such a series:

In[11]:= Clear a, f ;
Normal Series f x , x, a, 3

Out[12]= f a a x f a
1

2
a x 2 f a

1

6
a x 3 f 3 a

In fact it is a simple matter to design a custom command for generating Taylor polynomials of
degree n for the function f about the point x0:

In[13]:= taylor f , x , x0 , n : Normal Series f x , x, x0, n

For example, we can now easily compute the eleventh-degree Taylor polynomial for the sine func-
tion, expanded around the point x 0:

In[14]:= taylor Sin, x, 0 , 11

Out[14]= x
x3

6

x5

120

x7

5040

x9

362880

x11

39916800

Here is another example. The fourth-degree Taylor polynomial for cos x , expanded about the point
x

4
, is given below:

In[15]:= taylor Cos, x,
4

, 4

Out[15]=
1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

4
x

4

24 2

And here is a list of the first five Taylor polynomials for cos x , again expanded about the point x
4
:

248 Calculus

In[16]:= Table taylor Cos, x,
4

, n , n, 5 Column

Out[16]=

1

2

4
x

2

1

2

4
x

2

4
x

2

2 2

1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

4
x

4

24 2

1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

4
x

4

24 2

4
x

5

120 2

Finally, let’s produce a sequence of graphics, one for each of the first twelve Taylor polynomials for
the cosine function, expanded about the point

4
. Each plot will show the cosine function in light

gray, with the Taylor polynomial in black, and with the point
4
, cos

4 4
, 1

2
, highlighted.

The individual frames are displayed in a Grid below, and should be read sequentially from left to
right across the rows to increase the degree of the Taylor polynomial.

In[17]:= tlist Table taylor Cos, x,
4

, n , n, 12 ;

In[18]:= plots Table Plot f, Cos x , x, 2 , 2 ,

PlotRange 3, Ticks None, PlotStyle Black, Darker Gray ,

Epilog PointSize .02 , Point
4

,
1

2
, f, tlist ;

In[19]:= GraphicsGrid Partition plots, 3

Out[19]=

5.14 Sequences and Series 249

In a live session the following command is fun. Simply click on a tab to see the Taylor polynomial of
that degree.

In[23]:= TabView Table k plots k , k, 12 , ImageSize Automatic

Out[23]=

1 2 3 4 5 6 7 8 9 10 11 12

Exercise 3 below shows how to use the Thread command to construct this TabView.

Exercises 5.14

1. Find the limit of the sequence: 2

1
, 3

2

2
, 4

3

3
, 5

4

4
, …

2. Find the limit of the sequence: 1

1

1

2
, 1

2

2

3

2

4
, 1

3

3

4

3

5

3

6
, 1

4

4

5

4

6

4

7

4

8
, …

3. The Thread command can be used to take two lists such as {1,2,3} and {a,b,c}, and thread some
command f through them to produce the list {f[1,a],f[2,b],f[3,c]}. It is particularly handy when

constructing a TabView object, where the syntax requires a list of the form {label1 item1,label2
item2,label3 item3,...}. In this case, f is the command Rule (the FullForm of 1 a is

Rule[1,a]). Thread is discussed in greater detail in Section 8.4 on page 403.

a. Enter the following inputs to see Thread in action.

Thread exampleFunction 1, 2, 3 , a, b, c

Thread Rule 1, 2, 3 , a, b, c

Thread 1, 2, 3 a, b, c

b. Use Thread rather than Table to create the TabView shown at the end of this section.

4. Create a TabView that displays the first 10 distinct Taylor polynomials for sin x expanded about
x0 0.

250 Calculus

6
Multivariable Calculus

6.1 Vectors
A standard notation for a vector in the plane is a coordinate pair, such as 2, 5 . This represents the
vector that has its tail at the origin and its head at the point with x coordinate 2 and y coordinate 5.

Another standard notation for this vector is 2 i 5 j. Here i and j denote the unit vectors in the x

and y directions, respectively.

In Mathematica, a vector in the plane is expressed as a list of length two, such as 2, 5 . Vector
addition and scalar multiplication work exactly as you would expect:

In[1]:= 2, 5 17, 4

Out[1]= 19, 1

In[2]:= 4 2, 5

Out[2]= 8, 20

In[3]:= i 1, 0 ;

j 0, 1 ;

2 i 5 j

Out[5]= 2, 5

Higher-dimensional vectors are simply given as longer lists. Here is the sum of two vectors in three-
space:

In[6]:= 3, 57, 8 57, 3,
4

Out[6]= 60, 60, 8
4

The Dot Product and the Norm
The dot product of the vectors u1, u2, …, un and v1, v2, …, vn is the scalar u1 v1 u2 v2 un vn.

You can compute the dot product of vectors with Mathematica by placing a dot (a period) between
them:

In[7]:= u1, u2 . v1, v2

Out[7]= u1 v1 u2 v2

In[8]:= 3, 4 . 4, 5

Out[8]= 32

You can calculate the norm (i.e., the length or magnitude) of a vector using the Norm command.

In[9]:= Norm 3, 4

Out[9]= 5

In[10]:= Norm u1, u2

Out[10]= Abs u1
2 Abs u2

2

For real vectors, this is equivalent to the square root of the dot product of the vector with itself.

In[11]:= Simplify Norm u1, u2 , u1, u2 Reals

Out[11]= u1
2 u2

2

In[12]:= u1, u2 . u1, u2

Out[12]= u1
2 u2

2

We have made use of subscripts to display general vectors. This looks very nice. However, it
can get you into trouble if you try to give such a vector a name. You should never enter input

such as u u1, u2 . This will throw Mathematica into an infinite loop. See Exercise 4.

The dot product can also be employed to find the angle between a pair of vectors. You may recall

that the cosine of the angle between vectors u and v is given by the formula:

cos u v

u v

where u denotes the norm of u. You can find the angle (in radians) between vectors like this:

252 Multivariable Calculus

In[13]:= u 2, 4 ; v 9, 13 ;

ArcCos
u.v

Norm u Norm v
N

Out[14]= 2.0724

Conversion to degrees requires multiplying by the conversion factor 180 , or dividing by the built-in

constant Degree:

In[15]:= Degree

Out[15]= 118.74

Rendering Vectors in the Plane
One can display vectors using the graphics primitive Arrow.

In[16]:= Graphics Arrow 0, 0 , 1, 1 , Arrow 0, 0 , 2, 1 , Axes True

Out[16]=

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Arrow accepts as its argument a list of two ordered-pairs. These represent the coordinates of the tail
and head of the arrow, respectively. Note, however, that you can double click on any arrow in a
graphic, then drag either end of the arrow to a new location. Or you can drag the middle portion of
the arrow and move the entire thing to a new location, preserving its length and direction.

But working programmatically (rather than grabbing and dragging) is advantageous for attaining
precise positioning. Here we illustrate a vector sum:

6.1 Vectors 253

In[17]:= Graphics

Arrow 0, 0 , 1, 2 , Arrow 0, 0 , 2, 1 ,

Gray, Arrow 1, 2 , 3, 3 , Arrow 2, 1 , 3, 3 ,

Red, Arrow 0, 0 , 3, 3

, PlotRange 0, 3 , 0, 3 , Axes True

Out[17]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

And why not drop it into a Manipulate? This has a Locator at the head of each of the two compo-
nent vectors in the sum, so that you can drag either of those vectors by the head to move them. It’s
actually easier to make sense of the structure of the input when it’s written in this general form:

In[18]:= Manipulate Graphics

Arrow 0, 0 , u , Arrow 0, 0 , v ,

Gray, Arrow u, u v , Arrow v, u v ,

Red, Arrow 0, 0 , u v

, PlotRange 3, Axes True, Ticks None ,

u, 1, 2 , Locator, Appearance None ,

v, 2, 1 , Locator, Appearance None

Out[18]=

254 Multivariable Calculus

There is no primitive Arrow object available for 3D graphics, although the VectorFieldPlot
package has a command called VectorFieldPlot3D which will draw 3D arrows for vector fields.

This is discussed in Section 6.5 on page 327. The issue with 3D arrows is the arrowheads,

which should be cones, and as of version 6 of Mathematica, there is no primitive for cones.

The Cross Product
Imagine a pair of vectors u and v in three-space drawn with their tails at the same point. The cross

product of u and v is a normal vector to the plane determined by u and v, whose magnitude is equal

to the area of the parallelogram determined by u and v.

You can harness Mathematica to take the cross product of a pair of vectors with the command Cross.
Here that command is used to give the general formula for the cross product:

In[19]:= Cross u1, u2, u3 , v1, v2, v3

Out[19]= u3 v2 u2 v3, u3 v1 u1 v3, u2 v1 u1 v2

And here it is used to find the cross product of a specific pair of vectors:

In[20]:= Cross 1, 3, 5 , 7, 9, 11

Out[20]= 12, 24, 12

You can also use the small button on the BasicMathInput palette to calculate cross products. It’s

the button under the near the middle of the palette. Don’t confuse it with the larger button to

its left; that one is used for ordinary (component-wise) multiplication.

In[21]:= 1, 3, 5 7, 9, 11

Out[21]= 12, 24, 12

Exercises 6.1
1. Find an exact expression for the sine of the angle between the vectors 2, 1, 1 and 3, 2, 1 .

2. Look up the Sign command in the Documentation Center. Explain how to use it with the dot
product to determine whether the angle between a pair of vectors is acute, right, or obtuse.

3. The dot product, we learned in this section, is implemented in Mathematica in infix form by
placing a period between a pair of vectors. There is (as always) a “square bracket” version of this
command. It is called Dot.

a. Use Dot to take the dot product of u1, u2, u3 with v1, v2, v3 .

b. The dot product is the most common example of an inner product. Mathematica has another
command called Inner that can be used to create alternate inner products. Verify that the
input Inner[Times, {u1, u2, u3}, {v1, v2, v3}, Plus] gives the same output as that produced in
part a.

6.1 Vectors 255

4. Near the beginning of this section, we did several computations using general vectors of the form
u1, u2 . The subscripts are obtained from the keyboard by typing, for instance, u _ 1. The

FullForm of the resulting expression is Subscript[u,1]. Many textbooks will (in the course of a

proof, for instance) write, “Let u u1, u2 .” While this is a convenient notation, it cannot be
replicated in Mathematica. If you were to enter the input u u1, u2 , what would happen? The
same bad thing will happen if you enter the more simple input u u1. Try it, then explain
what’s going on. As the blues singer Kelly Joe Phelps put it, “It’s not so far to go to find trouble.”

5. Use Mathematica to verify the parallelogram law in 3: For any pair of vectors u and v,

u v
2

u v
2

2 u
2

2 v
2
 .

6.2 Real-Valued Functions of Two or More Variables
One certainly may define a real-valued function with two or more variables exactly as we did in
Chapter 5, but with an additional variable, like this:

In[1]:= f x , y : Sin x2 y2

However, we will generally find it more convenient (for reasons that will come to light shortly) to
make a simple assignment like this instead:

In[2]:= Clear f, x, y ;

f Sin x2 y2 ;

A function of three variables is dealt with similarly. Note that it is important to Clear any variables
that have previously been assigned values.

In[4]:= Clear g, x, y, z ;

g x2 y3 3 x z;

Multiletter variable names
When defining a function, remember to leave a space (or to use a *) between variables
that you intend to multiply, otherwise Mathematica will interpret the multiletter combina-
tion as a single variable. For example, note the space between the x and the z in the
definition of the function g above. Said another way, one may use multiletter variable
names when defining a function; for example, names such as x1, x2, and so on.

To evaluate a function defined in this fashion, one uses replacement rules. For instance, here is

f 0, 4 :

256 Multivariable Calculus

In[6]:= f . x 0, y 4

Out[6]=
1

2

It may be useful to Simplify the output on some occasions. Here is f 1 , 1 :

In[7]:= f . x 1 , y 1

Out[7]= Sin 1 2 1 2

In[8]:= Simplify

Out[8]= 0

Plotting Functions of Two Variables with Plot3D
The plotting of functions of two variables can be performed with the command Plot3D. It works
pretty much like Plot, but you will need an iterator specifying the span of values assumed by each of
two variables. The plot will be shown over the rectangular domain in the plane determined by the
two iterators. When first evaluated, the positive x direction is to the right along the front of the plot,
the positive y direction is to the back along the side of the plot, and the positive z direction is up:

In[9]:= Plot3D f, x, 2, 2 , y, 1, 1

Out[9]=

Grab such a plot with your mouse and drag. This will rotate the image so that you can see it from
any vantage point you like. Hold down the key while you drag and you can zoom in and out.
It’s a beautiful thing.

Note that it is a simple matter to produce a sketch of any vertical cross-section (sometimes called a
trace) for such a plot in either the x or y direction. Simply set one of the two variables to a numerical

value and make a Plot using the other as the independent variable.

6.2 Real-Valued Functions of Two or More Variables 257

In[10]:= Plot f . y 0, x, 2, 2 , AxesLabel x, z

Out[10]=

2 1 1 2
x

0.5

0.5

1.0

z

In[11]:= Plot f . x 0, y, 1, 1 , AxesLabel y, z

Out[11]=

1.0 0.5 0.5 1.0
y

0.8

0.6

0.4

0.2

z

We’ll discuss how one can use the Mesh option to superimpose these traces onto the original
Plot3D of f in the subsection “Controlling the Mesh Lines” on page 265. See Exercise 6 for more on

cross-sections.

Options for 3D Plotting Commands
The information in this section applies to any plotting command that generates a three-dimensional
graphic. Such commands include Plot3D, ContourPlot3D, ParametricPlot3D, SphericalPlot3D,
and RevolutionPlot3D.

There are a host of options available that will allow you to tweak the output of these plotting
commands in some incredible ways. Among the options that are essentially the same as the familiar
options for Plot (see Section 3.3, see page 59) are such common settings as AxesLabel , PlotLabel,
PlotPoints, MaxRecursion and PlotRange. Other options, such as Mesh and MeshFunctions, work
in a similar manner as they do in Plot, but now everything is one dimension higher. In short, they
will take some getting used to.

PlotPoints, MaxRecursion, and Toggling Mesh to None or All
Note first that the simple setting Mesh None will make the mesh lines disappear, while the setting
Mesh All will display all of the polygons produced by Plot3D to render the image. While the
former is a popular setting that produces a beautiful image (especially when PlotPoints is bumped
up from its default value, usually 15), the latter provides a window into the means by which Plot3D
does its stuff:

258 Multivariable Calculus

In[12]:= Table Plot3D Sin x y , x, , , y, , , Mesh m, MaxRecursion 4 ,

m, None, All

Out[12]= ,

Note that like Plot, Plot3D uses an adaptive algorithm that recursively subdivides the surface into
smaller polygons in areas where the surface bends more sharply. PlotPoints settings control how
many equally spaced points are initially sampled in each direction (so a setting of 50 will force
Mathematica to sample 50 50 2500 points in the domain). MaxRecursion controls the number of
recursive subdivisions permitted to fine-tune the image. Large settings for these options produce
beautiful images, but may result in perceptibly slower rendering times, and will definitely produce
larger file sizes when the notebook is saved. See Exercise 2.

Adjusting the PlotRange and BoxRatios
As is the case with the Plot command, Plot3D will sometimes clip the highest peaks and lowest
valleys in a plot in order to render the middle portions with greater detail. The option setting
ClippingStyle None will remove the default horizontal planes placed into the clipped areas.
ClippingStyle may also be set to a Graphics directive such as Opacity[.5].

In[13]:= Table Plot3D
x2 y5 x5 y2

100
x2 y2

, x, 3, 3 , y, 3, 3 , ClippingStyle k ,

k, Automatic, None

Out[13]= ,

The setting PlotRange All will force Mathematica to show the entire graph. Notice, however, that
the bump in the middle of the plot vanishes from view due to the compression of the vertical axis:

6.2 Real-Valued Functions of Two or More Variables 259

In[14]:= Plot3D
x2 y5 x5 y2

100
x2 y2

, x, 3, 3 , y, 3, 3 , PlotRange All

Out[14]=

The option BoxRatios determines the relative dimensions of the bounding box. The simple setting
BoxRatios 1 will produce a cubical bounding box, while the setting BoxRatios Automatic will
scale the bounding box so that all axes have the same scale; it is analogous to the option AspectRa
tio used in two-dimensional plots. Be careful to not use this setting in cases such as the one above
where one axis would be dramatically longer than the others. A setting such as BoxRatios {1, 1, 2}
will produce a bounding box whose horizontal sides are the same length, but whose vertical dimen-
sion is twice as long.

In[15]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 , BoxRatios Automatic

Out[15]=

The Bounding Box, Axes, and ViewPoint
The options Boxed and Axes can be used to modify the appearance of the bounding box and the
tick marks that appear on three of its sides. By default, both options are set to True. To remove the
bounding box entirely, set both to False. Axes can also be set to a list, as in the input below, to
display only selected axes. The option AxesEdge controls in each of the three coordinate directions
which of the four parallel sides of the bounding box in that direction are to be used as an axis. Each
coordinate direction is specified by an ordered pair. For example, if the vertical or z axis is given the
specification {-1, -1}, that means that the z axis will be placed on the left (negative x side) and front
(negative y side).

260 Multivariable Calculus

In[16]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 , BoxRatios Automatic, Boxed False,

Axes False, False, True , AxesEdge Automatic, Automatic, 1, 1

Out[16]=

ViewPoint specifies the position in space (relative to the center of the graphic) from which it is
seen. The setting {0, 0, 4}, for instance, will give a view from above, while the setting {3, 0, 1} will
yield a vantage point that is three units from the origin along the positive x axis, and one unit up.

In[17]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 ,

BoxRatios Automatic, ViewPoint 3, 0, 1

Out[17]=

The ColorFunction
The option ColorFunction controls the coloring of the graph. Any of the color gradients available in
the ColorData archive may be used to color a plot. Type and enter ColorData["Gradients"] for a
listing of available gradients. For instance, here we color a plot using a color gradient reminiscent of
that used in topographical maps, where low regions are colored dark blue, middle regions are shaded
with greens and browns, and peaks are white.

In[18]:= Plot3D x2 y2
, x, 3, 3 , y, 3, 3 , BoxRatios Automatic,

ColorFunction "DarkTerrain", PlotRange All, Mesh None

Out[18]=

6.2 Real-Valued Functions of Two or More Variables 261

ColorFunction allows you to assume complete control over the manner in which color is applied to
a surface. With a bit of work, the graph of a function may be colored (using any color gradient you
like) according to the values of any other function. See Exercise 1.

PlotStyle and Lighting
The PlotStyle and Lighting options provide another means of adjusting the appearance of the plot.
In Mathematica, three-dimensional graphics are colored according to a physical lighting model that
includes intrinsic surface color, the diffusive and reflective properties of the surface, and lighting
(you may control the position, direction, and color of as many light sources as you like). By default,
the polygons used to construct a Plot3D are all white; the lighting is responsible for all the color you
see. You have total control over the output, and the possibilities are truly staggering.

PlotStyle is used to set the intrinsic surface color, and to specify the surface’s diffusive and reflective
properties. Several settings may be simultaneously given by wrapping them within the Directive
command. There are three potential specifications. A straight color or opacity setting like Blue
and/or Opacity[.5] can be given to set the intrinsic surface color or transparency. This color will
interact with the lighting. A Glow setting, such as Glow[Red], will emanate from the surface irrespec-
tive of the color of the lighting. Finally, a Specularity setting determines the diffusive and reflective
properties of the surface. Specularity can accept two arguments. The first determines the color and
amount of diffusion added to reflected light. A numerical value of 1 is equivalent to a color setting
of White; in this case 100% of the light is reflected back, with no alteration to its color other than
that determined by the surface’s color. The second argument controls the shininess of the surface.
Typical values range from 1 (dull) to 50 (shiny). The setting Specularity[White, 20] is good for
creating the appearance of an anodized metallic surface:

In[19]:= Plot3D x Cos x y , x, 3, 3 , y, 2, 2 , Mesh None, MaxRecursion 4,

PlotStyle Directive Lighter Red , Specularity White, 20

Out[19]=

Lighting can be adjusted in numerous ways. The default setting includes both ambient light and
four colored light sources (although if an explicit ColorFunction is specified, white light from these
same sources will be used instead). The simple setting Lighting "Neutral" will force the use of
white rather than colored lights.

262 Multivariable Calculus

In[20]:= Plot3D x Cos x y , x, 3, 3 , y, 2, 2 , Mesh None, MaxRecursion 4,

PlotStyle Directive Lighter Red , Specularity White, 20 , Lighting "Neutral"

Out[20]=

The Documentation Center page for Lighting gives information on setting ambient, spot, and
directional light sources. We note here that the setting Lighting {{"Ambient", White}} is similar to
the setting Lighting "Neutral", but the latter includes point light sources and the shadows they
create, and so is better at giving the illusion of depth. The former may be appropriate when a special
ColorFunction is used and shadows would interfere with the information that the color provides.

Plotting over Nonrectangular Regions
The option RegionFunction can be used to specify the precise region over which a function is
plotted. For instance, you may wish to plot a function over a circular domain for purely aesthetic
reasons. The cone provides a classic example; it simply looks better with a circular domain:

In[21]:= GraphicsRow

Plot3D x2 y2 , x, 1, 1 , y, 1, 1 , Plot3D x2 y2 , x, 1, 1 , y, 1, 1 ,

RegionFunction Function x, y , x2 y2 1 , ImageSize 280

Out[21]=

The setting Function x, y , x2 y2 1 is a pure function. It takes a coordinate pair x, y as input,

and returns True precisely if that coordinate pair lies within the unit circle. In the resulting plot, the
domain is restricted to the region where this region function returns True. The setting in the second

6.2 Real-Valued Functions of Two or More Variables 263

plot above could also have been given in the shorter form RegionFunction 12 22 1 & .

Pure functions are discussed in Section 8.4.

RegionFunction also provides an excellent means of plotting over a punctured domain. A classic

example is the function f x, y x 2 y

x4 y2 , which is not defined at the origin, and which has an essential

discontinuity there. We remove a small disk from the center of the domain, and get a beautiful
image:

In[22]:= Plot3D
x2 y

x4 y2
, x, 1, 1 , y, 1, 1 ,

RegionFunction Function x, y , .1 x2 y2 ,

Mesh None, MaxRecursion 4

Out[22]=

Another approach to controlling the domain is by defining a function whose value outside a desired
region is 0. This is easily accomplished using a Piecewise function. The Exclusions option is useful
for specifying discontinuities; note how easy it is to specify the locus of discontinuities as an
equation.

In[23]:= f
x2 y2 x2 y2 1

0 x2 y2 1
;

In[24]:= Plot3D f, x, 1, 1 , y, 1, 1 , Exclusions x2 y2 1

Out[24]=

264 Multivariable Calculus

Controlling the Mesh Lines
We’ve already discussed the two most common settings for the Mesh option, namely None and All.
But much more is possible. Set Mesh to a positive integer, say 20, and there will be 20 mesh lines
displayed (rather than the default 15) in each direction. Set Mesh to a list of two numbers, say {5,
30}, and there will be five mesh lines (bounding six regions) corresponding to fixed x values, and 30
mesh lines corresponding to fixed y values.

In[25]:= Plot3D
x2 y

x2 y2
, x, 3, 3 , y, 3, 3 , Mesh 5, 30

Out[25]=

You may also specify lists of specific x and y values through which mesh lines should be drawn. A

Mesh setting of 2 , 1 will place one line at x 2 and another at y 1. This is useful for visually

approximating the partial derivatives at the point 2, 1 . See Exercise 6.

In[26]:= Plot3D
x2 y

x2 y2
, x, 3, 3 , y, 3, 3 , Mesh 2 , 1

Out[26]=

The MeshFunctions option gives you even more control over the rendering of the mesh lines on a
plot. The price of this versatility is that it will take a bit of practice to master. Your efforts here will
be well rewarded, so read on.

By default there are two mesh functions, one for all the mesh lines corresponding to fixed x values,
and one for the perpendicular collection of mesh lines corresponding to fixed y values. Together

they form the familiar grid pattern that graces your Plot3D outputs. This default specification, if you
were to manually type it, would read:

6.2 Real-Valued Functions of Two or More Variables 265

MeshFunctions Function x, y, z , x , Function x, y, z , y

It is a list of two pure functions, where each takes three arguments (one for each coordinate position
in three-space). Equivalently, this default setting could be entered using the common shorthand
notation: MeshFunctions 1 &, 2 & . Pure functions are discussed in Section 8.4. In any event,
mesh lines will be drawn where the mesh functions assume constant values; by default 15 evenly
spaced values will be displayed.

Perhaps the most common non-default setting is the following, which places level curves on your
plot. That is, the third variable (we usually call it z) is set to 15 evenly spaced values within the plot
range, and a mesh curve is added to the surface at each of these values.

In[27]:= Plot3D x2 y3 x 1 2 y, x, 2, 2 , y, 2, 2 , MeshFunctions 3 &

Out[27]=

But of course you may define any mesh function you like. Here we place mesh lines according to
distance from the origin. In other words, each mesh line lies on the surface of an invisible sphere
centered at the origin.

In[28]:= Plot3D x2 y3 x 1 2 y, x, 2, 2 , y, 2, 2 ,

MeshFunctions Norm 1, 2, 3 & , PlotRange 2, BoxRatios 1

Out[28]=

266 Multivariable Calculus

MeshShading
The MeshShading option allows the regions between mesh lines to receive specific color directives.
The setting for this option has the same list structure as MeshFunctions; if there is a list of two
mesh functions, you should have a list of two MeshShading settings. Each such setting is itself a list
of directives that will by used cyclically (if this list is shorter than the number of mesh regions).
Setting the Lighting to "Neutral" will replace the default colored lighting with white lights, so that
the colors specified in the MeshShading are accurately rendered. For instance:

In[29]:= Plot3D x2 y3 x 1 2 y, x, 3, 3 , y, 3, 3 , BoxRatios 1, MeshFunctions 3 & ,

Mesh 20, MeshShading Red, Green , Lighting "Neutral"

Out[29]=

Set it to a list whose length matches the Mesh setting, and you will cycle precisely once through the
list of directives. To utilize an entire color gradient, keep in mind that each color gradient function
(such as ColorData["StarryNightColors"]) is defined on the domain 0 t 1.

In[30]:= Plot3D x2 y3 x 1 2 y, x, 3, 3 , y, 3, 3 , BoxRatios 1,

MeshFunctions 3 & , Mesh 20, MeshShading

Table ColorData "StarryNightColors" t , t, 0, 1, 1 20 , Lighting "Neutral"

Out[30]=

The output above is very similar to that produced with the setting ColorFunction "StarryNightCol
ors" (and no MeshShading or Lighting specifications). When MeshShading is used, each band

6.2 Real-Valued Functions of Two or More Variables 267

between mesh lines is uniformly shaded. When ColorFunction is used, the shading varies continu-
ously. When there are multiple MeshFunctions, the colors will criss-cross like a woven basket.
Below we use the default MeshFunctions setting {#1&,#2&}:

In[31]:= Plot3D x2 y3 x 1 2 y, x, 3, 3 , y, 3, 3 , BoxRatios 1, Mesh 20,

MeshShading Yellow, Green , Black, White , Lighting "Neutral"

Out[31]=

Plotting Functions of Two Variables with ContourPlot
Another commonly used command for visualizing a real-valued function of two variables is Contour
Plot. A contour plot is a two-dimensional rendering of a three-dimensional surface. Imagine looking
at the surface from above and placing contour lines (also called level curves) on the surface, each
one a curve that is level in the sense that its height above (or below) the x-y plane is constant. The

contour plot is much like a topographical map—it consists of the vertical projections of the contour
lines onto the x-y plane. By default, ContourPlot will produce ten regions separated by nine contour

lines. The regions will be shaded according their relative height above (or below) the x-y plane;

darker regions are lower and lighter regions are higher.

We’ve previously used ContourPlot to plot solutions of equations (such as sin x cos y 0). This

solution curve can be regarded as a single contour line for the function f x, y sin x cos y . To

produce a full contour plot, use ContourPlot in a manner identical to that of Plot3D. Here we see a
ContourPlot and a Plot3D of the same function, showing the same level curves and using similar
shading:

268 Multivariable Calculus

In[32]:= ContourPlot Sin x Cos y , x, 3, 3 , y, 3, 3 ,

Plot3D Sin x Cos y , x, 3, 3 , y, 3, 3 , MeshFunctions 3 & ,

Mesh 9, ColorFunction "LakeColors", ViewPoint 0, 1, 2 ,

Boxed False, Axes True, True, False

Out[32]= ,

Perhaps the most commonly used option setting is Contours. Set it to a positive integer, say 20, and
you will see 20 contour lines in the resulting plot. Set it to a specific list of values and you will see
the contour lines through precisely those z values. If this list has a single value (as in the second plot
below), you will essentially be viewing the set of solutions to an equation in two variables.

In[33]:= GraphicsRow ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , Contours 20 ,

ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , Contours 4 ,

ContourPlot 1 x2 1 y2 4, x, 2, 2 , y, 2, 2

Out[33]=

The ContourShading option works much like the MeshShading option for Plot3D. Note that you
may set this option to None. As was the case with Plot3D, the ColorFunction may be set to any
named color gradient.

6.2 Real-Valued Functions of Two or More Variables 269

In[34]:= GraphicsRow

ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , ContourShading Red, Blue ,

ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , ContourShading None ,

ContourPlot 1 x2 1 y2 , x, 2, 2 ,

y, 2, 2 , ColorFunction "IslandColors"

Out[34]=

Also important are PlotPoints and MaxRecursion, which (as you might expect) can be employed to

improve image quality. The function x2

1 x y
 is not defined along the line y x 1, and ContourPlot

with its default settings has difficulty in the vicinity of this line. The Exclusions option provides
another means of dealing with such discontinuities.

In[35]:= GraphicsRow ContourPlot
x2

1 x y
, x, 2, 2 , y, 2, 2 ,

ContourPlot
x2

1 x y
, x, 2, 2 , y, 2, 2 , PlotPoints 30, MaxRecursion 3 ,

ContourPlot
x2

1 x y
, x, 2, 2 , y, 2, 2 , Exclusions y x 1

Out[35]=

ContourPlot accepts many of the same options as Plot3D. Exceptions are those options that are
specific to two-dimensional graphics. For instance, one uses AspectRatio rather than BoxRatios to

270 Multivariable Calculus

adjust the relative dimensions of a graphic produced by ContourPlot. Note that by default, a
ContourPlot will be square.

In[36]:= GraphicsRow ContourPlot Sin x Cos y , x, 6, 6 , y, 3, 3 ,

ContourPlot Sin x Cos y , x, 6, 6 , y, 3, 3 , AspectRatio Automatic

Out[36]=

ContourPlot will embed tooltips into its output. Position the tip of the cursor along a level curve to
see the value of the z coordinate for all points on that curve. The option setting ContourLabels
Automatic can be used to place these values directly onto the graphic.

In[37]:= ContourPlot Sin x Cos y , x, 1, 1 , y, 1, 1 , ContourLabels Automatic

Out[37]=

While the placement of these labels on the graphic is handled automatically, the appearance and
indeed the function used to calculate each label can be adjusted. Below we use the default function
value (displaying the z coordinate at the point x, y), but make the text gray in a six point font. We

also use the ColorData["LightTerrain"] color gradient.

6.2 Real-Valued Functions of Two or More Variables 271

In[38]:= ContourPlot Sin x Cos y , x, 1, 1 , y, 1, 1 ,

ContourLabels Style Text 3, 1, 2 , GrayLevel .3 , 6 & ,

ColorFunction "LightTerrain"

Out[38]=

It is not difficult to write a command that will place a key next to a ContourPlot, as in the example
below. See Exercise 5.

If MeshFunctions are specified along with specific Mesh values, the curves where these functions
are equal to the respective Mesh values will be displayed. By default, there are no MeshFunctions
displayed in a ContourPlot (this is different from Plot3D, where the default MeshFunctions are
{#1&, #2&}, which produces the familiar grid pattern). Mesh curves will be superimposed on top of

the level curves. Here, for instance, we display the ellipse x2 2 y2 1 in yellow on the plot:

272 Multivariable Calculus

In[39]:= ContourPlot x2
4 x y

y2 1
, x, 2, 2 , y, 2, 2 , MeshFunctions 12 2 22 & ,

Mesh 1 , MeshStyle Directive Thick, Yellow

Out[39]=

And here we display in dashed red the curve where the partial derivative with respect to x is zero,
and in yellow the curves (lines in this case) where the partial derivative with respect to y is equal to

zero. The critical points (and hence all maxima and minima for the function being plotted) occur at
the intersection points of these curves.

In[40]:= ContourPlot x2
4 x y

y2 1
, x, 2, 2 , y, 2, 2 ,

MeshFunctions Function x, y, z , 2 x
4 y

1 y2
,

Function x, y, z ,
8 x y2

1 y2 2

4 x

1 y2
, Mesh 0 , 0 ,

MeshStyle Directive Thick, Dashed, Red , Directive Thick, Yellow

Out[40]=

6.2 Real-Valued Functions of Two or More Variables 273

In general, it’s not a bad idea when including multiple MeshFunctions to use MeshStyle to make
the first one Dashed or Dotted. That way, if two curves happen to coincide, the top curve won’t
completely obscure the bottom one.

Plotting Level Surfaces with ContourPlot3D
Just as ContourPlot may be used to plot a curve defined by an equation in two variables (such as

the circle x2 y2 1, as outlined in Section 3.7 on page 97) by using an equation as its first

argument, the ContourPlot3D command may be used to plot a surface defined by an equation in
three variables. Behold:

In[41]:= ContourPlot3D x2 y2 z2 1, x, 1, 1 , y, 1, 1 , z, 1, 1

Out[41]=

And just as ContourPlot may be used to render a collection of level curves for a function of two
variables (as discussed in the previous subsection of this chapter), ContourPlot3D may be used to
render a collection of level surfaces for a function of three variables:

In[42]:= ContourPlot3D x2 y2 z2, x, 1, 1 , y, 1, 1 ,

z, 1, 0 , BoxRatios 2, 2, 1 , Contours 5, Mesh None

Out[42]=

Note that three iterators are needed, one for each of the three coordinate variables. Virtually all
options are either identical to those of Plot3D, or can be surmised from those of ContourPlot. For
instance, the Contours option works just as it does in ContourPlot. The ContourStyle option can

274 Multivariable Calculus

be used to assign style directives to each level surface. The ColorFunction option can also be used
for this purpose; the plot on the right uses a ColorData gradient specified by ColorFunction.

In[43]:= GraphicsRow ContourPlot3D x2 y2 z2, x, 1, 1 , y, 1, 1 ,

z, 1, 0 , BoxRatios 2, 2, 1 , Contours 5, Mesh None,

Axes False, ContourStyle Red, Orange, Yellow, Green, Blue ,

ContourPlot3D x2 y2 z2, x, 1, 1 , y, 1, 1 , z, 1, 0 , BoxRatios 2, 2, 1 ,

Contours 5, Mesh None, Axes False, ColorFunction "Pastel"

Out[43]=

Here is a plot of the surface cos2 x sin2 y 1 sin z:

In[44]:= ContourPlot3D Cos x 2 Sin y
2

1 Sin z , x, 0, 2 , y,
2

,
5

2
, z, 0, 2 ,

Mesh None, ContourStyle Directive Brown, Specularity White, 10

Out[44]=

Constructing 3D plots of solids (rather than surfaces) can be accomplished with RegionPlot3D. This
command is discussed in the subsection “Finding Bounds of Integration and Plotting Regions in the
Plane and in Space” on page 294.

6.2 Real-Valued Functions of Two or More Variables 275

Graphics3D Primitives
Just as one can use the Graphics command to “manually” construct a two-dimensional graphic
from primitive Point, Line, Polygon, and Text objects, one can use the Graphics3D command to

build three-dimensional graphics. The Graphics command was discussed in Section 3.9 on page

114. In most cases you will use higher level commands such as Plot3D to generate 3D images. But

there may come a time when you want to create a graphic from scratch, or to add a simple sphere or
cylinder to the output of a command such as Plot3D. This section provides a basic introduction to
such endeavors.

The primitive 3D objects that can be used to build a Graphics3D are many. They include familiar
objects such as Point, Line, Polygon, and Text, and new ones such as Cuboid, Cylinder, and
Sphere. Here are a few simple examples to get you started:

In[45]:= Graphics3D Sphere 0, 0, 0 , 3

Out[45]=

In[46]:= Graphics3D Sphere 0, 0, 0 , 3 , Sphere 0, 0, 4 , 2

Out[46]=

276 Multivariable Calculus

In[47]:= Graphics3D

Sphere 0, 0, 0 , 3 ,

Sphere 0, 0, 4 , 2 ,

Sphere 0, 0, 6.5 , 1 ,

Cylinder 0, 0, 7.5 , 0, .5, 9 , .8 ,

Cylinder 0, 0, 7.5 , 0, .03, 7.6 , 1.5 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2

, Boxed False

Out[47]=

The overall situation is completely analogous to that for building Graphics. The single argument
given to Graphics3D is (most simply) a primitive or a list of primitives. Here we’ve used only
Sphere and Cylinder primitives. Sphere takes two arguments: the coordinates of its center, and its
radius. Cylinder also takes two arguments. The first is a list of two points: the endpoints of its
central axis. The second is its radius.

As is the case with Graphics, one can also apply one or more directives to each primitive. Directives
are used to customize the appearance of the individual primitive elements, and may include color,
opacity, and/or specularity settings. To apply a directive to any primitive object, replace the primi-
tive with the list {directive, primitive}. If more than one directive is to be applied, wrap them in the
Directive command, as in Directive[Red, Opacity[.8]].

6.2 Real-Valued Functions of Two or More Variables 277

In[48]:= Graphics3D

Directive Red, Opacity .7 , Sphere 0, 0, 0 , 3 ,

Opacity .5 , Sphere 0, 0, 4 , 2

Out[48]=

One may also include Graphics3D option settings, such as Boxed False. Many of these have been

discussed in Section 6.2. In particular, the setting Lighting "Neutral" can be used to turn off the
colored lights that are used by default when rendering a Graphics3D. This will provide a more
honest rendering of any colors you introduce. Note that by default, surface primitives will be white
(they appear colored because of the colored lights). Here, for instance, we make a white snowman
with black hat and arms:

In[49]:= Graphics3D

Sphere 0, 0, 0 , 3 ,

Sphere 0, 0, 4 , 2 ,

Sphere 0, 0, 6.5 , 1 ,

Lighter Black ,

Cylinder 0, 0, 7.5 , 0, .5, 9 , .8 ,

Cylinder 0, 0, 7.5 , 0, .03, 7.6 , 1.5 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2

, Boxed False, Lighting "Neutral"

278 Multivariable Calculus

Out[49]=

It is common to combine a Graphics3D with the output from one of the plotting commands. Here
we use Plot3D to render the function f x, y xy with MeshFunctions set to measure distance on

the surface to the point 0, 0, 3 . The plot is colored according to this distance using MeshShading.
We use Graphics3D to place a small green sphere at the point 0, 0, 3 . We put the two images
together with Show:

In[50]:= Show Plot3D x y, x, 3, 3 , y, 3, 3 , PlotRange 4, 4 ,

Lighting "Neutral", BoxRatios 1, Mesh 15,

MeshFunctions Function x, y, z , x2 y2 z 3 2 ,

MeshShading Table ColorData "TemperatureMap" 1 k , k, 0, 1, 1. 15 ,

Graphics3D Darker Green , Sphere 0, 0, 3 , .15

Out[50]=

6.2 Real-Valued Functions of Two or More Variables 279

When using commands such as Plot that produce Graphics (as opposed to Graphics3D)
output, it is common to add an Epilog option to place Graphics primitives directly on the
image. This makes the use of Show unnecessary. While Epilog may also be used with com-
mands such as Plot3D, it cannot be used to place 3D primitives on the plot (such as the
Sphere above). So in a 3D setting, Show is the best way to add primitive Graphics3D objects
to an image.

Differentiation of Functions of Two or More Variables

Calculating Partial Derivatives
You can calculate the partial derivatives of a function of two or more variables with the D
command. This works just as in Chapter 5:

In[51]:= Clear f, x, y ;

f Sin x2 y2 ;

In[53]:= D f, x

Out[53]= 2 x Cos x2 y2

In[54]:= D f, y

Out[54]= 2 y Cos x2 y2

Use replacement rules to evaluate a derivative at a particular point:

In[55]:= . x 0, y

Out[55]= 2

Alternatively, you can calculate partial derivatives with the palette version of the D command by

using the button on the BasicMathInput palette. The subscript indicates the variable with

respect to which the derivative should be taken. Move from one placeholder to the next with the
key.

In[56]:= x f

Out[56]= 2 x Cos x2 y2

If you use the palette version of D directly on a function such as x2 2 xy, it is best to first type the

function expression, then highlight it, and then push the palette button. If you deviate from this
convention by pushing the palette button first, be sure to put grouping parentheses around the
function expression so that you don’t end up only differentiating the first summand:

280 Multivariable Calculus

In[57]:= x x2 2 x y

Out[57]= 2 x 2 x y

In[58]:= x x2 2 x y

Out[58]= 2 x 2 y

To find the second partial derivative
2f

x2 , you can use the D command exactly as in Chapter 5:

In[59]:= D f, x, 2

Out[59]= 2 Cos x2 y2 4 x2 Sin x2 y2

To find the mixed second partial derivative
2f

x y
, simply do this:

In[60]:= D f, x, y

Out[60]= 4 x y Sin x2 y2

Alternatively, you may use the , key on the BasicMathInput palette:

In[61]:= x,x f

Out[61]= 2 Cos x2 y2 4 x2 Sin x2 y2

In[62]:= x,y f

Out[62]= 4 x y Sin x2 y2

Derivatives beyond the second require the D command:

In[63]:= D f, x, 3 , y, 4

Out[63]= 8 x3 12 Cos x2 y2 16 y4 Cos x2 y2 48 y2 Sin x2 y2

12 x 48 y2 Cos x2 y2 12 Sin x2 y2 16 y4 Sin x2 y2

The Gradient
The gradient of a function of two or more variables is a vector whose components are the various
partial derivatives of the function. For instance, for a function f of two variables, the gradient is the

vector x f , y f . In Mathematica one can simply do this:

In[64]:= x f, y f

Out[64]= 2 x Cos x2 y2 , 2 y Cos x2 y2

6.2 Real-Valued Functions of Two or More Variables 281

There is no built-in command for producing gradients, but if you need to make extensive use of
them it is not hard to create your own:

In[65]:= grad f , vars List : Table v f, v, vars

This command takes two arguments. The first is the function whose gradient you wish to compute.
The second is the list of variables used in defining the function. For example:

In[66]:= grad x2 y3, x, y

Out[66]= 2 x y3, 3 x2 y2

In[67]:= grad
x1

2 x2
3 x4

4

x3
5

, x1, x2, x3, x4

Out[67]=
2 x1 x2

3 x4
4

x3
5

,
3 x1

2 x2
2 x4

4

x3
5

,
5 x1

2 x2
3 x4

4

x3
6

,
4 x1

2 x2
3 x4

3

x3
5

You can evaluate the gradient at a specific point in the domain using replacement rules.

In[68]:= x f, y f . x 0, y

Out[68]= 0, 2

The following Manipulate will sketch a gradient vector directly on the ContourPlot for a function.

Initially it shows the gradient evaluated at the point 1

2
, 1

2
. The tail of the gradient vector is a

Locator; you can simply click on the graphic to move it to a new position, or you can drag it
around. The geometric properties of the gradient quickly become apparent: it is perpendicular to the
level curve through its tail, and it points uphill.

In[69]:= Manipulate Module x, y ,

ContourPlot x2 y2
x y, x, 1, 1 , y, 1, 1 , Contours 20,

Epilog Dynamic Arrow

pt, pt y 2 x2 y2
x, x 2 x2 y2

y . x pt 1 , y pt 2 ,

pt, .5, .5 , Locator,

Appearance Graphics Red, Disk , ImageSize 5

282 Multivariable Calculus

Out[69]=

There are several interesting features in this Manipulate. Notice that the first argument (the
thing we are manipulating) is a Module. Module is used to localize variables. In this case, the
variables x and y are insulated from any assignments made to them elsewhere in the session.

Module and other scoping commands are discussed in Section 8.6 on page 424. Secondly, note

that the Epilog to the ContourPlot is wrapped in Dynamic. While not strictly necessary, this
has the beneficial effect of forcing only the arrow to update as the Locator is moved, rather
than having the ContourPlot itself (which does not change) get re-rendered every time the
Locator is moved. This makes the action more “zippy.” For more information, search for
“Advanced Manipulate Functionality” in the Documentation Center and follow the link to the
tutorial of that name. Finally, note that we use the Appearance option to change the appear-
ance of the Locator from its default crosshair icon to a simple red dot. This option allows you
to make any Locator look exactly the way you like.

Given a function of two variables, there is a simple means for simultaneously plotting an array of its
gradient vectors over a rectangular domain, and for superimposing such a plot with a ContourPlot

of the function. See the subsection “Plotting a Two-Dimensional Vector Field” in Section 6.5, page

325, for a discussion of the GradientFieldPlot command.

You can take a directional derivative by taking the dot product of the gradient with a unit vector in
the indicated direction. Here, for example, is an expression representing the directional derivative of

the function f x, y x2 y3 in the direction of the vector 3 i j:

In[70]:= grad x2 y3, x, y .
3, 1

Norm 3, 1

Out[70]=
3 x2 y2

10
3

2

5
x y3

To evaluate the directional derivative at a specific point in the domain, use replacement rules:

6.2 Real-Valued Functions of Two or More Variables 283

In[71]:= . x 2, y 3

Out[71]= 108
2

5

Optimization
There are numerous methods for finding extreme values of multivariate functions. It is certainly
possible to mimic the basic techniques presented in a standard calculus course, with Mathematica
doing the heavy lifting when the algebra gets tough. We outline such an approach in this section.
There are also the built-in commands Maximize, Minimize, NMaximize, NMinimize, FindMaxi
mum, and FindMinimum, which can be extremely useful, but which also have inherent
limitations. We’ll begin with these built-in commands, and then discuss the traditional approach
using critical points and second derivatives.

The commands Maximize, Minimize, NMaximize, and NMinimize (first introduced in Section 5.6

on page 212) all use the same syntax; understand one and you understand them all. In the most
simple setting, where your function is not overly complicated and happens to have a single extre-
mum in its largest natural domain, these commands make light work of optimization:

In[72]:= Maximize 85 16 x 4 x2 4 y 4 y2 40 z 4 z2, x, y, z

Out[72]= 32, x 2, y
1

2
, z 5

If an extreme value does not exist, you can expect to see this sort of thing:

In[73]:= Minimize 85 16 x 4 x2 4 y 4 y2 40 z 4 z2, x, y, z

Minimize::natt : The minimum is not attained at any point satisfying the given constraints.

Out[73]= , x , y
33

10
, z

8

5

These commands attempt to find global extrema. They can be adapted to hunt for local extrema by
adding constraints. Simply use a list as the first argument, where the second member of the list is an
equation or inequality (or any logical combination of these):

In[74]:= f 12 y3 4 x2 10 x y;

Minimize f, 1 x 1 && 1 y 1 , x, y

Out[75]= 18, x 1, y 1

284 Multivariable Calculus

Here the minimum occurs at a corner of the square region. Below we search in two concentric
circular regions centered at the origin. Since the same answer is reached in two different concentric
regions, we are assured that the minimum occurs in the interior of each region (not on the bound-
ary). We have found, or at least approximated, a local minimum for f :

In[76]:= NMinimize f, x2 y2 1 , x, y

Out[76]= 0.251173, x 0.434028, y 0.347222

In[77]:= NMinimize f, x2 y2 1 2 , x, y

Out[77]= 0.251173, x 0.434028, y 0.347222

Unfortunately, Minimize is unable to give us an exact numerical solution. Rather, it presents the
three numbers in the output as roots of sixth degree polynomials.

In[78]:= Minimize f, x2 y2 1 2 , x, y

Out[78]= Root 76 902125 319355960 1 238172822 12

46 171432 13 3 783476 14 2441664 15 236196 16 &, 1 ,

x Root 25 180 1 92 12 1080 13 832 14 1440 15 1296 16 &, 2 ,

y Root 25 232 12 288 13 184 14 576 15 1296 16 &, 1

We’ll see shortly that traditional methods can be used to determine that the actual local minimum

occurs at 125

288
, 25

72
. Our point here is to state plainly that while commands such as Minimize may

sound like a panacea for any optimization exercise, they can in fact be subtle to use and produce
output that is difficult to interpret. Worse yet, they can fail completely:

In[79]:= Minimize Sin x y , x2 y2 1 , x, y

Out[79]= Minimize Sin x y , x2 y2 1 , x, y

They also return only one extremum even in cases where there are two or more:

In[80]:= Minimize x y, x2 y2 1 , x, y

Out[80]=
1

2
, x

1

2
, y

1

2

In[81]:= x y . x
1

2
, y

1

2

Out[81]=
1

2

6.2 Real-Valued Functions of Two or More Variables 285

It is for these reasons that you must always be ready with plan B. Now don’t misunderstand us;
Minimize and NMinimize are powerful and versatile tools. In fact, they border on the amazing. But
they simply cannot be expected to work flawlessly in every situation; such is the variety and rich-
ness of the universe of mathematical functions. There are option settings for NMinimize that allow
you to specify the method it uses. Subtle details of this sort are essential if you plan to make exten-
sive use of these commands.

If your goal is to find all extrema for a differentiable function (as it often is in a calculus course),
your first line of defense in constructing plan B comes right out of your calculus textbook. The
critical points for a function are those points where the first partials are both zero (i.e., the gradient of
the function is the zero vector), or where one or both partials do not exist. If a function assumes a
relative minimum or maximum value in the interior of its domain, it does so at a critical point.

It is often possible to find critical points with Solve, NSolve, or Reduce. The setting here is just as it
was in Section 4.9, where we used these commands to solve systems of equations. Recall that Solve
and NSolve are designed primarily to solve polynomial equations, while Reduce can sometimes
solve more general classes of equations. Here’s an example where we use Solve to find the critical
points of a polynomial:

In[82]:= f 12 y3 4 x2 10 x y;

crPts Solve x f 0, y f 0 , x, y

Out[83]= x 0, y 0 , x
125

288
, y

25

72

In any of these solving commands you may use as the first argument either a list of equations, or an
equation of lists. For instance, this input will also work:

In[84]:= Solve x f, y f 0, 0 , x, y

Out[84]= x 0, y 0 , x
125

288
, y

25

72

You may be able to determine whether f has a relative minimum or maximum or saddle at a particu-

lar critical point in a purely algebraic fashion by examining the discriminant and the second partials
evaluated at this critical point. Recall that the discriminant of f is the expression

f x,x f y,y f x,y f
2
.

The standard test to determine the status of the critical point x, y is as follows:

If f 0 and x,x f 0, then x, y is a relative minimum.

If f 0 and x,x f 0, then x, y is a relative maximum.

If f 0, then x, y is a saddle point.

If f 0, then the test is inconclusive.

286 Multivariable Calculus

Let’s carry out this test for the two critical points found in our previous example.

In[85]:= x,x f y,y f x,y f
2

. crPts N

Out[85]= 100., 100.

The first critical point, 0, 0 , is therefore a saddle point, while the second is either a maximum or
minimum. Which is it?

In[86]:= x,x f . crPts 2 N

Out[86]= 8.

The positive value indicates that there is upward concavity in the x direction at this point. Since this
point is an extreme value, it must be a minimum. A ContourPlot shows both critical points clearly,
confirming this analysis:

In[87]:= ContourPlot f, x, 1, 1 , y, 1, 1 ,

Epilog PointSize .02 , Red, Point x, y . crPts

Out[87]=

Finally, we can evaluate f at the critical points as follows:

In[88]:= f . crPts

Out[88]= 0,
15 625

62 208

In this example we used Solve to find the critical points, but Reduce could have been used instead:

In[89]:= Reduce x f, y f 0, 0 , x, y

Out[89]= x 0 x
125

288
&& y

4 x

5

A word about Reduce is in order. It is very convenient to use Reduce in cases where you are only
interested in real (as opposed to complex) solutions to equations; simply add the third argument
Reals. As this is usually the situation in calculus courses, Reduce may be your first choice as a

6.2 Real-Valued Functions of Two or More Variables 287

solver. On the flip side, Reduce does not (indeed, in general it cannot, as we will see in the next
example) return output in the form of replacement rules. And we like replacement rules. They are
enormously convenient when they are produced programmatically, so you do not have to type
them. In cases where Reduce produces reasonably simple output, a call to ToRules will convert the

output into replacement rules. Just beware that an equation such as y 4 x
5

 will be converted to the

rule y 4 x

5
, which means that replacements should be made with ReplaceRepeated (//.) rather

than ReplaceAll (/.):

In[90]:= ToRules

Out[90]= x 0, y
4 x

5
, x

125

288
, y

4 x

5

In[91]:= x, y .

Out[91]= 0,
4 x

5
,

125

288
,

4 x

5

In[92]:= x, y .

Out[92]= 0, 0 ,
125

288
,

25

72

Here is a second example. We identify critical points using Reduce rather than Solve, as Solve
simply will not work in this case. It is important to point out something that is rarely emphasized in
calculus texts: the set of critical points may be far more complex than a few isolated points (like the
two critical points we found in the previous example). For instance:

In[93]:= f Sin x Cos y ;

Short Reduce x f 0, y f 0 , x, y , Reals , 10

Out[94]//Short=

C 1 Integers && x 0 && y
2

2 C 1 y
2

2 C 1

1 1 1 C 1 0 && C 1 C 2 Integers &&

x
1

2
4 C 1 && y ArcCos

4 C 1

2 x
2 C 2

y ArcCos
4 C 1

2 x
2 C 2 x

1

2
4 C 1 &&

y ArcCos
4 C 1

2 x
2 C 2 y ArcCos

4 C 1

2 x
2 C 2

288 Multivariable Calculus

There are five solutions, and only the first and last are shown (since we wrapped the input above in
Short each of the middle three are indicated by <<1>>). Even the abbreviated output is a bit intimi-
dating. Note that there are two constants, C[1] and C[2], that are permitted to assume integer
values. Reduce has found an infinite family of points and curves, parameterized by these two
constants. If you are only concerned with critical points within a bounded domain the output can be
greatly simplified, often with such parameters removed. Below we include in the list of equations
the bounds on both x and y. The constants are no longer needed.

In[95]:= f Sin x Cos y ;

Reduce x f 0, y f 0, 6 x 6, 3 y 3 , x, y , Reals

Out[96]= 6 x
2

&& y ArcCos
2 x

y ArcCos
2 x

6 x
1

2
Sec 3 && y ArcCos

2 x
y ArcCos

2 x

1

2
Sec 3 x 6 && y ArcCos

2 x
y ArcCos

2 x

2
x 6 && y ArcCos

2 x
y ArcCos

2 x

6 x
3

2
Sec 3 && y ArcCos

3

2 x
y ArcCos

3

2 x

6 x
3

2
&& y ArcCos

3

2 x
y ArcCos

3

2 x

3

2
x 6 && y ArcCos

3

2 x
y ArcCos

3

2 x

3

2
Sec 3 x 6 && y ArcCos

3

2 x
y ArcCos

3

2 x

x 0 && y
2

y
2

Okay, this is still rather intimidating. But be patient; the output rewards careful reading. Recall that
&& means “and” and || means “or.” The very last line shows two discrete critical points, at 0,

2

and 0,
2

. Everything else shows a bounded domain on x, and y as a function of x on this domain.

In other words, the other critical points are comprised of curves.

Let’s embark on a brief visual investigation. In the following graphic, the solid mesh lines are curves
where the partial derivative with respect to x is zero, and dashed mesh lines are curves where the
partial derivative with respect to y is zero. Critical points are points where both partials are simultane-

ously zero. These can be discrete points (where the solid and dashed lines cross), or curves (where
they coincide). This function has both types.

6.2 Real-Valued Functions of Two or More Variables 289

In[97]:= fx, fy x f, y f ;

In[98]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 , BoxRatios Automatic,

MeshFunctions Function x, y , fx , Function x, y , fy ,

MeshStyle Blue, Directive Thick, Dotted , Mesh 0 , 0 , MaxRecursion 3,

Boxed False, Axes True, True, False , ViewPoint .1, 1, 3

Out[98]=

Do you see the two discrete critical points that we identified earlier? They appear to be saddles. We
confirm this below:

In[99]:= x,x f y,y f x,y f
2 . x 0, y 2 , x 0, y 2

Out[99]= 1, 1

We note that for this function, Maximize does not produce any output, while NMaximize reports,
as always, one maximum (even though there are in fact infinitely many on this domain). Clearly,
the approach we applied here using Reduce is far more comprehensive.

In cases where even Reduce cannot find a critical point, one has the commands FindMaximum
and FindMinimum. Like the command FindRoot (introduced in Section 4.7 on page 184), these are
your weapons of last resort. They require an initial guess for each variable, and using those as
starting values they hone in on a single extremum. Moreover, they are numerical tools; the solution
they provide is only approximate.

Despite these limitations FindMaximum and FindMinimum can be highly effective at refining an
approximate guess. They are also fast and extremely robust. Use them when other methods fail. One
simple means of using these commands is to start with a ContourPlot, and use it to identify a local
extremum. Then, using the approximate coordinates of the extremum as your initial guess, invoke
FindMaximum or FindMinimum. Here’s an example where we use this technique to approximate
some relative extrema for a rather nasty function:

290 Multivariable Calculus

In[100]:= Clear f ;

f Sin x y Cos
5 x

y2 1
Sin

3 y

x2 1
;

ContourPlot f, x, 2, 2 , y, 2, 2

Out[102]=

There appears to be a tiny island near 1, 1 , suggesting that f assumes a relative maximum value

there. Now that we have it in our sights, let’s zero in on it:

In[103]:= FindMaximum f, x, 1 , y, 1

Out[103]= 1.51106, x 0.740375, y 0.529412

Similarly, there appears to be a relative minimum near 1, 1 ; let’s zero in on it:

In[104]:= FindMinimum f, x, 1 , y, 1

Out[104]= 0.551724, x 1.30697, y 1.09308

Outstanding!

Constrained Optimization
The technique of Lagrange multipliers is easily implemented in Mathematica. Set things up so that
the function you wish to optimize is called f , while the constraint is of the form g 0. We wish to

solve the system f g, for some real constant , together with the constraint equation g 0.

This is easily accomplished using the grad command defined on page 282. Here’s a simple example:

maximize the quantity 4 xy under the constraint that 4 x2 y2 8.

In[105]:= Clear f, g, x, y, ;

f 4 x y;

g 4 x2 y2 8;

6.2 Real-Valued Functions of Two or More Variables 291

In[108]:= Reduce grad f g, x, y, 0, 0, 0 , x, y, , Reals

Out[108]= x 1 && y 2 y 2 x 1 && y 2 y 2 &&
y

2 x

This single Reduce input solves the system, as the three partial derivatives of the function
L x, y, f x, y g x, y are zero precisely when f g and g 0. We next convert this

solution to replacement rules, and evaluate the function at the solution:

In[109]:= sols ToRules

Out[109]= x 1, y 2,
y

2 x
, x 1, y 2,

y

2 x
,

x 1, y 2,
y

2 x
, x 1, y 2,

y

2 x

In[110]:= x, y . sols

Out[110]= 1, 2 , 1, 2 , 1, 2 , 1, 2

In[111]:= f . sols

Out[111]= 8, 8, 8, 8

Note that the Maximize, Minimize, NMaximize, and NMinimize commands will do this all in one
go, but they will only find a single solution. If that’s all you need, there is no easier way to get there:

In[112]:= Maximize f, g 0 , x, y

Out[112]= 8, x 1, y 2

Regardless which approach is taken, a ContourPlot provides a visual verification. One could make a
ContourPlot of f , and a second ContourPlot with the first argument g 0, then display them

together with Show. Below we take a different approach, making a single plot with a mesh line to
display the constraint curve. The solutions are shown as red dots:

In[113]:= ContourPlot f, x, 2, 2 , y, 3, 3 , Mesh 0 ,

MeshFunctions Function x, y , g , MeshStyle Directive Thick, Yellow ,

Epilog Red, PointSize .02 , Point x, y . sols

292 Multivariable Calculus

Out[113]=

Integration of Functions of Two or More Variables
In practice double, triple, in fact all multiple integrals are evaluated as iterated integrals. Evaluating

iterated integrals is easy; you use the same Integrate command (from Section 5.10), adding another

iterator (for definite integrals) or another variable (for indefinite integrals):

In[114]:= Integrate 5 x2 y2, y, 1, 3 , x, 0, 2

Out[114]=
28

9

In[115]:= Integrate 5 x2 y2, y, x

Out[115]= 5 x y
x3 y3

9

In the examples above we integrated first with respect to x, then with respect to y. That is, the

variables are specified within Integrate in the same order that the integral signs are written in
standard mathematical notation. The palette version of the Integrate command makes the order of
integration more transparent. First type and highlight the function you wish to integrate, then push
the appropriate integration button on the BasicMathInput palette and fill in the placeholders for the
innermost integral, using the key to move from one placeholder to the next. Now highlight the
entire expression and push the integration button a second time, fill in the placeholders, and enter:

In[116]:=
1

3

0

2

5 x2 y2 x y

Out[116]=
28

9

6.2 Real-Valued Functions of Two or More Variables 293

In[117]:= 5 x2 y2 x y

Out[117]= 5 x y
x3 y3

9

It is perfectly acceptable to use as bounds in an inner integral expressions involving variables
appearing in an outer integral. For double integrals, this allows integration over nonrectangular
regions in the plane. Here we integrate over the region bounded by the circle of radius two centered
at the origin:

In[118]:=
2

2

4 y2

4 y2

5 x2 y2 x y

Out[118]=
52

3

And here we integrate the function f x, y, z y z2 over the region bounded by a sphere of radius

two centered at the origin:

In[119]:=
2

2

4 z2

4 z2

4 y2 z2

4 y2 z2

y z2 x y z

Out[119]=
128

15

This last integral may take a minute or so to evaluate. A more sensible approach, even with a tool as
powerful as Mathematica, is to use a spherical coordinate system. See the subsection “Integration in
Other Coordinate Systems” in Section 6.4, page 322, for details.

Finding Bounds of Integration and Plotting Regions in the Plane and in Space
While Mathematica makes the evaluation of most integrals a snap, you still have to set up those
integrals in the first place. And when the region over which the integration takes place is non-
rectangular, this can be a subtle and challenging enterprise in itself. However, if the region in
question is defined by one or more inequalities, the command CylindricalDecomposition will do
this work for you. For instance, to find the bounds used in the last example for integration over a
spherical region of radius 2 centered at the origin, one may simply do this:

In[120]:= CylindricalDecomposition x2 y2 z2 4, z, y, x

Out[120]= 2 z 2 && 4 z2 y 4 z2 && 4 y2 z2 x 4 y2 z2

294 Multivariable Calculus

Similarly, the circular region in the example preceding this one can be decomposed as follows:

In[121]:= CylindricalDecomposition x2 y2 4, y, x

Out[121]= 2 y 2 && 4 y2 x 4 y2

The second argument to CylindricalDecomposition is a list of the coordinate variables, and the
order in which they are listed is very important. It should match the order in which the integral
signs appear. To decompose complex regions, you may wish to experiment with the ordering to find
the one that leads to the most simple decomposition. Also, use strict inequalities when describing
regions of integration, as this will often simplify the output.

As useful as CylindricalDecomposition is, it may not be able to decompose a region defined by
inequalities involving transcendental functions. For instance, if the first argument is

sin x y 1 x2, it will not be able to find the numerical bounds for x. See Exercise 13.

You can also make a plot of the region determined by your bounds of integration. This provides a
visual confirmation for your choice of bounds. One produces the plots using RegionPlot for planar
regions, and RegionPlot3D for regions in space. Here, for instance is the circular region used in the
double integral above. Note that the first argument uses the bounds of the inner integral, and is
presented as an inequality (it makes no difference whether strict or non-strict inequalities are used).
The bounds of the outer integral are given implicitly via the iterator for y:

In[122]:= RegionPlot 4 y2 x 4 y2 , x, 2, 2 , y, 2, 2

Out[122]=

And here is a view of the volume that this double integral represents. We use Plot3D with both a
RegionFunction setting (to show the plot of the integrand over the circular region) and a Filling
setting (to show a translucent solid region under the graph of the integrand). Note also that Plot
Range is needed to extend the image all the way down to the x-y plane.

6.2 Real-Valued Functions of Two or More Variables 295

In[123]:= Plot3D 5 x2 y2, x, 2, 2 , y, 2, 2 , Mesh None, PlotRange 0, 5 ,

Filling Axis, RegionFunction Function x, y , 4 y2 x 4 y2

Out[123]=

The setting for RegionFunction could be stated more simply as Function[{x,y},Norm[{x,y}] 2] .
Similarly, the inequality used as the first argument to RegionPlot in the earlier input could be
Norm[{x,y}] 2. We stuck here with the inequality suggested by the bounds of integration, precisely
to make sure those bounds produce an appropriate image.

Both RegionPlot and RegionPlot3D expect an inequality, or a logical combination of inequalities,
as their first argument. RegionPlot3D demands three iterators, one for each coordinate variable.
Here we use RegionPlot3D to view the solid spherical region used for the triple integral example
given just prior to the start of this subsection. Note how we use a logical combination of the inequali-
ties corresponding to the bounds of the two inner integrals:

In[124]:= RegionPlot3D 4 z2 y 4 z2 && 4 y2 z2 x 4 y2 z2 ,

x, 2, 2 , y, 2, 2 , z, 2, 2

Out[124]=

Here the first argument to RegionPlot3D could be stated more simply as Norm[{x,y,z}] 2. We
stuck here with the inequalities suggested by the bounds of integration, precisely to test that these
bounds produce an appropriate image.

296 Multivariable Calculus

Below we construct multiple cut-away views of this solid ball, with MeshFunction and MeshShad

ing settings applied to color the ball according the value of the integrand y z2. If this function

gives the density of the ball at the point x, y, z , for instance, then the triple integral gives the ball’s

mass. Note that the setting BoxRatios Automatic is needed to give all axes the same scale (by
default RegionPlot3D will scale the axes in order to create a cubical bounding box).

In[125]:= GraphicsRow Table RegionPlot3D Norm x, y, z 2,

x, 2, rightSide , y, 2, 2 , z, 2, 2 , BoxRatios Automatic,

MeshFunctions Function x, y, z , y z2 , Mesh 10,

MeshShading Table ColorData "TemperatureMap" k , k, 0, 1, .1 ,

Lighting "Neutral", Axes False , rightSide, 2, 1, 0 , ImageSize 300

Out[125]=

Exercises 6.2
1. In this exercise you will explore the ColorFunction option for Plot3D. ColorFunction may be

set to any pure function with three variables (one for each coordinate position). Pure functions

are discussed in Section 8.4. By default, each of the input values for this function are scaled from

the actual coordinate values to span the range from 0 to 1. In order to use the actual coordinate
values, the additional option setting ColorFunctionScaling False must be added. Moreover
the output of the ColorFunction must be a Hue, RGBColor, or other color directive (such as a
named gradient like ColorData["StarryNightColors"]). The inputs to functions such as Hue
should span the values from 0 to 1. In practice, this means that most “interesting” color func-
tions will have to be Rescaled before being suitable for input to Hue or whichever color render-
ing function you plan to use.

a. Make a Plot3D of the function sin x y on the domain 2 x 2, 2 y 2 with the option
setting ColorFunction (#1&). Repeat for (#2&) and (#3&). Note that by setting an explicit
color function, the default Lighting setting switches to using white light only, so as not to
interfere with your choice of color.

b. Make a Plot3D of the function sin x y x cos x y
2

y cos x y
2

 on the domain 2 x 2,

2 y 2 with the option setting PlotRange All. Estimate the minimum and maximum

values obtained by the function on this domain.

6.2 Real-Valued Functions of Two or More Variables 297

c. Repeat the previous part, but this time plot the function

Rescale[Sin x y x Cos x y
2

y Cos x y
2

,{0,4}]. What do you notice about its minimum

and maximum values?

d. The function above is suitable for input into a color rendering command such as Hue or
ColorData["StarryNightColors"]. Let’s do it; enter the following input, and comment on the
coloring. What this shows is that (with a little work) the graph of one function can be colored
in according to the values of any other function.

In[126]:= Plot3D Sin x y , x, 2, 2 , y, 2, 2 , ColorFunctionScaling False,

ColorFunction Function x, y, z , ColorData "StarryNightColors"

Rescale Sin x y x Cos x y
2

y Cos x y
2

, 0, 4 , Mesh None

Out[126]=

e. The following output wraps the color rendering function in Glow, which means that it will
not react with any Lighting. Can you see any difference from the last input?

In[127]:= Plot3D Sin x y , x, 2, 2 , y, 2, 2 , ColorFunctionScaling False,

ColorFunction Function x, y, z , Glow ColorData "StarryNightColors"

Rescale Sin x y x Cos x y
2

y Cos x y
2

, 0, 4 , Mesh None

Out[127]=

2. Use TabView to construct a dynamic display of a Plot3D object like the one shown below where
MaxRecursion may be set to any of the values 0 to 3.

298 Multivariable Calculus

0 1 2 3

3. Make a plot of the function f x, y x y

x2 y2 over the annular domain .1 x2 y2 1. Add

Filling to the bottom of the bounding box. Repeat for f x, y x y2

x2 y2 . Comment on the behavior

of these functions near the origin.

4. Make two images side by side, one showing a ContourPlot of your favorite function, and the
other a Plot3D of that same function on the same domain. Use MeshFunctions to display level
curves in the Plot3D. Use a specific Range of values for the Contours settings on the Contour
Plot, and use that same collection of values for Mesh settings on the Plot3D. This way you will
synchronize the level curves being shown in each plot. Use a ColorFunction or MeshShading to
apply "LakeColors" to your Plot3D.

5. Write a command called key that will make a graphical gradient key for a ContourPlot as shown

on page 272. It should have the syntax structure key[{min,max},contours], where min and max

denote the minimum and maximum function values in the plot, and contours is the number of
contour regions in the plot.

6. Consider the function f x, y sin x2 y2 on the domain 2 x 2, 1 y 1. In this exercise

you will explore several methods of illustrating cross-sections for this function. That is, you will
set one of the coordinate variables equal to a constant. For instance, if x 1 this means geometri-
cally that you slice the graph of f with the vertical plane x 1.

a. Make a Manipulate that will display a Plot of the cross-section y c for f , as c ranges from 1

to 1. For those familiar with medical imaging, this is a bit like an MRI scan of the 3D plot of f .

b. Make a Manipulate that will display a Plot of the cross-section x c for f , as c ranges from 2
to 2.

c. Make the Manipulate shown below that shows both of the cross-sections together with a
Plot3D of f with appropriate Mesh lines.

6.2 Real-Valued Functions of Two or More Variables 299

x0

y0

0.

z

y

z

7. Describe the set of critical points for the function f x, y sin x2 y2 on the domain 2 x 2

and 1 y 1. Use Reduce with the second argument set to {y,x} and again with the second

argument set to {x,y}. Is one output easier to interpret?

8. Consider the function f x, y x cos xy .

a. Show that f has no critical points. Make a ContourPlot with MeshFunctions and Mesh
settings to display the curves where the partial derivative with respect to x is zero, and those
where the partial derivative with respect to y is zero. Confirm visually that these two sets of

curves never cross.

b. Show that for any direction measured by the polar angle , and any real number r 0, the
function f has a point x0, y0 in its domain where the directional derivative in the direction of

 exceeds r, and another point x1, y1 where the directional derivative in the direction of is

less than r. Essentially, the steepness of this function is unbounded in every direction, despite
being defined on the entire plane, and having no relative minima, maxima, or saddle points.

9. Explain how to use ContourPlot3D to view the graph of any real-valued function of two vari-
ables, such as f x, y 2 x y on the domain 1 x 1, 1 y 1. How does this differ from using

the Plot3D command to produce such a graph?

10. Maximize the quantity x1 3 y2 3 under the constraint that 40 x 50 y 10000.

11. Find all point(s) on the surface z x y closest to the point 0, 0, 3 . Make a ContourPlot3D of

this surface, colored (via MeshShading) according to how close points are to 0, 0, 3 .

12. Consider the function f x, y 2 1 x2 defined over the unit disk in the x-y plane centered at

the origin.

a. Make a Plot3D of f over this circular region, and use Filling to display the solid under the
graph of f and above the x-y plane.

b. Find the volume of this solid.

300 Multivariable Calculus

c. Make the following Manipulate, showing the graph from part a together with a movable
square cross-section. If one first integrates with respect to y, the inner integral is equal to the
area of this square cross-section.

x

13. Find the approximate value of the double integral of the function f x, y 2 x y over the region

R in the x-y plane bounded by y sin x and y 1 x2. Make a three-dimensional sketch of the

signed volume that this integral represents.

14. Use RegionPlot3D to view the solid torus z2 x2 y2 3
2

1. Use MeshShading to color

the torus according to distance from the origin, with points closest to the origin appearing red,
and the most distant points appearing blue. (The ColorData["TemperatureMap"] gradient is
perfect for this.) Finally, display that portion of the surface with 2 x 4 and 0 y 4.

6.3 Parametric Curves and Surfaces

Parametric Curves in the Plane
A parametric representation of a curve is a continuous vector-valued function of one variable; for
each value of a variable t, the function returns a vector x t , y t in the plane. As t varies

continuously through an interval, the vectors trace out a curve. Since a vector in Mathematica is
represented as a List, a parametric curve can be defined as a List of two or more real-valued
functions. The first function represents the x coordinate, the second the y coordinate. Since there is

only one variable, we revert to the paradigm for defining functions used in Chapters 3 through 5,
with an underscore after the independent variable on the left side, and using SetDelayed (:=).

In[1]:= s t : Cos t t, Sin t

You can now find your position in the plane for any value of t:

6.3 Parametric Curves and Surfaces 301

In[2]:= s
4

Out[2]=
1

2 4
,

1

2

To plot a parametric function, use the command ParametricPlot:

In[3]:= ParametricPlot s t , t, 0, 10 , AspectRatio 1 2

Out[3]=
5 10 15 20 25 30

1.0

0.5

0.5

1.0

ParametricPlot takes two arguments. The first is the function you wish to plot, and the second is
an iterator for the independent variable (t in this example). ParametricPlot will tend to give both
axes the same scale unless you explicitly tell it not to. Many curves, circles for instance, look better
that way, so that’s what happens by default. Be aware that in plots like the one above where one
axis is far longer than the other, an AspectRatio setting will be in order.

You need not restrict yourself to simple functions. ParametricPlot works well on Piecewise func-
tions, and even on interesting curves like this:

In[4]:= c t
0

t
Sin u2 u,

0

t
Cos u2 u ;

In[5]:= ParametricPlot c t , t, 10, 10

Out[5]=
0.5 0.5

1.0

0.5

0.5

1.0

Note that the definition of c t above uses Set (=) rather than SetDelayed (:=). This causes the
two integrals on the right side of the definition to be evaluated once, when the c[t_]= cell is

302 Multivariable Calculus

entered. It is the expressions that are the values of these integrals (they happen to be Fresnel
functions) that are assigned to c t , and that are then plotted. If SetDelayed had been used in
defining c t , then the integrals would have to be worked out anew for each input value t used
to create the plot (and there are several hundred such values). It would have slowed the
process of plotting by several orders of magnitude.

While a ParametricPlot shows the set of points of the form x t , y t as t runs through all values in

an interval, it does not give any indication of which point goes with which input. Manipulate can
be harnessed to trace out a parametric curve, with a slider to control the independent variable. Here,
for instance, is a standard parameterization of the unit circle. Note the PlotRange setting (which
keeps the plot range fixed as t varies), and the small but positive starting value 0.01 for the endpoint
t (one needs distinct starting and ending values for the independent variable in any ParametricPlot).

In[6]:= Manipulate Show

ParametricPlot Cos t0 , Sin t0 , t0, 0, t , PlotRange 1 ,

Graphics Arrow 0, 0 , Cos t , Sin t

,

t, 1. , 0.01, 2

Out[6]=

t

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

One can also define a custom parametric plotting command that will apply a color gradient to the
curve, so that it will, for instance, start in green and gradually progress through the color gradient to
end in red (green for go, red for stop). Here’s a simple implementation, but you’ll need to try it in
order to see the colors on your monitor.

6.3 Parametric Curves and Surfaces 303

In[7]:= ParametricPlot Cos t , Sin 3 t , t, 0, 2 , ColorFunction Hue .7 3 .3 &

Out[7]=

The ColorFunction accepts any or all of three arguments. The first two are the x and y

coordinates of the parametric curve. The third (#3 used above) is the independent variable t.
By default, the values of t will be scaled to run from 0 to 1 before being input to the ColorFunc
tion, regardless of the domain you choose. Hence the option setting above produces a color
gradient that starts at Hue[.3] (green) and ends at Hue[1.] (red). This same setting may be used

to color any ParametricPlot according to this gradient. Exercise 4 shows how to color a

parametric curve according to its curvature.

We note that ParametricPlot accepts most of the options accepted by other two-dimensional
plotting commands such as Plot. The PlotPoints option, for example, can be set to a numerical
value (such as 100) if you see jagged segments where you suspect they should not be. However, the
adaptive algorithm employed by ParametricPlot is both speedy and robust; it is rare to find cases
where it does anything less than an excellent job. The following Manipulate may help to convince
you of this:

In[8]:= Manipulate

ParametricPlot Cos t
1

2
Cos 7 t

1

2
Sin a t , Sin t

1

2
Sin 7 t

1

2
Cos b t ,

t, 0, 2 , Axes False, PlotRange 2 , a, 17 , 5, 25 , b, 12 , 5, 25

304 Multivariable Calculus

Out[8]=

a

b

The derivative of the parametric function x t , y t is x ' t , y ' t . You can differentiate a parametric

function just as you did a single-variable function in Chapter 5, or like we did for multivariable
functions in the previous section of this chapter, using :

In[9]:= D s t , t

Out[9]= 1 Sin t , Cos t

In[10]:= s ' t

Out[10]= 1 Sin t , Cos t

In[11]:= t s t

Out[11]= 1 Sin t , Cos t

Note that while the ParametricPlot of s t has sharp corners (it is the first plot shown at the begin-
ning of this section), its derivative is defined everywhere. This can happen. The Manipulate below

shows the derivative vector s ' t with its tail at the point s t , as t varies. When t is 2 or 5 2,
sin t 1 and cos t 0, and so the derivative is the zero vector. This happens at the top of each sharp
corner in the plot.

In[12]:= Module s ,

s t t Cos t , Sin t ;

Manipulate Show

ParametricPlot s t0 , t0, 0, 10 , PlotRange 0, 10 , 2, 2 ,

Graphics Arrow s t , s t s ' t

,

t, 4.8 , 0, 10

6.3 Parametric Curves and Surfaces 305

Out[12]=

t

2 4 6 8 10

2

1

1

2

If s t represents the position of a particle at time t, then its velocity vector is s ' t , and its speed is the
magnitude of this vector. To compute speed, say at time t 3, you can do this:

In[13]:= Norm s' 3 N

Out[13]= 1.31063

You can even get a formula for speed as a function of t. Here we produce and Simplify the formula,
using the optional second argument for Simplify in order to specify that t is permitted to assume
only real values (as opposed to complex values). We could have given the second argument as
Element[t,Reals]. The infix form of the Element command is invoked with the symbol, which
can be found on the third row of small buttons on the BasicMathInput palette.

In[14]:= Simplify Norm s' t , t Reals

Out[14]= 2 2 Sin t

Note that this is consistent with the Manipulate above; speed is zero precisely when t is 2, 5 2,
etc.

Unit tangent vectors are constructed exactly as you would expect. The use of Simplify as above will
generally serve you well.

In[15]:= unitTangent s , t : Simplify
D s, t

Norm D s, t
, t Reals

In[16]:= s t t Cos t , Sin t ;

unitTangent s t , t

Out[17]=
1 Sin t

2
,

Cos t

2 2 Sin t

The unit tangent vector at a specific value of t can then be obtained via a simple replacement:

306 Multivariable Calculus

In[18]:= unitTangent s t , t . t 1.2

Out[18]= 0.184338, 0.982863

Unit normal vectors can be formed in a similar way (although FullSimplify does a better job than
Simplify in this case):

In[19]:= unitNormal s , t : FullSimplify
D unitTangent s, t , t

Norm D unitTangent s, t , t
, t Reals

In[20]:= unitNormal s t , t

Out[20]=
Cos t

2 2 Sin t
,

1 Sin t

2

Even though neither the unit tangent nor the unit normal is defined when t 2 or t 5 2, the
following Manipulate works fine, as it is unlikely to sample these precise values. We define auxil-
iary commands ut and un so that unitTangent and unitNormal only need to be called once (they
are slow, after all, since they use Simplify and FullSimplify, respectively, each time they are called).
The auxiliary commands ut and un are defined using Set (=). So they use the formulas generated by
unitTangent and unitNormal, and simply replace the variable t by whatever argument x is speci-
fied. They are speedy!

In[21]:= Module s, ut, un, t ,

s t t Cos t , Sin t ;

ut x unitTangent s t , t . t x;

un x unitNormal s t , t . t x;

Manipulate Show

ParametricPlot s t , t, 0, 10 , PlotRange 0, 10 , 2, 2 ,

Graphics Blue, Arrow s t0 , s t0 ut t0 ,

Graphics Red, Arrow s t0 , s t0 un t0

,

t0, 6.8 , 0, 10

Out[21]=

t0

2 4 6 8 10

2

1

1

2

6.3 Parametric Curves and Surfaces 307

Curvature is also a simple calculation. We use the Greek letter (kappa) to denote this quantity. Find
 on the BasicMathInput palette, or type k .

In[22]:= s , t : FullSimplify
Norm D unitTangent s, t , t

Norm D s, t
, t Reals

In[23]:= s t , t

Out[23]=
1

2 2 2 Sin t

And so the radius of curvature is the reciprocal of this quantity, 2 2 2 sin t . At the sharp corners

(when t is 2, 5 2, etc.) the curvature is undefined, and the radius of curvature approaches zero.
The Manipulate below shows the osculating circle for any value of t. This illustrates that the radius
of curvature approaches zero very rapidly as t approaches 5 2.

In[24]:= Module s, un, curv, t ,

s t t Cos t , Sin t ;
un x unitNormal s t , t . t x;

curv x s t , t . t x;

Manipulate Show ParametricPlot s t , t, 0, 10 , PlotRange 4, 12 , 2, 6 ,

Graphics Gray, Circle s t0
1

curv t0
un t0 ,

1

curv t0
,

Graphics Red, Arrow s t0
1

curv t0
un t0 , s t0

, t0, 6.5 , 0, 10

Out[24]=

t0

5 10

2

2

4

6

308 Multivariable Calculus

Parametric Curves in Space
Parametric curves in three-space are just like parametric curves in the plane, except that they are
constructed as a list of three real-valued functions. The first function represents the x coordinate, the
second represents the y coordinate, and the third represents the z coordinate.

In[25]:= s t :
t2

50
Sin t ,

t2

50
Cos t , t

To plot a parametric function in space, use the command ParametricPlot3D:

In[26]:= ParametricPlot3D s t , t, 0, 8 , AxesLabel x, y, z

Out[26]=

10
5

0
5x

10

5
0

5
10

y

0

10

20

z

ParametricPlot3D takes two arguments. The first is the function you wish to plot (a List of three
coordinate functions), and the second is an iterator for the independent variable. We added an
AxesLabel option to make it easy to identify which direction is which after you rotate the figure
with your mouse. Many of the other options for the other 3D plotting commands are applicable
here; see the subsection of Section 6.2 called “Options for 3D Plotting Commands” on page 258.
One can also use MeshShading or ColorFunction settings in exactly the same manner as for 2D
parametric plots. For example, here we color a curve according to the value of the independent
variable:

6.3 Parametric Curves and Surfaces 309

In[27]:= ParametricPlot3D s t , t, 0, 8 ,

AxesLabel x, y, z , ColorFunction Hue .3 .7 3 &

Out[27]=

Differentiation, integration, unit tangents, unit normals, and curvature work exactly as for 2D
parametric functions (see the previous subsection). In the case of three-space, however, there is a well
known alternate formula for curvature based on the cross-product. It is a simple matter to program a
command based on this formula:

In[28]:= curvature r , t : FullSimplify
Norm Cross r ' t , r '' t

Norm r' t 3
, t Reals

We may now calculate curvature for any function, at any point t in its domain:

In[29]:= curvature s,

Out[29]=
50 10 000 30000 2 2536 4 12 6 8

2500 4 2 4 3 2

In[30]:= curvature s, t

Out[30]= 50
10 000 30000 t2 2536 t4 12 t6 t8

2500 4 t2 t4 3

310 Multivariable Calculus

Parametric Surfaces in Space
A surface in space can be parameterized much like a curve in space, but rather than using a single
independent variable t, we use a pair of independent variables u and v. Whereas a parameterization
of a curve in space is a continuous function from an interval of the real line to three-space, a
parameterization of a surface is a continuous function from a rectangle in the plane to three-space.
The image of each coordinate pair u, v is a point in space, a 3-tuple x u, v , y u, v , z u, v , where x,

y, and z are real-valued coordinate functions.

Mathematica is instrumental in visualizing the amazing spectrum of surfaces that can be constructed
in this manner. Here is an example. It illustrates that just as a parametrically defined curve can
intersect itself (if the coordinate functions assume the same values at two or more distinct values of
t), so too can a parametrically defined surface intersect itself. This surface is known as the Whitney
umbrella, named after the American mathematician Hassler Whitney (1907–1989).

In[31]:= Clear , u, v ;

u v, u, v2

Out[32]= u v, u, v2

In[33]:= ParametricPlot3D , u, 3, 3 , v, 2, 2

Out[33]=

The rectangular region in the u-v plane with 3 u 3 and 2 v 2 is mapped continuously via

to the surface in 3 shown above. As with parametric curves, the plot does not show the domain,
but only the image of the domain after the parametric function is applied.

Here’s another example. We map a rectangle in the u-v plane to a torus:

In[34]:= Cos u 2 Cos v , Sin u 2 Cos v , Sin v ;

6.3 Parametric Curves and Surfaces 311

In[35]:= ParametricPlot3D , u, 0, 2 , v, 0, 2

Out[35]=

For parametric surfaces, a mesh function can accept up to five arguments. In order, the arguments
are x, y, z, u, and v. The first three are the coordinates in space of the surface, while the last two are

the independent variables. The default setting for the MeshFunctions option is 4 &, 5 & ,
meaning that the image under of uniformly spaced rectangular grid lines on the domain rectangle
are shown. More information can be gained by using Mesh, MeshFunctions, and MeshShading to
apply a color gradient according to increasing values of one of the independent variables. This is
accomplished in exactly the same way as described in the subsection of Section 6.2 called “Options

for 3D Plotting Commands” on page 258. Below we do this for the first independent variable, u,
used in the torus. The “seam” is easily visible (on a color monitor) as the sharp boundary between
red and blue.

In[36]:= ParametricPlot3D , u, 0, 2 , v, 0, 2 , Mesh 10, MeshFunctions 4 & ,

MeshShading Table ColorData "TemperatureMap" k , k, 0, 1, .1 ,

Lighting "Neutral"

Out[36]=

Differentiation works just as with parameterized curves. Here is the partial derivative with respect to
v:

In[37]:= v

Out[37]= Cos u Sin v , Sin u Sin v , Cos v

It is easy to use the concept of a parametric surface to generate a surface of revolution. You may recall
surfaces of revolution from single-variable calculus; indeed, in Section 5.13 on page 242 we dis-
cussed the built-in command RevolutionPlot3D, which will plot the surface of revolution obtained
from revolving the function z f x about the z axis. However, this command cannot be used to

312 Multivariable Calculus

rotate the graph of such a function about the x axis. One may easily create a custom command for

this purpose as follows:

In[38]:= xRevolutionPlot3D f , x , xmin , xmax :
ParametricPlot3D x, f Cos , f Sin , x, xmin, xmax , , 0, 2

For example, here we rotate a parabola about the x axis:

In[39]:= f x : 1 x2;

GraphicsRow Plot f x , x, 1, 1 , xRevolutionPlot3D f x , x, 1, 1

Out[40]=

Exercises 6.3
1. Explain how to use ParametricPlot to view the graph of any real-valued function of a single

variable, such as f x x2 1. How does this differ from using the Plot command to produce

such a graph?

2. There are many different parameterizations of the same curve. A standard parameterization of the
unit circle is cos t, sin t , where 0 t 2 . Verify that the parametric function

sin 4 t sin 6 t

2 sin 5 t
, cos 4 t cos 6 t

2 sin 5 t
, where 0 t 2 , also parameterizes the unit circle for those values of t

where it is defined (e.g. it is not defined at integer multiples of t 5).

3. Consider the vector-valued function r t 2 sin t , cos t , sin 2 t .

a. Superimpose a ParametricPlot3D of r t with a ContourPlot3D of the surface z x y. Use the
option Mesh None in your plot of the surface. What do you find?

b. Explain why the curve lies on the surface. Hint: you will need the double-angle formula for
the sine function. If you have forgotten it, type TrigExpand[Sin[2t]].

4. Use ColorFunction to color a ParametricPlot of the function t, t2
 on the domain 2 t 2

according to its curvature with the "TemperatureMap" color gradient. While this method pro-

6.3 Parametric Curves and Surfaces 313

duces continuous color transitions (as opposed to the discrete color values produced when using
MeshFunctions for this purpose), it requires your knowing the maximum and minimum curva-
ture values for your specific function on your specific domain.

5. Use MeshShading to shade a ParametricPlot3D of the torus,

 u, v cos u cos v 2 , sin u cos v 2 , sin v

where each independent variable ranges from 0 to 2 , according to values of the independent
variable v. Use the color gradient ColorData["TemperatureMap"] with ten gradations. Use the
resulting graphic to identify the “seam” in the torus created by this variable.

6.4 Other Coordinate Systems

Polar Coordinates

Conversion to and from Polar Coordinates
A point in polar coordinates is represented as an ordered pair r, , where r is the distance from the
point to the origin, and the angle is measured in radians, counterclockwise, from the positive x
axis to the segment connecting the origin to the point.

To convert between polar and Cartesian coordinates, one makes use of the following triangle and
some basic trigonometry:

x

y
r

So in converting from polar to Cartesian coordinates, one uses the formulas x r cos and y r sin .

In converting from Cartesian to polar coordinates, one uses the formulas r x2 y2 , and so long

as x 0, tan y x. This last equation, when solved for , can be expressed as follows:

arctan y x x 0

arctan y x x 0 and y 0

arctan y x x 0 and y 0

2 x 0 and y 0

2 x 0 and y 0

314 Multivariable Calculus

This expression for is clearly a bit messy. The formula above will produce a value of with
. Mathematica makes the calculation of much easier with its ArcTan command. The

ArcTan command usually takes a single number as its argument, and returns a value between 2
and 2, the arc tangent of that number. But you can also feed it an x-y pair. ArcTan[x, y] will

return the polar angle for the point with Cartesian coordinates x, y , with . That is, it

will essentially invoke the complex formula above. So life is easy after all: in converting from
Cartesian to polar coordinates, ArcTan[x, y]. For instance:

In[1]:= ArcTan 1, 1 , ArcTan 0, 1 , ArcTan 1, 1 , ArcTan 1, 1

Out[1]=
4

,
2

,
3

4
,

3

4

It is now a simple matter to automate the conversion process by creating the following commands.
Note that you can type from the keyboard via the key sequence th . It is also available on the
BasicMathInput palette.

In[2]:= toPolar x , y : Norm x, y , ArcTan x, y Simplify

In[3]:= toCartesian r , : r Cos , r Sin Simplify

Here are some examples:

In[4]:= toPolar 1, 3

Out[4]= 2,
2

3

In[5]:= toCartesian 10,
12

Out[5]=

5 1 3

2
,

5 1 3

2

Plotting in Polar Coordinates
The built-in command PolarPlot can be used to view the graph of the polar function r f . For

example:

6.4 Other Coordinate Systems 315

In[6]:= PolarPlot
1

1 Sin
, ,

5

4
,

4

Out[6]=

2 1 1 2
0.5

0.5

1.0

1.5

2.0

In[7]:= PolarPlot Sin 2 , , 0, 10 , Axes False

Out[7]=

Like Plot, PolarPlot will accept a list of functions as its first argument (so that multiple functions
can be simultaneously plotted). It accepts most of the same options accepted by Plot, so you will be
pleased to find that you’re already an expert in its usage. For example:

In[8]:= PolarPlot , , , 0, 4 , Axes False,

PlotStyle Orange, Directive Blue, Dashed

Out[8]=

316 Multivariable Calculus

Parametric Plotting in Polar Coordinates
There’s no built-in command for this, but it’s easy to write the command yourself. If r and are each

functions of the parameter t, then x r cos and y r sin are also functions of t, and so can be

plotted using ParametricPlot. Here’s how we formalize this:

In[9]:= polarParametricPlot r , , args : ParametricPlot r Cos , r Sin , args

Put two underscores after args on the left side of the definition (two underscores means that args
represents one or more arguments, separated by commas). In this case args stands for the required
iterator for the independent variable and for any options that might be added. Here’s an example:

In[10]:= Clear r, , t ;

r t : t Sin t ;

t : t

In[13]:= polarParametricPlot r t , t , t, 0, , Axes False

Out[13]=

Cylindrical and Spherical Coordinates

Conversion to and from Cartesian Coordinates
When translating from one coordinate system to another it is imperative that you understand the
geometry and trigonometry underlying the translation. Otherwise, you will be placing your faith
entirely in the computer, never a good idea. However, it would be nice to be able to automate the
process, or to be able to ask Mathematica for a conversion formula that you might have forgotten. To
automate the translation process, you will need to load a package:

In[14]:= Needs "VectorAnalysis`"

Now you will have access to the commands CoordinatesToCartesian and CoordinatesFromCarte
sian. Each of these commands takes two arguments. The first is the point whose coordinates you
want to translate, and the second is the name of the coordinate system to or from which the transla-
tion should occur:

6.4 Other Coordinate Systems 317

In[15]:= CoordinatesFromCartesian 2 , 2 , 3 , Cylindrical

Out[15]= 2,
3

4
, 3

In[16]:= CoordinatesToCartesian 2,
3

4
, 3 , Cylindrical

Out[16]= 2 , 2 , 3

Working with spherical coordinates in this package demands that you pay careful attention to
Mathematica’s conventions for this coordinate system. By default, nonzero points expressed in
spherical coordinates are of the form , , , where is the distance from the point to the origin,

is the angle from the vector determined by the point to the positive z axis, and is the angle used in

polar and cylindrical coordinates. The second and third coordinate positions are transposed in many
standard calculus texts, so beware!

In[17]:= CoordinatesFromCartesian 1, 0, 1 , Spherical

Out[17]= 2 ,
4

, 0

Best of all, you can use these conversion commands to help you remember the conversion formulas:

In[18]:= Clear , , ;

CoordinatesToCartesian , , , Spherical

Out[19]= Cos Sin , Sin Sin , Cos

In[20]:= Clear x, y, z ;

CoordinatesFromCartesian x, y, z , Spherical

Out[21]= x2 y2 z2 , ArcCos
z

x2 y2 z2
, ArcTan x, y

If you are not familiar with the ArcTan[x, y] convention, see the subsection “Polar Coordinates” at
the beginning of this section on page 314.

It is worth noting that the VectorAnalysis package supports more than a dozen coordinate
systems. Cartesian, cylindrical, and spherical are simply the most common. For more informa-
tion, type “vector analysis package” into the search field in the Documentation Center.

318 Multivariable Calculus

Plotting in Cylindrical Coordinates
Suppose you have a function given in cylindrical coordinates, that is, where z is expressed as a

function of the radius r and polar angle . The command RevolutionPlot3D can be used to produce

the graph of such a function. It works much like Plot3D: the first argument is the expression for z in

the variables r and , and the second and third arguments are iterators for r and , respectively.

In[22]:= RevolutionPlot3D , r, 0, 3 , , 0, 2 , BoxRatios 1

Out[22]=

Here we plot the paraboloid f x, y x2 y2, shown over a circular domain of radius 2, with polar

angle between 0 and 3 2:

In[23]:= RevolutionPlot3D r2, r, 0, 2 , , 0, 3 2 ,

BoxRatios 1, 1, 2 , Boxed False, Axes False

Out[23]=

6.4 Other Coordinate Systems 319

Parametric Plotting in Cylindrical Coordinates
If r, , and z are each parameterized by a variable such as t, you may wish to plot the curve that

results from the parameterization. While there is no built-in command for this, you can create the
command parametricCylindricalPlot3D as follows:

In[24]:= parametricCylindricalPlot3D r , , z , args :

ParametricPlot3D r Cos , r Sin , z , args

This command simply invokes ParametricPlot3D after converting the arguments from cylindrical
to Cartesian coordinates. Be sure to put two underscores after args on the left side of the defining
equation; two underscores mean that args stands for a sequence of one or more arguments. In this
case, args represents the required iterator for the independent variable t and any options you might

add—this will allow you to use any of the options allowed by ParametricPlot3D.

Here is an example of a curve that resides along the cylinder whose equation in cylindrical coordi-
nates is r 1:

In[25]:= parametricCylindricalPlot3D 1, t, Cos 20 t , t, 0, 2 , Boxed False, Axes False

Out[25]=

Plotting in Spherical Coordinates
If, in spherical coordinates, is a function of and , you can produce a plot of this function with

the command SphericalPlot3D. Using this command is much like using Plot3D—the first argument
is the expression for the radius given in terms of and . The second and third arguments are

iterators for and , respectively (note that , the angle from the positive z axis, comes first). Here

are two hemispheres, each with the equation 2:

320 Multivariable Calculus

In[26]:= SphericalPlot3D 2, , 0, 2 , , 0, 2

Out[26]=

In[27]:= SphericalPlot3D 2, , 0, , , 0,

Out[27]=

And here is a plot of the surface with the simple equation :

In[28]:= SphericalPlot3D , , 0, , , 0, 7 2 , Boxed False, Axes False

Out[28]=

Most of the options that can be used with the command Plot3D will also work for SphericalPlot3D.
A discussion of these options can be found in the subsection “Options for 3D Plotting Commands”
of Section 6.2 on page 258.

6.4 Other Coordinate Systems 321

Parametric Plotting in Spherical Coordinates
If and and are each parameterized by a variable such as t, you may wish to plot the curve that

results from this parameterization. While there is no built-in command for this, you can create the
command parametricSphericalPlot3D as follows:

In[29]:= parametricSphericalPlot3D , , , args :

ParametricPlot3D Sin Cos , Sin Sin , Cos , args

This command simply invokes ParametricPlot3D after converting the arguments from spherical to
Cartesian coordinates. Be sure to put two underscores after args on the left side of the defining
equation; two underscores mean that args stands for a sequence of one or more arguments. In this
case, args represents the required iterator for the independent variable t and any options you might

add—this will allow you to use any of the options allowed by ParametricPlot3D.

Here is an example of a curve that resides on the sphere whose equation in spherical coordinates is
1:

In[30]:= parametricSphericalPlot3D 1, t, 20 t , t, 0, , Boxed False, Axes False

Out[30]=

Integration in Other Coordinate Systems
No new Mathematica commands are needed to evaluate integrals in other coordinate systems. You
simply need to know the underlying conversion formulas in order to set up such an integral.

For example, we evaluated the double integral of the function f x, y 5 x2 y2 over the disk of

radius 2 centered at the origin back in the subsection “Integration of Functions of Two or More

Variables” of Section 6.2 on page 293. This is more easily handled in polar coordinates. We convert
the integrand into polar coordinates as follows:

322 Multivariable Calculus

In[31]:= Clear x, y, r, ;

5 x2 y2 . x r Cos , y r Sin

Out[32]= 5 r4 Cos 2 Sin 2

We can now integrate, replacing x y with r r . Since the region of integration is a disk, the

bounds of integration are easily described in polar coordinates: 0 r 2 and 0 2 .

In[33]:=
0

2

0

2
r r

Out[33]=
52

3

And how about the triple integral of the function f x, y, z y z2 over the region bounded by a

sphere of radius two centered at the origin? We did this one in Cartesian coordinates earlier as well.
We accomplish the same result in spherical coordinates as follows. We first convert the integrand
into spherical coordinates. Now what were those conversion formulas?

In[34]:= Needs "VectorAnalysis`"

In[35]:= Clear x, y, z, , , ;

CoordinatesToCartesian , , , Spherical

Out[36]= Cos Sin , Sin Sin , Cos

We can make replacement rules from these conversions like so:

In[37]:= Thread x, y, z

Out[37]= x Cos Sin , y Sin Sin , z Cos

The Thread command is used here to “thread” Rule () over the lists of variables and conver-
sion expressions. The FullForm of the input above is Thread[Rule[List[x, y, z], List[]]].
Thread has the effect of distributing Rule over the lists, producing a list of rules rather than a
rule of lists. So the output has the form List[Rule[x,], Rule[y,],Rule[z,]]. Thread is

discussed in Section 8.4 on page 410.

Here is the converted integrand:

In[38]:= y z2 .

Out[38]=
2 Cos 2 Sin Sin

6.4 Other Coordinate Systems 323

And now we integrate, replacing x y z with 2 sin . Since we wish to integrate over a

sphere of radius 2 centered at the origin, we choose as our bounds of integration 0 2, 0 ,
and 0 2 . The result agrees with our earlier output, but it evaluates far more quickly due to the
more simple bounds of integration.

In[39]:=
0

2

0 0

2
2 Sin

Out[39]=
128

15

Exercises 6.4
1. Make a Manipulate with two controllers that displays a graph of the polar function

r f sin n , where n is allowed to vary from .01 to 3, and the variable assumes values from

0 to length, where length is permitted to vary from 2 to 100 . The resulting curves are known as
roses.

2. Explain how to use ParametricPlot to produce the same output as that produced by PolarPlot
to view the graph of the polar function r f . Test your solution on the function f .

3. Explain how to use ParametricPlot to produce the graph of the inverse polar function f r .

Carry this out on the function f r r2 2 r 1 as r goes from 0 to 2.

4. Make a Manipulate to view various PolarPlots of the superformula with polar equation

r cos m

4

n2
sin m

4

n3
1

n1 . Use sliders that allow m, n1, n2, and n3 to range from 1 to 20.

Restrict m to assume only integer values in this range.

5. A homotopy between two surfaces is a smooth deformation from one surface to the other gov-
erned by a single real parameter t ranging from 0 to 1. Make a Manipulate that illustrates the
homotopy from the Roman surface (t 0) to the Boy surface t 1 given by:

x 2 cos 2 u cos2 v cos u sin 2 v

2 t 2 sin 3 u sin 2 v
,

y 2 sin 2 u cos2 v sin u sin 2 v

2 t 2 sin 3 u sin 2 v
,

z 3 cos2 v

2 t 2 sin 3 u sin 2 v
,

where
2

u
2
 and 0 v .

324 Multivariable Calculus

6.5 Vector Fields

Defining a Vector Field
Recall that a parameterized curve is a vector-valued function of one variable. That is, it’s a function

taking 2 or 3. A vector field is a vector-valued function of two or more variables. It is a

function taking 2 2 or 3 3 (or in general: n n). You define a vector field exactly as you
might expect:

In[1]:= Clear f, x, y ;

f x4 y4 6 x2 y2 1, 4 x3 y 4 x y3

Out[2]= 1 x4 6 x2 y2 y4, 4 x3 y 4 x y3

A three-dimensional vector field has three coordinate functions:

In[3]:= Clear g, x, y, z ;

g y z, z x, x y

Out[4]= y z, x z, x y

Plotting a Two-Dimensional Vector Field
You will need to load the VectorFieldPlots package:

In[5]:= Needs "VectorFieldPlots`"

You now have access to the commands VectorFieldPlot and VectorFieldPlot3D:

In[6]:= VectorFieldPlot y, x , x, 1, 1 , y, 1, 1

Out[6]=

6.5 Vector Fields 325

The first argument to VectorFieldPlot is the vector field to be plotted. It is followed by two iterators,
one for each of the two coordinate variables. Each side of the rectangular domain is subdivided into
15 equal pieces, and at each of the 15 15 225 points of the resulting grid the tail of a vector is

placed, the value of the vector field at that point. The lengths of the vectors are scaled so that even
the longest vectors will not overlap one another. You can change the number of vectors displayed
with the PlotPoints option. Set it to a positive integer such as 10 to view a 10 10 display. Set it to a

list of two such integers such as {10, 5} to view ten columns and five rows of vectors. Lower Plot
Points settings will speed up the evaluation time, and in some cases, they can produce a more
readable image. Note that by default the same scale is given to each axis.

In[7]:= GraphicsRow

VectorFieldPlot y, x , x, 1, 1 , y, 0, 1 , PlotPoints 10 ,

VectorFieldPlot y, x , x, 1, 1 , y, 0, 1 , PlotPoints 10, 5

, Dividers All

Out[7]=

A related and sometimes useful command is GradientFieldPlot. The syntax for this command is
identical to that of Plot3D and ContourPlot. It will essentially apply VectorFieldPlot to the gradient
of the function given as the first argument. Below we superimpose a ContourPlot with a Gradient
FieldPlot for the function f x, y xy. The gradient of this function is y, x , precisely the field we

plotted earlier. Note that the gradient vector for any point is orthogonal to the level curve through
that point. The gradient points in the direction of steepest ascent.

326 Multivariable Calculus

In[8]:= Show

ContourPlot x y, x, 1, 1 , y, 1, 1 , Contours 20 ,

GradientFieldPlot x y, x, 1, 1 , y, 1, 1 , PlotPoints 10

Out[8]=

Note also that it is important to list the ContourPlot first to create this graphic. Had it been listed
second, the contour plot would be overlaid on top of the vector field plot, and so would obscure it.

The command VectorFieldPlot3D is used to plot three-dimensional vector fields. By default, arrow-
heads are not drawn. The option setting VectorHeads True can be used to add arrowheads.

In[9]:= GraphicsRow

VectorFieldPlot3D x, y, z , x, 1, 1 , y, 1, 1 , z, 1, 1 ,

VectorFieldPlot3D x, y, z ,

x, 1, 1 , y, 1, 1 , z, 1, 1 , VectorHeads True

, ImageSize 260

Out[9]=

By default, there are seven vectors drawn in each coordinate direction, for a total of 73 343 vectors
in the plot. As before, this behavior can be modified via the PlotPoints option. And as you might
expect, there is a GradientFieldPlot3D command, whose syntax precisely matches that of Contour
Plot3D. It can be used to plot the gradient field for a real-valued function of three variables. Below

we show the gradient field for the function f x, y, z x2 y z, and on the right we add three level

6.5 Vector Fields 327

surfaces for this function as well. Again, the gradient vectors are orthogonal to the level surfaces,
and point in the direction of steepest ascent.

In[10]:= GraphicsRow

GradientFieldPlot3D x2 y z, x, 0, 1 ,

y, 0, 1 , z, 0, 1 , PlotPoints 4, VectorHeads True ,

Show

GradientFieldPlot3D x2 y z, x, 0, 1 , y, 0, 1 , z, 0, 1 , PlotPoints 4 ,

ContourPlot3D x2 y z, x, 0, 1 , y, 0, 1 , z, 0, 1 ,

Contours 3, Mesh None, ContourStyle Opacity .8

, ImageSize 260

Out[10]=

Divergence and Curl of a Three-Dimensional Vector Field
The divergence of a three-dimensional vector field f x, y, z f1 x, y, z i f2 x, y, z j f3 x, y, z k is

the real-valued function

div f x, y, z x f1 y f2 z f3.

The curl of f is the three-dimensional vector field

curl f x, y, z y f3 z f2 i z f1 x f3 j x f2 y f1 k.

The easiest way to compute divergence and curl with Mathematica is to load the VectorAnalysis
package, which gives you access to the Div and Curl commands.

In[11]:= Needs "VectorAnalysis`"

If you will be working in a single coordinate system, say in Cartesian coordinates, go ahead and set
the coordinate system and name the coordinate variables. This should be done once. The default
coordinate system is Cartesian, but the default coordinate variable names are Xx, Yy, and Zz, which
may not be your first choice. Here we set the coordinate variable names to be x, y, and z:

328 Multivariable Calculus

In[12]:= SetCoordinates Cartesian x, y, z

Out[12]= Cartesian x, y, z

You are now ready to calculate:

In[13]:= Div x2 y, z, x y z

Out[13]= 3 x y

In[14]:= Curl x2 y, z, x y z

Out[14]= 1 x z, y z, x2

If you will be doing calculations in other coordinate systems, you simply set the coordinate system and
the coordinate variable names you would like to use. Typical choices are Cartesian[x, y, z], as we
used above, or Cylindrical[r, , z], or Spherical[, ,]. The commands Div and Curl will accept a
coordinate system specification as an optional second argument.

In[15]:= Div r2 z, , z , Cylindrical r, , z

Out[15]=
1 r 3 r2 z

r

In[16]:= Curl r2 z, , z , Cylindrical r, , z

Out[16]= 0, r2,
r

Exercises 6.5
1. The option setting ScaleFactor None may be added to VectorFieldPlot input to turn off the

automatic scaling of vectors. While the vector fields are then drawn with perfect accuracy, the
vectors may overlap one another. This exercise will illustrate that overlapping vectors can be
confusing to view. This is why the default settings include vector scaling that prevents overlap-
ping vectors.

a. Sketch the vector field F x, y y, x , without vector scaling.

b. Show that for this field, the head of every vector lies on the line y x.

2. Use Mathematica to verify that the divergence of the curl of any vector field is zero.

6.5 Vector Fields 329

6.6 Line Integrals and Surface Integrals

Line Integrals
Here is a parameterization of a curve r t that joins the point 1, 1 to the point 2, 2 as t runs

from 1 to 2:

In[1]:= Clear r, x, y, t ;

x t : t;

y t : t3 t2 t;

r t : x t , y t

In[5]:= curve ParametricPlot r t , t, 1, 2

Out[5]=

1.0 0.5 0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

1.5

2.0

Here is a vector field in the plane:

In[6]:= Clear f ;

f x , y : x4 y4 6 x2 y2 1, 4 x3 y 4 x y3

And here we superimpose a plot of the vector field with a plot of the curve:

In[8]:= Needs "VectorFieldPlots`"

In[9]:= Show VectorFieldPlot f x, y , x, 1, 2 , y, 1, 2 , PlotPoints 10 , curve

Out[9]=

330 Multivariable Calculus

The calculation of the line integral f r is straightforward. Here is the integrand:

In[10]:= f x t , y t .r ' t Simplify

Out[10]= 1 4 t4 16 t5 12 t6 40 t7 41 t8 64 t9 18 t10 40 t11 11 t12

And here is the integral:

In[11]:=
1

2
t

Out[11]=
54 102

5005

In[12]:= N

Out[12]= 10.8096

Line integrals in three or more dimensions are just as easy to evaluate. Plots for three dimensions
will require the commands ParametricPlot3D and VectorFieldPlot3D.

Surface Integrals
Here is a surface:

In[13]:= Clear , u, v, x, y, z ;

x u , v : 1 v2 Sin u ;

y u , v : 1 v2 Sin 2 u ;

z u , v : v;

u , v : x u, v , y u, v , z u, v

In[18]:= surface ParametricPlot3D u, v , u, 0, 2 ,

v, 1, 1 , Mesh None, PlotStyle Opacity .8

Out[18]=

6.6 Line Integrals and Surface Integrals 331

And here is a three-dimensional vector field:

In[19]:= Clear f ;

f x , y , z : 2 x, 2 x y,
1

z

In[21]:= Needs "VectorFieldPlots`"

In[22]:= Show VectorFieldPlot3D f x, y, z ,

x, 1, 1 , y, 1, 1 , z, 1, 1 , PlotPoints 8 , surface

Out[22]=

The surface integral can be evaluated with ease. Here is the integrand. Be sure to use the cross
product () and not the (larger) multiplication operator (×) when pulling that symbol from the
BasicMathInput palette.

In[23]:= f x u, v , y u, v , z u, v . u u, v v u, v

Out[23]= 2 1 v2 2 Cos 2 u 2 v2 Cos 2 u Sin u 2 1 v2 2
Cos u v2 Cos u Sin u Sin 2 u

1

v
4 v Cos 2 u Sin u 4 v3 Cos 2 u Sin u 2 v Cos u Sin 2 u 2 v3 Cos u Sin 2 u

In[24]:= Simplify

Out[24]= 1 v2 Sin u

2 6 4 v2 Cos 2 u 1 v2 2
Sin u Sin 3 u 2 v2 Sin 3 u v4 Sin 3 u

And here we evaluate the integral:

In[25]:=
1

1

0

2

u v

Out[25]=
32

35

332 Multivariable Calculus

Exercises 6.6

1. Consider the vector field F x, y y,x

x2 y2
.

a. Plot this vector field on the domain 2 x 2, 2 y 2.

b. Let r t t, t . Sketch this curve for 0 t 2, and superimpose it with the plot above.

c. Evaluate the line integral F r for 0 t 2.

d. Let r t t, t3 t2 t . Sketch this curve for 0 t 2, and superimpose it with the plot from

part a.

e. Evaluate the line integral F r for 0 t 2.

2. Consider the vector field F x, y cos y cos x cos y , x cos x cos y sin y .

a. Show that this is a gradient field, and superimpose its plot with a contour plot of its potential
function on the domain 2 x 2, 2 y 2.

b. Evaluate the line integral F r for any curve r t from 2, 0 to 2, 0 .

6.6 Line Integrals and Surface Integrals 333

7
Linear Algebra

7.1 Matrices

Entering Matrices
Traditionally, matrices are denoted by capital letters, but in Mathematica you will want to use
lowercase letters, since capitals are reserved for built-in functions. If you really can’t live in a world
where matrices are denoted by lowercase letters, you can use uppercase letters provided you do not
use those letters that are the names of built-in commands or constants: C, D, E, I, K, N, and O.

To enter a matrix in Mathematica first type the name of your matrix followed by an equal sign. Then
select Table/Matrix New… in the Insert menu. A dialogue box will appear. Select Matrix and enter
the correct number of rows and columns, then click OK. A matrix of the appropriate dimensions will
appear in a fresh input cell with a placeholder for each entry. Click on the first placeholder and type
a value, and then use the key to move to the next entry. Enter the cell when you have finished:

In[1]:= mat1

2 3 4 5 6 7

1 1 1 1 1 1

4 5 4 5 4 5

11 2 2 2 2 2

0 0 0 0 0 1

Out[1]= 2, 3, 4, 5, 6, 7 , 1, 1, 1, 1, 1, 1 , 4, 5, 4, 5, 4, 5 , 11, 2, 2, 2, 2, 2 , 0, 0, 0, 0, 0, 1

Look carefully at the output above. Mathematica thinks of a matrix as a list of lists. Each row is
enclosed in curly brackets with entries separated by commas, the rows are separated by commas, and
the entire matrix is enclosed in curly brackets. You can enter a matrix in this form also, but it can be
a little messy:

In[2]:= mat2 1, 2, 3 , 3, 4, 5 , 5, 6, 7

Out[2]= 1, 2, 3 , 3, 4, 5 , 5, 6, 7

The command MatrixForm will produce a nicely formatted rectangular array with brackets on the
sides. It is best not to use the MatrixForm command when defining a matrix, as it would then be
impossible to perform some operations. It is better to simply request that the output be in Matrix
Form whenever you want a nice look at your matrix:

In[3]:= mat2 MatrixForm

Out[3]//MatrixForm=

1 2 3

3 4 5

5 6 7

You can request that Mathematica output every matrix in MatrixForm by typing the following
command at the beginning of a session:

In[4]:= $Post : If MatrixQ , MatrixForm , &

In[5]:= mat1

Out[5]//MatrixForm=

2 3 4 5 6 7

1 1 1 1 1 1

4 5 4 5 4 5

11 2 2 2 2 2

0 0 0 0 0 1

In order to avoid confusion we will continue to affix //MatrixForm to all our inputs in this chapter.

$Post is a global variable whose value, if set, is a function that will be
applied to every output generated in the current session. The simplest
setting would be something like $Post:=MatrixForm , which would put
every output cell into MatrixForm. This would work if every output
were a matrix, but it would produce unwanted behavior if nonmatrix
output were generated. Hence the rather intimidating setting above.

The command If[MatrixQ[#], MatrixForm[#], #]& is an example of
something called a pure function. It looks rather fancy and cryptic, but
the idea of a pure function is quite simple, and from the perspective of
programming, is also quite elegant. In order to understand the working
of a pure function, you need to understand the two symbols # and &.
The symbol # represents the argument of the function, and the symbol
& is used to separate the definition of the function from the argument.
So, for instance, the input 2&[3] would produce the output 9. In
essence, we have created a function whose name 2& reveals precisely

what it does. See Section 8.4 for a discussion of pure functions.

In the If[MatrixQ[#], MatrixForm[#], #]& example above, things are
only a little more complicated. Understand first that the argument #
will represent an output generated in the current session. The effect of
the function will be to put matrix output into MatrixForm, but to
leave nonmatrix output alone. This is accomplished with the If
command, which takes three arguments. The first is a condition. The
second is what is returned if the condition is true. The third is what is
returned if the condition is false. The condition is checked with the

336 Linear Algebra

MatrixQ command. MatrixQ[x] returns True if x is a matrix and False
otherwise.

Mathematica is happy to report the dimensions of your matrix. When fed a matrix as input, the
Dimensions command returns a list containing the number of rows and columns in the matrix,
respectively:

In[6]:= Dimensions mat1

Out[6]= 5, 6

There are several commands that produce matrices quickly. To get a 3 5 matrix with random
integer entries between 0 and 50, type:

In[7]:= RandomInteger 50, 3, 5 MatrixForm

Out[7]//MatrixForm=

40 2 41 39 33

19 44 44 1 10

30 36 8 42 21

The familiar Table command is easy to use. The next command gives a 5 5 matrix whose i, jth

entry is i 2 j:

In[8]:= Table i 2 j, i, 5 , j, 5 MatrixForm

Out[8]//MatrixForm=

3 5 7 9 11

4 6 8 10 12

5 7 9 11 13

6 8 10 12 14

7 9 11 13 15

The iterators can be set to start at values other than 1:

In[9]:= Table i 2 j, i, 2, 3 , j, 0, 2 MatrixForm

Out[9]//MatrixForm=

2 0 2

1 1 3

0 2 4

1 3 5

2 4 6

3 5 7

7.1 Matrices 337

To get a 3 4 zero matrix you can type this:

In[10]:= Table 0, 3 , 4 MatrixForm

Out[10]//MatrixForm=

0 0 0 0

0 0 0 0

0 0 0 0

You can also produce a zero matrix by using Table/Matrix New… in the Insert menu. Just check the
Fill with 0 box. Yet another way is to use the command ConstantArray, like this:

In[11]:= ConstantArray , 3, 5 MatrixForm

Out[11]//MatrixForm=

We can produce a 4 4 lower triangular matrix with entries on and below the diagonal equal to

i 2 j, and above the diagonal equal to 0, by typing:

In[12]:= Table If i j, i 2 j, 0 , i, 4 , j, 4 MatrixForm

Out[12]//MatrixForm=

3 0 0 0

4 6 0 0

5 7 9 0

6 8 10 12

The If command takes three arguments. The first is a condition or predicate, i.e., an expression that
evaluates to either True or False. The second is the expression to evaluate if the condition is true.
The third is the expression to evaluate if the condition is false. If is discussed in Section 8.5.

The Array command works much like the Table command but uses a function (either built-in or
user-defined) rather than an expression to compute the entries. For a function f that takes two

arguments, the command Array[f , m, n] gives the m n matrix whose i, jth entry is f i, j . For

example, using the built-in function Min for f produces a matrix where each entry is the minimum

of the row number and column number of that entry’s position:

In[13]:= Array Min, 4, 5 MatrixForm

Out[13]//MatrixForm=

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

338 Linear Algebra

 Here is a second example, this time with a user-defined function:

In[14]:= Clear f ;

f i , j : i3 j2;

Array f, 2, 3 MatrixForm

Out[16]//MatrixForm=

2 5 10

9 12 17

We can use the Array command to produce a general 3 4 matrix whose i, jth entry (the entry in

row i and column j) is aij.

In[17]:= Clear a, mat ;

mat Array a &, 3, 4 ; mat MatrixForm

Out[18]//MatrixForm=

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

The command below gives the identity matrix.

In[19]:= IdentityMatrix 4 MatrixForm

Out[19]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

This can also be accomplished using Table/Matrix New… in the Insert menu by checking the Fill
with 0 and Fill Diagonal with 1 boxes.

The following command gives a diagonal matrix with the enclosed list on the diagonal:

In[20]:= DiagonalMatrix a, b, c, d MatrixForm

Out[20]//MatrixForm=

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

We can also use DiagonalMatrix to create a superdiagonal matrix.

7.1 Matrices 339

In[21]:= DiagonalMatrix a, b, c , 1 MatrixForm

Out[21]//MatrixForm=

0 a 0 0

0 0 b 0

0 0 0 c

0 0 0 0

Or a subdiagonal matrix:

In[22]:= DiagonalMatrix a, b, c , 1 MatrixForm

Out[22]//MatrixForm=

0 0 0 0

a 0 0 0

0 b 0 0

0 0 c 0

Editing Matrices
It is a simple matter to add another row or column to an existing matrix. Start with either a matrix
generated by the Table/Matrix New… dialogue box, or any MatrixForm output. To add a row, click
on the matrix just above where you want a new row to appear and press the key combination .
A row of placeholders will appear. To add a new column, click on the matrix where you want the
new column to appear. Press the key combination , and a column of placeholders will appear. If
the original matrix appeared in a MatrixForm output cell, the modified matrix will appear in a new
input cell. You can also use the Table/Matrix menu for these tasks: look in the submenu for Add Row
and Add Column:

In[23]:= mat1

2 3 4 5 6 7

1 1 1 1 1 1

4 5 4 5 4 5

11 2 2 2 2 2

0 0 0 0 0 1

;

To form a new matrix from existing matrices we use the command ArrayFlatten. This command
allows us to use entire matrices as if they are individual entries in a matrix. Thus the following
command will stack the matrices mat1 and mat2 on top of each other. We use curly brackets, {}, to
indicate that each matrix should be treated as a row in the new matrix and then “flattened” into a
single matrix. This command will only return a matrix if the input matrices have the same number
of columns.

340 Linear Algebra

In[24]:= mat1 RandomInteger 9, 3, 4 ;

mat1 MatrixForm

Out[25]//MatrixForm=

8 1 7 7

6 9 5 6

0 8 0 7

In[26]:= mat2 RandomInteger 9, 3, 4 ;

mat2 MatrixForm

Out[27]//MatrixForm=

0 3 3 6

9 2 8 1

7 7 8 9

In[28]:= ArrayFlatten mat1 , mat2 MatrixForm

Out[28]//MatrixForm=

8 1 7 7

6 9 5 6

0 8 0 7

0 3 3 6

9 2 8 1

7 7 8 9

To form the matrix consisting of mat1 and mat2 side by side we use curly brackets to indicate that
the individual matrices should form a single row.

In[29]:= ArrayFlatten mat1, mat2 MatrixForm

Out[29]//MatrixForm=

8 1 7 7 0 3 3 6

6 9 5 6 9 2 8 1

0 8 0 7 7 7 8 9

One can also form a block matrix. Below we have a matrix comprised of four blocks, where mat1
appears in the upper left position, and mat2 appears in the lower right position. The remaining
positions are comprised entirely of zeros.

7.1 Matrices 341

In[30]:= bm ArrayFlatten mat1, 0 , 0, mat2 ;

bm MatrixForm

Out[31]//MatrixForm=

8 1 7 7 0 0 0 0

6 9 5 6 0 0 0 0

0 8 0 7 0 0 0 0

0 0 0 0 0 3 3 6

0 0 0 0 9 2 8 1

0 0 0 0 7 7 8 9

Using Grid instead of MatrixForm, we can make the blocks easily visible:

In[32]:= Grid bm, Dividers 5 True , 4 True , Frame True

Out[32]=

8 1 7 7 0 0 0 0

6 9 5 6 0 0 0 0

0 8 0 7 0 0 0 0

0 0 0 0 0 3 3 6

0 0 0 0 9 2 8 1

0 0 0 0 7 7 8 9

The Take command can be used to extract submatrices of a given matrix. We’ll use a general 5 5
matrix to get a good look at what is happening:

In[33]:= Clear a, mat ;
mat Array a &, 5, 5 ; mat MatrixForm

Out[34]//MatrixForm=

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

Take can be used with 2 or 3 arguments. The first argument is the matrix name, the second indi-
cates which rows are desired, the optional third argument indicates the columns. The following
command will return the first three rows of the matrix mat:

In[35]:= Take mat, 3 MatrixForm

Out[35]//MatrixForm=

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

342 Linear Algebra

This command will return the last two rows:

In[36]:= Take mat, 2 MatrixForm

Out[36]//MatrixForm=

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

To get rows 2 through 4 we use a list:

In[37]:= Take mat, 2, 4 MatrixForm

Out[37]//MatrixForm=

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

If we want every other row we can enter:

In[38]:= Take mat, 1, 1, 2 MatrixForm

Out[38]//MatrixForm=

a1,1 a1,2 a1,3 a1,4 a1,5

a3,1 a3,2 a3,3 a3,4 a3,5

a5,1 a5,2 a5,3 a5,4 a5,5

The list 1, 1, 2 above indicates that we want to start at the first row, end at the last row, and
increase the index of the selected rows by 2. In a matrix with 5 rows you could equivalently use the
list 1, 5, 2 .

If we use 3 arguments we can select rows and columns.

In[39]:= Take mat, 2, 4 MatrixForm

Out[39]//MatrixForm=

a1,2 a1,3 a1,4 a1,5

a2,2 a2,3 a2,4 a2,5

So to extract columns we use All for the second entry. To get the last 3 columns enter:

In[40]:= Take mat, All, 3 MatrixForm

Out[40]//MatrixForm=

a1,3 a1,4 a1,5

a2,3 a2,4 a2,5

a3,3 a3,4 a3,5

a4,3 a4,4 a4,5

a5,3 a5,4 a5,5

7.1 Matrices 343

We can extract a submatrix by indicating a range of values for the rows and columns in lists,

In[41]:= Take mat, 2, 4 , 3, 5 MatrixForm

Out[41]//MatrixForm=

a2,3 a2,4 a2,5

a3,3 a3,4 a3,5

a4,3 a4,4 a4,5

Or we could ask for the submatrix consisting of only the first and fourth rows and the second and
fourth columns.

In[42]:= Take mat, 1, 4, 3 , 2, 4, 2 MatrixForm

Out[42]//MatrixForm=

a1,2 a1,4

a4,2 a4,4

The Span command is an alternative to Take. The notation is similar and slightly more efficient. A
Span is indicated by the ;; symbol. The name of the command is not needed. The previous Take
command is equivalent to the following using Span:

In[43]:= mat 1 ;; 4 ;; 3, 2 ;; 4 ;; 2 MatrixForm

Out[43]//MatrixForm=

a1,2 a1,4

a4,2 a4,4

Exercises 7.1
1. Use the Table command to enter a matrix with the integers 1 through 10 on the diagonal, 0

below the diagonal, and 1 above the diagonal.

2. Consider the block matrix shown below. Write a custom command blockMatrix that will
generate matrices of any size of this form. For instance, the output below should result from
blockMatrix[5]//MatrixForm.

344 Linear Algebra

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

7.2 Performing Gaussian Elimination

Referring to Parts of Matrices
Always remember that internally, Mathematica thinks of a matrix as a list of lists. So to refer to a part

of a matrix we use the same notation discussed in Section 3.11 on page 126. The basic rule is that

you use double square brackets to refer to individual items in a list:

In[1]:= mat1 MatrixForm

Out[1]//MatrixForm=

8 1 7 7

6 9 5 6

0 8 0 7

To get the second row, type:

In[2]:= mat1 2

Out[2]= 6, 9, 5, 6

Or use the button found on the BasicMathInput palette. We’ll do this for the remainder of the

chapter, since it looks a bit nicer:

In[3]:= mat1 2

Out[3]= 6, 9, 5, 6

To retrieve the entry in row 3, column 4, type:

7.2 Performing Gaussian Elimination 345

In[4]:= mat1 3,4

Out[4]= 7

To extract a single column indicate that you want all rows. For example, to get the third column
type:

In[5]:= mat1 All,3

Out[5]= 7, 5, 0

Gaussian Elimination
A matrix is in reduced row echelon form if the first nonzero entry in each row is a 1 with only 0s above
and beneath it. Furthermore, the rows must be arranged so that if one row begins with more 0s than
another, then that row appears beneath the other. Any matrix can be put into reduced row echelon
form by performing successive elementary row operations: multiplying a row by a nonzero constant,
replacing a row by its sum with a multiple of another row, or interchanging two rows.

You can ask Mathematica to find the reduced row echelon form of a matrix by using the command
RowReduce:

In[6]:= Clear mat ;

mat

1 1 4 25

2 1 0 7

3 0 1 1
;

RowReduce mat MatrixForm

Out[8]//MatrixForm=

1 0 0 2

0 1 0 3

0 0 1 5

You can also perform “manual” row reduction. Use mat i to refer to the ith row of the matrix mat.

To replace the second row with the sum of the second row and 2 times the first row, type:

In[9]:= mat 2 mat 2 2 mat 1 ;

mat MatrixForm

Out[10]//MatrixForm=

1 1 4 25

0 1 8 43

3 0 1 1

The first line performed the operation, and the semicolon suppressed the output; the second line
asked Mathematica to display the revised matrix in MatrixForm. Next we can add 3 times the first
row to the third row, and the second row to the first row:

346 Linear Algebra

In[11]:= mat 3 mat 3 3 mat 1 ;

mat 1 mat 1 mat 2 ;

mat MatrixForm

Out[13]//MatrixForm=

1 0 4 18

0 1 8 43

0 3 13 74

Now add 3 times the second row to the third row:

In[14]:= mat 3 mat 3 3 mat 2 ;

mat MatrixForm

Out[15]//MatrixForm=

1 0 4 18

0 1 8 43

0 0 11 55

Finally, we can multiply the third row by 1

11
, multiply the second row by 1, add 8 times the

third row to the second row, and add 4 times the third row to the first row:

In[16]:= mat 3

1

11
mat 3 ;

mat 2 1 mat 2 ;

mat 2 mat 2 8 mat 3 ;

mat 1 mat 1 4 mat 3 ;

mat MatrixForm

Out[20]//MatrixForm=

1 0 0 2

0 1 0 3

0 0 1 5

Exercises 7.2

1. Use row operations to write the matrix
1 2

3 4
 as the product of an upper triangular matrix and

an elementary matrix. An elementary matrix is a matrix that differs from the identity matrix by a
single row operation.

7.2 Performing Gaussian Elimination 347

7.3 Matrix Operations
If two matrices have the same dimensions, we can compute their sum by adding the corresponding
entries of the two matrices. In Mathematica, as in ordinary mathematical notation, we use the +
operator for matrix sums:

In[1]:= mat3

1 0 0

2 3 4

1 5 1
; mat4

2 2 3

0 0 1

5 5 5
;

mat3 mat4 MatrixForm

Out[2]//MatrixForm=

3 2 3

2 3 5

4 10 4

We can also find their difference:

In[3]:= mat3 mat4 MatrixForm

Out[3]//MatrixForm=

1 2 3

2 3 3

6 0 6

We can perform scalar multiplication:

In[4]:= 7 mat3 MatrixForm

Out[4]//MatrixForm=

7 0 0

14 21 28

7 35 7

And we can multiply matrices. The i, jth entry of the product of the matrix a with the matrix b is the

dot product of the ith row of a with the jth column of b. Multiplication is only possible if the

number of columns of a is equal to the number of rows of b.

In Mathematica, use the dot (i.e., the period) as the multiplication operator for matrices:

In[5]:= mat3.mat4 MatrixForm

Out[5]//MatrixForm=

2 2 3

24 24 29

7 7 3

Be careful to use the dot to perform matrix multiplication. The symbol * will simply multiply

348 Linear Algebra

corresponding entries in the two matrices (not a standard matrix operation):

In[6]:= mat3 mat4 MatrixForm

Out[6]//MatrixForm=

2 0 0

0 0 4

5 25 5

The Transpose command will produce the transpose of a mat he matrix obtained by switching
the rows and columns of that matrix:

In[7]:= Transpose mat3 MatrixForm

Out[7]//MatrixForm=

1 2 1

0 3 5

0 4 1

To find a power of a matrix use the command MatrixPower. The first argument is the matrix, and
the second argument is the desired power:

In[8]:= MatrixPower mat3, 10 MatrixForm

Out[8]//MatrixForm=

1 0 0

10249364 36 166989 20 498728

7 834130 25 623410 15 668261

The inverse of a square matrix, if it exists, is the matrix whose product with the original matrix is the
identity matrix. A matrix that has an inverse is said to be nonsingular. You can find the inverse of a
nonsingular matrix with the Inverse command:

In[9]:= Inverse mat3 MatrixForm

Out[9]//MatrixForm=

1 0 0
2

23

1

23

4

23

13

23

5

23

3

23

It is a simple matter to check that the product of a matrix with its inverse is the identity:

In[10]:= .mat3 MatrixForm

Out[10]//MatrixForm=

1 0 0

0 1 0

0 0 1

7.3 Matrix Operations 349

Note that the % in the last input represents the inverse of mat3 rather than the MatrixForm
of that inverse. This is the reason for the cell tag Out[73]//MatrixForm=. If you refer to any such
output cell (with % or %%, for instance), Mathematica will use the output generated before
MatrixForm was applied. In other words, the output is a matrix, it is only displayed in
MatrixForm. This makes it easy to incorporate MatrixForm output into new input.

The determinant of a square matrix is a number that is nonzero if and only if the matrix is nonsingu-
lar. Determinants are notoriously painful to compute by hand, but are a snap with Mathematica’s
Det command:

In[11]:= Det mat3

Out[11]= 23

Any matrix operation can be performed either on a matrix whose entries are numeric, or on a matrix
whose entries are purely symbolic. For example, you can find the formula for the determinant of a
general 3 3 matrix:

In[12]:= Clear a ; mat5 Array a &, 3, 3 ; mat5 MatrixForm

Out[12]//MatrixForm=

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

In[13]:= Det mat5

Out[13]= a1,3 a2,2 a3,1 a1,2 a2,3 a3,1 a1,3 a2,1 a3,2 a1,1 a2,3 a3,2 a1,2 a2,1 a3,3 a1,1 a2,2 a3,3

Notice how the determinant arises naturally in the inverse of a matrix. Here is the entry in the first
row and first column of the inverse of mat5:

In[14]:= Inverse mat5 1,1

Out[14]= a2,3 a3,2 a2,2 a3,3

a1,3 a2,2 a3,1 a1,2 a2,3 a3,1 a1,3 a2,1 a3,2 a1,1 a2,3 a3,2 a1,2 a2,1 a3,3 a1,1 a2,2 a3,3

Here is the same entry with the determinant replaced by the symbol det:

In[15]:= Inverse mat5 1,1 . Det mat5 det

Out[15]=
a2,3 a3,2 a2,2 a3,3

det

The trace of a matrix is the sum of the entries along the main diagonal. The trace of a matrix may be
calculated with the command Tr:

350 Linear Algebra

In[16]:= Tr mat5

Out[16]= a1,1 a2,2 a3,3

Be careful, there is a command whose name is Trace, but it has nothing to do with linear algebra;
don’t use it to compute the trace of a matrix.

Exercises 7.3
1. Using the Dividers option to the Grid command, find a way to format a matrix with vertical bars

on the sides instead of parentheses. It is handy to be able to do this when typesetting, as vertical
bars are traditionally used to denote the determinant of the matrix they enclose. Use your result
to typeset the following equation:

1 2

3 4
2.

2. Find the inverse of the matrix

1 7 5 0

5 8 6 9

2 1 6 4

8 1 2 4

 by appending the identity matrix to this matrix and

then using Gaussian elimination to find the inverse.

7.4 Minors and Cofactors
Another command to be wary of is Minors. This command computes determinants of submatrices
but not according to the traditional definition of minors. Traditionally, if A is a square matrix then
the minor Mij of entry aij is the determinant of the submatrix that remains after the i th row and jth

column are deleted from A. M = (Mij is the matrix of minors. But the command Minors will return a

matrix whose ijth entry is the determinant of the submatrix that remains after the n i 1 st row

and n j 1 st column are deleted from A. Yes, this is really confusing, but see if you can see the

difference in the examples below.

In[1]:= Clear a ; mat5 Array a &, 3, 3 ; mat5 MatrixForm

Out[1]//MatrixForm=

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

7.4 Minors and Cofactors 351

This is the matrix returned by the built in Minors command:

In[2]:= Minors mat5 MatrixForm

Out[2]//MatrixForm=

a1,2 a2,1 a1,1 a2,2 a1,3 a2,1 a1,1 a2,3 a1,3 a2,2 a1,2 a2,3

a1,2 a3,1 a1,1 a3,2 a1,3 a3,1 a1,1 a3,3 a1,3 a3,2 a1,2 a3,3

a2,2 a3,1 a2,1 a3,2 a2,3 a3,1 a2,1 a3,3 a2,3 a3,2 a2,2 a3,3

The custom command below will give us the traditional matrix of minors. Notice that the entries are
the “reverse” of the entries above. The Map command is discussed in Section 8.4.

In[3]:= minorsMatrix m List ?MatrixQ : Map Reverse, Minors m , 0, 1

In[4]:= minorsMatrix mat5 MatrixForm

Out[4]//MatrixForm=

a2,3 a3,2 a2,2 a3,3 a2,3 a3,1 a2,1 a3,3 a2,2 a3,1 a2,1 a3,2

a1,3 a3,2 a1,2 a3,3 a1,3 a3,1 a1,1 a3,3 a1,2 a3,1 a1,1 a3,2

a1,3 a2,2 a1,2 a2,3 a1,3 a2,1 a1,1 a2,3 a1,2 a2,1 a1,1 a2,2

To get a single minor, say M23 we can simply ask for that entry from the output of the minorsMa

trix command.

In[5]:= minorsMatrix mat5 2,3

Out[5]= a1,2 a3,1 a1,1 a3,2

The matrix of cofactors is the matrix whose ijth entry is 1 i j Mij. We can use our minorsMatrix

command to compute a matrix of cofactors.

In[6]:= cofactorsMatrix m List ?MatrixQ :

Table 1 i j, i, Length m , j, Length m minorsMatrix m

Notice that the * above will multiply the corresponding entries of the two matrices.

In[7]:= cofactorsMatrix mat5 MatrixForm

Out[7]//MatrixForm=

a2,3 a3,2 a2,2 a3,3 a2,3 a3,1 a2,1 a3,3 a2,2 a3,1 a2,1 a3,2

a1,3 a3,2 a1,2 a3,3 a1,3 a3,1 a1,1 a3,3 a1,2 a3,1 a1,1 a3,2

a1,3 a2,2 a1,2 a2,3 a1,3 a2,1 a1,1 a2,3 a1,2 a2,1 a1,1 a2,2

Finally, recall that the adjoint of a matrix is the transpose of its matrix of cofactors. There is a lovely

relationship between the inverse of a matrix and its adjoint: A 1 1

det A
adj A . Let’s use an example

to illustrate this fact.

352 Linear Algebra

In[8]:= Clear mat ;

mat RandomInteger 9, 4, 4 ;

mat MatrixForm

Out[10]//MatrixForm=

8 1 2 9

6 0 9 8

7 9 5 7

8 0 2 6

In[11]:=
1

Det mat
Transpose cofactorsMatrix mat MatrixForm

Out[11]//MatrixForm=
171

803

35

803

19

803

281

803

7

803

39

803

90

803

85

1606

126

803

101

803

14

803

38

803

270

803

13

803

30

803

507

1606

Did we get the correct inverse?

In[12]:= .mat MatrixForm

Out[12]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

We did indeed!

Exercises 7.4

1. Find the adjoint of A

8 0 3 7

9 4 2 9

2 8 0 7

8 9 7 0

 using the determinant and the inverse of A, then check your

answer using the cofactorsMatrix command.

2. Write a command to find the determinant of a matrix by cofactor expansion along the first row.

7.4 Minors and Cofactors 353

7.5 Working with Large Matrices
If you have a large matrix with only a few nonzero entries you can use the SparseArray command
to enter, store, and work with the matrix efficiently. To create a SparseArray simply give the
position and value for each nonzero entry of the matrix as follows:

In[1]:= s1 SparseArray 1, 1 a, 2, 3 b, 5, 2 c, 6, 7 d

Out[1]= SparseArray 4 , 6, 7

The output from the SparseArray command gives us the number of nonzero entries and then the
dimensions of the matrix we’ve created. We can use MatrixForm to get a look at this matrix.

In[2]:= s1 MatrixForm

Out[2]//MatrixForm=

a 0 0 0 0 0 0

0 0 b 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 0 0 0 0 d

Equivalently, we can enter a list of positions and a list of corresponding values.

In[3]:= s2 SparseArray 1, 1 , 2, 3 , 5, 2 , 6, 7 a, b, c, d

Out[3]= SparseArray 4 , 6, 7

In[4]:= s2 MatrixForm

Out[4]//MatrixForm=

a 0 0 0 0 0 0

0 0 b 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 0 0 0 0 d

SparseArray will create a matrix that fits all the nonzero entries we specify. We can also specify a
matrix of a different size.

In[5]:= s3 SparseArray 1, 1 , 2, 3 , 5, 2 , 6, 7 a, b, c, d , 8, 10

Out[5]= SparseArray 4 , 8, 10

354 Linear Algebra

In[6]:= s3 MatrixForm

Out[6]//MatrixForm=

a 0 0 0 0 0 0 0 0 0

0 0 b 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 d 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

We can create a SparseArray in which the unspecified entries have a value other than zero.

In[7]:= s4 SparseArray 1, 1 a, 2, 3 b, 5, 2 c , 5, 5 , 2

Out[7]= SparseArray 3 , 5, 5 , 2

In[8]:= s4 MatrixForm

Out[8]//MatrixForm=

a 2 2 2 2

2 2 b 2 2

2 2 2 2 2

2 2 2 2 2

2 c 2 2 2

The Normal command will convert the output of SparseArray to the list form of a matrix.

In[9]:= Normal s4

Out[9]= a, 2, 2, 2, 2 , 2, 2, b, 2, 2 , 2, 2, 2, 2, 2 , 2, 2, 2, 2, 2 , 2, c, 2, 2, 2

We can use Table to help us list the nonzero entries of a large matrix. For example the command
below creates a 16 by 12 matrix with 1s in positions 2, 3 , 4, 6 , 8, 9 , and 16, 12 .

In[10]:= s5 SparseArray Table 2i, 3 i 1, i, 4

Out[10]= SparseArray 4 , 16, 12

This large matrix makes a mess if we ask for a numerical output, but a picture can tell us a lot about
our matrix.

7.5 Working with Large Matrices 355

In[11]:= MatrixPlot s5

Out[11]=

1 5 12

1

5

10

16

1 5 12

1

5

10

16

These plots will automatically color entries with larger values in a darker color.

In[12]:= s6 SparseArray Table 2i, 3 i i, i, 4

Out[12]= SparseArray 4 , 16, 12

In[13]:= MatrixPlot s6

Out[13]=

1 5 12

1

5

10

16

1 5 12

1

5

10

16

Sparse arrays can have more than two dimensions.

In[14]:= s7 SparseArray Table 2i, 3 i, i 1 i, i, 4

Out[14]= SparseArray 4 , 16, 12, 5

ArrayRules will return the positions and values we gave for a sparse array.

In[15]:= ArrayRules s7

Out[15]= 2, 3, 2 1, 4, 6, 3 2, 8, 9, 4 3, 16, 12, 5 4, , , 0

Band can be used with SparseArray to give a matrix in which a single value is present in each
position on a diagonal beginning at the given starting position.

356 Linear Algebra

In[16]:= Clear b ;

SparseArray Band 3, 2 3, Band 1, 4 b , 6, 6

Out[17]= SparseArray 7 , 6, 6

In[18]:= MatrixForm

Out[18]//MatrixForm=

0 0 0 b 0 0

0 0 0 0 b 0

0 3 0 0 0 b

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

Or a band can be a list of values.

In[19]:= SparseArray Band 3, 2 2, 4, 6, 8 , 6, 6

Out[19]= SparseArray 4 , 6, 6

In[20]:= MatrixForm

Out[20]//MatrixForm=

0 0 0 0 0 0

0 0 0 0 0 0

0 2 0 0 0 0

0 0 4 0 0 0

0 0 0 6 0 0

0 0 0 0 8 0

Exercises 7.5
1. Use SparseArray to create the following picture:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

7.5 Working with Large Matrices 357

2. Use SparseArray to create the following matrix:

1 2 0 0 0 0 0 0 0 0 0 0

3 4 0 0 0 0 0 0 0 0 0 0

0 0 1 2 0 0 0 0 0 0 0 0

0 0 3 4 0 0 0 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 0 0

0 0 0 0 3 4 0 0 0 0 0 0

0 0 0 0 0 0 1 2 0 0 0 0

0 0 0 0 0 0 3 4 0 0 0 0

0 0 0 0 0 0 0 0 1 2 0 0

0 0 0 0 0 0 0 0 3 4 0 0

0 0 0 0 0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 0 0 3 4

7.6 Solving Systems of Linear Equations

Nonhomogeneous Systems of Linear Equations
Suppose we want to solve a system of linear equations in the form mx b, where m is the
coefficient matrix, x is a column vector of variables, and b is a column vector. Such a system is
called nonhomogeneous when b is a vector with at least one nonzero entry. Mathematica offers several
options for solving such a system, and we will explore each in turn. In this first example m is a
nonsingular matrix and the system has a unique solution. Enter the equation mx b by typing
m.x b. Note how Mathematica interprets this equation:

In[1]:= Clear m, x, x1, x2, x3, x4, b ;

m

1 5 4 1

3 4 1 2

3 2 1 5

0 6 7 1

; x

x1

x2

x3

x4

; b

1

2

3

4

;

m.x b

Out[3]= x1 5 x2 4 x3 x4 , 3 x1 4 x2 x3 2 x4 ,

3 x1 2 x2 x3 5 x4 , 6 x2 7 x3 x4 1 , 2 , 3 , 4

We can interpret this as a list of four linear equations, each in four variables.

Just to be sure let’s check that m is nonsingular:

In[4]:= Det m

Out[4]= 35

358 Linear Algebra

We now use the command ArrayFlatten to form the augmented matrix, and the command RowRe
duce to find the reduced row echelon form of the matrix.

In[5]:= ArrayFlatten m, b MatrixForm

Out[5]//MatrixForm=

1 5 4 1 1

3 4 1 2 2

3 2 1 5 3

0 6 7 1 4

In[6]:= RowReduce MatrixForm

Out[6]//MatrixForm=

1 0 0 0 127

35

0 1 0 0 141

35

0 0 1 0 139

35

0 0 0 1 13

35

We conclude that x1
127

35
, x2

141

35
, x3

139

35
, x4

13

35
.

The command LinearSolve provides a quick means for solving systems that have a single solution:

In[7]:= LinearSolve m, b

Out[7]=
127

35
,

141

35
,

139

35
,

13

35

We can also use the LinearSolve command to form a function for matrix m that can be applied to
any vector b.

In[8]:= Clear f ; f LinearSolve m

Out[8]= LinearSolveFunction 4, 4 ,

In[9]:= f b

Out[9]=
127

35
,

141

35
,

139

35
,

13

35

Or we can solve the system mx b for x by multiplying both sides on the left by m 1, to get x

m 1 b.

7.6 Solving Systems of Linear Equations 359

In[10]:= Inverse m .b

Out[10]=
127

35
,

141

35
,

139

35
,

13

35

Finally, we can use the command Solve to solve this system, just as in Section 4.9 on page 191. But
we have to be careful using Solve. When we use the Table/Matrix New… dialogue box to create m,
x, and b, both mx and b are lists of lists. The Solve command takes a list of equations as its first
argument and a list of variables as its second argument—it unfortunately cannot accept lists of lists.
There is a simple solution: We will have to re-enter x and b without using the Table/Matrix New…
dialogue box, expressing each as a single list. If we do this, the equation m . x b is acceptable as
input to the Solve command. Note how Mathematica interprets the equation m . x b as a single list
of equations when x and b are entered this way:

In[11]:= Clear x, b ; x x1, x2, x3, x4 ; b 1, 2, 3, 4 ; m.x b

Out[11]= x1 5 x2 4 x3 x4, 3 x1 4 x2 x3 2 x4,
3 x1 2 x2 x3 5 x4, 6 x2 7 x3 x4 1, 2, 3, 4

In[12]:= Solve m.x b, x

Out[12]= x1
127

35
, x2

141

35
, x3

139

35
, x4

13

35

An inconsistent system of equations has no solutions. If we use the Solve command on such a
system, the output will be an empty set of curly brackets:

In[13]:= Clear m, x, b ;

m

1 1 1

1 1 1

1 1 1
; x x1, x2, x3 ; b 1, 2, 1 ;

Solve m.x b, x

Out[15]=

However, if we row-reduce, we can see the inconsistency in the system:

In[16]:= ArrayFlatten m, Transpose b

Out[16]= 1, 1, 1, 1 , 1, 1, 1, 2 , 1, 1, 1, 1

In[17]:= RowReduce MatrixForm

Out[17]//MatrixForm=

1 0 0 0

0 1 1 0

0 0 0 1

360 Linear Algebra

The last row represents the impossible equation 0 1.

If you use the LinearSolve command with an inconsistent system you will be told off:

In[18]:= LinearSolve m, b

LinearSolve::nosol : Linear equation encountered that has no solution.

Out[18]= LinearSolve 1, 1, 1 , 1, 1, 1 , 1, 1, 1 , 1, 2, 1

And if you try to find the inverse of m you will be told off again:

In[19]:= Inverse m .b

Inverse::sing : Matrix 1, 1, 1 , 1, 1, 1 , 1, 1, 1 is singular .

Out[19]= Inverse 1, 1, 1 , 1, 1, 1 , 1, 1, 1 . 1, 2, 1

The remaining possibility for a system of equations is that there are an infinite number of solutions.
The Solve command nicely displays the solution set in this situation. The warning message can be
safely ignored in this case:

In[20]:= Clear m, x, b ;

m

2 3 4

4 6 8

1 1 1
; x x1, x2, x3 ; b 8, 16, 1 ;

Solve m.x b, x

Solve::svars : Equations may not give solutions for all "solve" variables.

Out[22]= x1
11

5

7 x3

5
, x2

6

5

2 x3

5

Be very careful when using the LinearSolve command. In a system having an infinite number of
solutions it will return only one of them, giving no warning that there are others. In this example it
returns only the solution where x3 0:

In[23]:= LinearSolve m, b

Out[23]=
11

5
,

6

5
, 0

Row reduction gives the solution with little possibility for confusion:

In[24]:= ArrayFlatten m, Transpose b

Out[24]= 2, 3, 4, 8 , 4, 6, 8, 16 , 1, 1, 1, 1

7.6 Solving Systems of Linear Equations 361

In[25]:= RowReduce MatrixForm

Out[25]//MatrixForm=

1 0 7

5

11

5

0 1 2

5

6

5

0 0 0 0

Thus, for each real value assumed by x3, there is a solution with x1
11

5

7

5
x3, and x2

6

5

2

5
x3.

The moral is that you should be very careful using the command LinearSolve unless you know you
have a nonsingular matrix and hence a single solution. To check this, you can use the Det com-
mand, keeping in mind that a singular matrix has determinant zero. When in doubt it is best to use
row reduction and your knowledge of linear algebra to find the solution vectors.

Homogeneous Systems of Equations
A system of equations of the form mx 0, where m is the coefficient matrix, x is a column vector
of variables, and 0 is the zero vector, is called homogeneous. Note that x 0 is a solution to any
homogeneous system. Now suppose m is a square matrix. Recall that such a system of linear
equations has a unique solution if and only if m is nonsingular. Hence, we see that if m is
nonsingular, a homogeneous system will have only the trivial solution x 0, while if m is singular
the system will have an infinite number of solutions. The set of all solutions to a homogeneous
system is called the null space of m:

In[26]:= Clear m, x, b ;

m

0 2 2 4

1 0 1 3

2 3 1 1

2 1 3 2

; x

x1

x2

x3

x4

; b

0

0

0

0

; Det m

Out[27]= 0

In[28]:= RowReduce ArrayFlatten m, b MatrixForm

Out[28]//MatrixForm=

1 0 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 0

This reduced form of the augmented matrix tells us that x1 x3, x2 x3, and x4 0. That is, any

vector of the form t, t, t, 0 , where t is a real number, is a solution, and the vector 1, 1, 1, 0
forms a basis for the solution space. Bases are discussed in the next section of this chapter.

The command NullSpace gives a set of basis vectors for the solution space of the homogeneous

362 Linear Algebra

equation mx 0:

In[29]:= NullSpace m

Out[29]= 1, 1, 1, 0

Using LinearSolve and NullSpace to Solve Nonhomogeneous Systems
We have seen that the LinearSolve command will only return one solution when a matrix equation
mx b has an infinite number of solutions. This can be confusing at first, but you should
understand that there is a reason for its behavior. If you were to take the sum of the solution vector
provided by LinearSolve with any vector in the null space of m, you would get another solution
vector. Moreover, every solution vector is of this form. Here’s an example:

In[30]:= Clear m, b ;

m

0 2 2 4

1 0 1 3

2 3 1 1
; b

2

0

0
;

In[32]:= LinearSolve m, b

Out[32]= 9 , 7 , 0 , 3

In[33]:= NullSpace m

Out[33]= 1, 1, 1, 0

This tells us that there are an infinite number of solutions. For each real number t, there is a solu-
tion 9, 7, 0, 3 t 1, 1, 1, 0 . In other words, x1 9 t, x2 7 t, x3 t, and x4 3. This

is exactly what row reduction tells us, in slightly different language:

In[34]:= RowReduce ArrayFlatten m, b MatrixForm

Out[34]//MatrixForm=

1 0 1 0 9

0 1 1 0 7

0 0 0 1 3

Exercises 7.6
1. For which values of a will the following system of linear equations have no solutions, one

solution, or an infinite number of solutions?

x 2 y 3 z 4

2 x y 5 z 2

4 x 3 y a2 z a 3

7.6 Solving Systems of Linear Equations 363

2. Find the equation of the circle that contains the points 4, 3 , 4, 5 , and 2, 7 .

7.7 Vector Spaces

Span and Linear Independence
Suppose we are given a set v1, v2, v3, …, vn of vectors. Any vector that can be expressed in the

form a1 v1 a2 v2 a3 v3 an vn is said to be in the span of the vectors v1, v2, v3, …, vn, where

the coefficients ai are scalars.

We can determine whether a given vector b is in the span of the vectors v1, v2, v3, …, vn by letting

m be the matrix whose columns are v1, v2, v3, …, vn, and then determining whether the equation

mx b has a solution. A solution x, if it exists, provides values for the scalars ai.

For example, in real three-space, is the vector b 1, 2, 3 in the span of the vectors v1 10, 4, 5 ,
v2 4, 4, 7 , and v3 8, 1, 0 ?

In[1]:= Clear v1, v2, v, b, m, c ;
v1 10, 4, 5 ;
v2 4, 4, 7 ;

v3 8, 1, 0 ;
b 1, 2, 3 ;

m Transpose v1, v2, v3 ;

c LinearSolve m, b

Out[7]=
3

2
,

9

14
,

10

7

 We can check that 3

2
v1

9

14
v2

10

7
v3 b.

In[8]:= c 1 v1 c 2 v2 c 3 v3

Out[8]= 1, 2, 3

A set of vectors v1, v2, v3, …, vn is said to be linearly independent if every vector in their span can be

expressed in a unique way as a linear combination a1 v1 a2 v2 a3 v3 an vn. Put another way,

this means that the only way to express the zero vector as such a linear combination is to have each
coefficient ai 0. If it is possible to write a1 v1 a2 v2 a3 v3 an vn 0 with at least one of the

ai 0, then the set of vectors v1, v2, v3, …, vn is linearly dependent.

To check whether a set of vectors v1, v2, v3, …, vn is linearly independent, let m be the matrix

whose columns are v1, v2, v3, …, vn, and check that the equation mx 0 has only the trivial

solution:

364 Linear Algebra

In[9]:= NullSpace m

Out[9]=

Yes, these are linearly independent vectors. Alternatively, we could check that the matrix whose
rows (or columns) are v1, v2, v3, …, vn, is nonsingular:

In[10]:= Det v1, v2, v3

Out[10]= 14

Bases
A basis for a vector space is a set of linearly independent vectors whose span includes every vector in
the vector space. Given a spanning set of vectors v1, v2, v3, …, vn for a vector space we can easily

obtain a basis for that space. Form a matrix whose rows are the vectors v1, v2, v3, …, vn, and row-

reduce:

In[11]:= Clear v1, v2, v3, v4, m, a, b, c ;
v1 2, 1, 15, 10, 6 ;

v2 2, 5, 3, 2, 6 ;
v3 0, 5, 15, 10, 0 ;
v4 2, 6, 18, 8, 6 ;

m v1, v2, v3, v4 ;
RowReduce m MatrixForm

Out[17]//MatrixForm=

1 0 0 2 3

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

The nonzero rows of this matrix form a basis for the space spanned by the set v1, v2, v3, v4 . This

space is also called the row space of the matrix m.

We can also find a basis consisting of a subset of the original vectors. If we row-reduce the matrix
whose columns are the vectors v1, v2, v3, …, vn, then the columns containing the leading 1s will

form a basis for the column space, and the corresponding columns from the original matrix will also
form a basis for the column space. (An entry in a row-reduced matrix is called a leading 1 if the
entry is a 1 and it has only zeros to its left.)

7.7 Vector Spaces 365

In[18]:= Clear v1, v2, v3, v4, m ;
v1 2, 1, 15, 10, 6 ;
v2 2, 5, 3, 2, 6 ;

v3 0, 5, 15, 10, 0 ;
v4 2, 6, 18, 8, 6 ;

m Transpose v1, v2, v3, v4 ;

RowReduce m MatrixForm

Out[24]//MatrixForm=

1 0 5

6
0

0 1 5

6
0

0 0 0 1

0 0 0 0

0 0 0 0

The vectors 1 , 0 , 0 , 0 , 0 , 0, 1, 0, 0, 0 , and 0, 0, 1, 0, 0 form a basis for the column space of
m. The vectors from the same columns in m will also form a basis for the column space. Hence
v1, v2, and v4 will form a basis for the space spanned by the set v1, v2, v3, v4 . We can confirm that

v1, v2, v4 is a linearly independent set:

In[25]:= NullSpace Transpose v1, v2, v4

Out[25]=

We see here an example of a general truth: a vector space may have many distinct bases. The num-
ber of vectors in any basis for that vector space, however, will always be the same. This number is
called the dimension of the vector space.

Rank and Nullity
The dimension of the null space of a matrix is called the nullity of the matrix. We can find the
nullity by using the Length command to count the vectors in a basis for the null space:

In[26]:= Length NullSpace m

Out[26]= 1

The rank of a matrix is the common dimension of the row space and the column space. The rank
plus the nullity must equal the number of columns in a matrix.

In[27]:= MatrixRank m

Out[27]= 3

366 Linear Algebra

Orthonormal Bases and the Gram–Schmidt Process
Given a set of vectors it is frequently desirable to find a collection of vectors with the same span that
have some special properties.

In[28]:= Clear v1, v2, v3, u1, w1, w2, w3 ;
v1 2, 3, 4, 1, 0 ;

v2 1, 5, 6, 10, 3 ;
v3 7, 2, 1, 1, 1 ;

It is easy to find a unit vector, a vector whose length or norm is 1, in the same direction as a given
vector. We simply need to divide each component by the norm of the vector. The command Normal
ize does this automatically.

In[32]:= Norm v1

Out[32]= 30

In[33]:= u1 Normalize v1

Out[33]=
2

15
,

3

10
, 2

2

15
,

1

30
, 0

In[34]:= Norm u1

Out[34]= 1

A collection of vectors is orthogonal if the vectors are mutually perpendicular, i.e., if the dot product
of every pair is 0. The set is orthonormal if in addition each vector has norm 1. Given a basis for a
vector space, we can use the Orthogonalize command to find an orthonormal basis. Orthogonalize
uses the Gram–Schmidt process unless another method is specified using the Method option. The
argument for the command Orthogonalize is a list of linearly independent vectors. The output is a
list of mutually orthogonal unit vectors with the same span:

Before we apply Orthogonalize let’s check that our vectors are linearly independent:

In[35]:= NullSpace Transpose v1, v2, v3

Out[35]=

Good, we are free to proceed.

7.7 Vector Spaces 367

In[36]:= w1, w2, w3 Orthogonalize v1, v2, v3 ;

w1, w2, w3 MatrixForm

Out[37]//MatrixForm=

2

15

3

10
2 2

15

1

30
0

4 6

1405

1

8430
4 2

4215

83

8430

30

281

5368

38274729
706 3

12758243

1489

38274729

1574

38274729
176 3

12758243

It is easy to check that any pair of these vectors is orthogonal. Just enter a list whose items are dot
products of every possible pair of distinct vectors. The output will be a list of zeros if the vectors in
each pair are orthogonal:

In[38]:= w1.w2, w2.w3, w3.w1

Out[38]= 0, 0, 0

And here we check that they are all unit vectors:

In[39]:= Norm w1 , Norm w2 , Norm w3

Out[39]= 1, 1, 1

The familiar concepts of vector length and the angle between pairs of vectors in Euclidean vector
spaces can be generalized to other vector spaces that admit an inner product—a generalization of the
dot product. As with the dot product, two vectors whose inner product is zero are said to be orthogo-
nal. And a vector whose inner product with itself is 1 is said to be a unit vector.

For example, consider the vector space P3 of polynomials in the variable x of degree at most three

with real coefficients. Given 2 polynomials p and q in P3 we can form their inner product using the

function f defined below:

In[40]:= Clear f, p, q

In[41]:= f p , q :
1

1

p q x

Applying f to the vector w1 below we see that w1
1

2
 is a unit vector in the inner product space P3.

In[42]:= Clear x, w1, w2, w3, w4 ;

w1
1

2
; w2 x; w3 x2; w4 x3;

368 Linear Algebra

In[44]:= f w1, w1

Out[44]= 1

And we can see that the vectors w1 and w2 are orthogonal.

In[45]:= f w1, w2

Out[45]= 0

The Orthogonalize command can be applied in any inner-product space. The default inner product
for Orthogonalize is the dot product but a different inner product function can be specified as an
optional second argument.

In[46]:= v1, v2, v3, v4 Orthogonalize w1, w2, w3, w4 , f

Out[46]=
1

2
,

3

2
x,

3

2

5

2

1

3
x2 ,

5

2

7

2

3 x

5
x3

We can apply the inner product to these vectors to check that they are pairwise orthogonal unit
vectors.

In[47]:= f v3, v3

Out[47]= 1

In[48]:= f v2, v3

Out[48]= 0

QR-Decomposition
The QR-Decomposition of a matrix is a factorization of a matrix with linearly independent column
vectors, into a product of a matrix Q that has orthonormal column vectors and a matrix R that is
invertible and upper triangular. The matrix Q is obtained by applying the Gram–Schmidt process to
the column vectors of the matrix. The matrix R is then uniquely determined.

Consider the matrix m.

In[49]:= m

1 0 0

1 2 0

0 1 3

;

In[50]:= Det m

Out[50]= 6

7.7 Vector Spaces 369

In[51]:= q Transpose Orthogonalize Transpose m ;

MatrixForm q

Out[52]//MatrixForm=
1

2

1

3

1

6

1

2

1

3

1

6

0 1

3

2

3

In[53]:= r Inverse q .m;

MatrixForm r

Out[54]//MatrixForm=

2 2 0

0 3 3

0 0 6

In[55]:= q.r MatrixForm

Out[55]//MatrixForm=

1 0 0

1 2 0

0 1 3

The command QRDecomposition automates the process.

In[56]:= qr QRDecomposition m

Out[56]=
1

2
,

1

2
, 0 ,

1

3
,

1

3
,

1

3
,

1

6
,

1

6
,

2

3
,

2 , 2 , 0 , 0, 3 , 3 , 0, 0, 6

In[57]:= Map MatrixForm, qr

Out[57]=

1

2

1

2
0

1

3

1

3

1

3

1

6

1

6

2

3

,

2 2 0

0 3 3

0 0 6

370 Linear Algebra

The command QRDecomposition returns 2 matrices, q and r, where qt r is equal to the original

matrix. Notice that the first matrix in this list is the transpose of our matrix q above.

In[58]:= Transpose qr 1 .qr 2

Out[58]= 1, 0, 0 , 1, 2, 0 , 0, 1, 3

Exercises 7.7
1.a Find an orthonormal basis for the vector space spanned by the vectors v1 1, 2, 3 ,

v2 4, 5, 6 , v3 7, 7, 8 and use the result to show that the product of an orthonormal

matrix with its transpose is the identity matrix.

b. Explain why this makes sense.

7.8 Eigenvalues and Eigenvectors
Given an n n matrix m, the nonzero vectors vi such that mvi i vi are the eigenvectors of m, and

the scalars i are the eigenvalues of m. There are at most n eigenvalues. First we will use the

commands Eigenvalues, Eigenvectors, and Eigensystem to find eigenvalues and eigenvectors.
Then we will walk through the process “manually.”

Finding Eigenvalues and Eigenvectors Automatically
Here is a simple matrix:

In[1]:= Clear m ;

m Array Min, 2, 2 ; m MatrixForm

Out[2]//MatrixForm=

1 1

1 2

To get the eigenvalues, type the following command (look for in the BasicMathInput palette):

In[3]:= 1, 2 Eigenvalues m

Out[3]=
1

2
3 5 ,

1

2
3 5

For the eigenvectors, type:

7.8 Eigenvalues and Eigenvectors 371

In[4]:= v1, v2 Eigenvectors m

Out[4]= 2
1

2
3 5 , 1 , 2

1

2
3 5 , 1

We find two eigenvalues and two eigenvectors. Let’s check that mv1 1 v1:

In[5]:= m.v1 Simplify

Out[5]=
1

2
1 5 ,

1

2
3 5

In[6]:= 1 v1 Simplify

Out[6]=
1

2
1 5 ,

1

2
3 5

In[7]:= m.v1 1 v1

Out[7]= True

You can easily check that mv2 2 v2 as well.

The command Eigensystem gives both the eigenvalues and the eigenvectors. The output is a list
whose first item is a list of eigenvalues and whose second item is a list of corresponding eigenvectors:

In[8]:= Eigensystem m

Out[8]=
1

2
3 5 ,

1

2
3 5 , 2

1

2
3 5 , 1 , 2

1

2
3 5 , 1

We can ask that the output of any of these commands be numerical approximations by replacing m
with N[m]:

In[9]:= Eigensystem N m

Out[9]= 2.61803, 0.381966 , 0.525731, 0.850651 , 0.850651, 0.525731

Even for a simple matrix with integer entries the eigenvalues can be quite complicated and involve
complex numbers:

In[10]:= Clear m ;

m Array Min, 3, 3 ; m MatrixForm

Out[11]//MatrixForm=

1 1 1

1 2 2

1 2 3

372 Linear Algebra

In[12]:= Eigenvalues m

Out[12]= Root 1 5 1 6 12 13 &, 3 ,

Root 1 5 1 6 12 13 &, 2 , Root 1 5 1 6 12 13 &, 1

The eigenvalues here are returned as Root objects, in this case the three roots of the characteristic

polynomial 1 5 x 6 x2 x3. The option setting Cubics True will permit the display of such
roots in terms of radicals.

In[13]:= Eigenvalues m, Cubics True

Out[13]= 2
72 3

3

2
9 3

1 3

7

2
9 3

1 3

32 3
,

2

7

2

2 3
1 3

3 9 3
1 3

1 3 7

2
9 3

1 3

2 32 3
,

2

7

2

2 3
1 3

3 9 3
1 3

1 3 7

2
9 3

1 3

2 32 3

There is a similar option setting for quartics. One may also get a numerical approximation of the
eigenvalues as follows:

In[14]:= Eigenvalues m N

Out[14]= 5.04892, 0.643104, 0.307979

For an n n matrix Mathematica will always return n eigenvalues even if they are not all distinct. The
eigenvalues will occur in the same frequency as the roots of the characteristic polynomial (as
explained in the next subsection). Mathematica will also output n eigenvectors. If there are fewer
than n linearly independent eigenvectors, the output may contain one or more zero vectors. These
zero vectors are there for bookkeeping only; actual eigenvectors are nonzero by definition:

7.8 Eigenvalues and Eigenvectors 373

In[15]:= Clear m ;

m

2 1 0

0 2 0

0 0 0
;

Eigensystem m

Out[17]= 2, 2, 0 , 1, 0, 0 , 0, 0, 0 , 0, 0, 1

Finding Eigenvalues and Eigenvectors Manually
Even though Mathematica can produce eigenvalues and eigenvectors very quickly, it is still
sometimes enlightening to go through the process “manually.” To find the eigenvalues we first form
the characteristic polynomial, which is the determinant of the matrix I m, where m is a square
matrix, is an indeterminate, and I is the identity matrix of the same dimensions as m:

In[18]:= Clear m ;

m

2 1 0

1 2 0

0 0 3

;

c Det IdentityMatrix 3 m

Out[20]= 9 15 7 2 3

Then we find the roots of the characteristic polynomial:

In[21]:= Solve c 0,

Out[21]= 1 , 3 , 3

There are two eigenvalues 1 and 3. The eigenvalue 3 is reported twice because it occurs twice
as a root of the characteristic polynomial c. We can see this clearly by factoring c:

In[22]:= Factor c

Out[22]= 3 2 1

Of course, most characteristic polynomials will not factor so nicely. To find the eigenspace of each
eigenvalue i we will find the null space of the matrix i I m:

In[23]:= NullSpace 1 IdentityMatrix 3 m

Out[23]= 1, 1, 0

In[24]:= NullSpace 3 IdentityMatrix 3 m

Out[24]= 0, 0, 1 , 1, 1, 0

The eigenspace for the eigenvalue 1 has one basis vector: 1, 1, 0 . The eigenspace for the

374 Linear Algebra

eigenvalue 3 has two basis vectors: 0, 0, 1 and 1, 1, 0 .

Let’s have Mathematica check our work:

In[25]:= Eigensystem m

Out[25]= 3, 3, 1 , 0, 0, 1 , 1, 1, 0 , 1, 1, 0

Diagonalization
A square matrix m is diagonalizable if there exists a diagonal matrix d and an invertible matrix p

such that m pd p 1. In this case, the expression on the right hand side is called a Jordan

decomposition or diagonalization of m. An n n matrix is diagonalizable if and only if it has n linearly
independent eigenvectors. In this case the matrix p will be the matrix whose columns are the

eigenvectors of m and the matrix d will have the eigenvalues of m along the diagonal (and zeros
everywhere else):

We can use Eigensystem to find the eigenvalues and eigenvectors and then form the matrices p and

d ourselves or use JordanDecomposition and have Mathematica compute the matrices p and d.

Notice that the matrices we get by each method are slightly different. The order in which the
eigenvalues and eigenvectors are listed causes this difference.

In[26]:= Clear m, p, c, d ;

m

2 1 0

1 2 0

0 0 3
;

In[28]:= evals, evecs Eigensystem m

Out[28]= 3, 3, 1 , 0, 0, 1 , 1, 1, 0 , 1, 1, 0

In[29]:= d DiagonalMatrix evals ;

d MatrixForm

Out[30]//MatrixForm=

3 0 0

0 3 0

0 0 1

In[31]:= p Transpose evecs ;

p MatrixForm

Out[32]//MatrixForm=

0 1 1

0 1 1

1 0 0

7.8 Eigenvalues and Eigenvectors 375

In[33]:= p.d.Inverse p MatrixForm

Out[33]//MatrixForm=

2 1 0

1 2 0

0 0 3

In[34]:= Clear p, d ;

p, d JordanDecomposition m

Out[35]= 1, 0, 1 , 1, 0, 1 , 0, 1, 0 , 1, 0, 0 , 0, 3, 0 , 0, 0, 3

In[36]:= Map MatrixForm,

Out[36]=

1 0 1

1 0 1

0 1 0

,

1 0 0

0 3 0

0 0 3

In[37]:= p.d.Inverse p MatrixForm

Out[37]//MatrixForm=

2 1 0

1 2 0

0 0 3

Exercises 7.8

1. Form the LU-decomposition of the matrix m

2 1 0

1 2 0

0 0 3

.

7.9 Visualizing Linear Transformations
A linear transformation F is a function from one vector space to another such that for all vectors u
and v in the domain, F u v F u F v , and such that for all scalars k, F k v k F v . Once bases
have been specified for each vector space, a linear transformation F can be represented as
multiplication by a matrix m, so that F v m.v for all vectors v in the domain of F.

We can better understand a linear transformation by studying the effect it has on geometric figures

in its domain. Mathematica can be used to visualize the effect of a linear transformation from 2 to
2 on a geometric object in the plane. We first produce a polygonal shape by specifying the coordi-

nates of its vertices. We can then apply a linear transformation to each of these points and see
where they land. Examining the geometric changes tells us how the linear transformation behaves.

376 Linear Algebra

To produce a figure on which to demonstrate transformations, go to the Graphics menu and select
New Graphic. Next, bring up the drawing tools via Graphics Drawing Tools, and select the line
segments tool (push the appropriate button, or type the letter s). Now click on the graphic repeat-
edly to draw a picture, being careful not to click on any previous points (to close the loop) until you
are done. Don’t get too fancy; just a single closed loop is all that is needed. For instance, here is a
stunning portrait of our dog, Zoe:

Now click on the graphic so that the orange border is showing, copy it to the clipboard (Edit Copy)
and paste it into the following command:

In[1]:= dog First Cases , Line pts pts, Infinity

Out[1]= 0, 0 , 0.237841, 0.700376 , 0.145025, 0.981963 , 0.145025, 1.30109 ,

0.087015, 1.54514 , 0.063811, 2.08954 , 0.145025, 2.31481 ,
0.353861, 2.37112 , 0.214637, 2.1834 , 0.168229, 1.92058 ,

0.249443, 1.639 , 0.841145, 1.73286 , 1.32843, 1.67654 , 1.51406, 1.73286 ,
1.63008, 2.05199 , 1.7113, 2.22094 , 1.7113, 1.75163 , 1.7345, 1.65777 ,
1.83892, 1.65777 , 1.81571, 1.52636 , 2.03615, 1.24478 , 1.89693, 0.906873 ,

1.59528, 1.15091 , 1.60688, 0.3437 , 1.7461, 0.118431 , 1.7461, 0.00579624 ,
1.38644, 0.00579624 , 1.34003, 0.625287 , 0.643911, 0.644059 ,

0.400269, 0.212293 , 0.609105, 0.118431 , 0.620707, 0.00579624 , 0, 0

The details of how the Cases command works are discussed in Section 8.8. But what it produces is

simply the list of Zoe’s coordinates. Her picture is easily recovered from this coordinate list, either as
a Line or Polygon object:

7.9 Visualizing Linear Transformations 377

In[2]:= Graphics Line dog , Graphics Brown, Polygon dog

Out[2]= ,

If when constructing a graphic you invoke the line segments tool more than once, you will
produce a graphic with more than one Line object in it. Things are a bit more complicated
here. In such cases do not apply First to the Cases input above. Cases will produce a list
containing multiple lists of points. Give this master list a name (such as dog). To display this
list, instead of Graphics[Line[dog]], use Graphics[Map[Line,dog]] (or equivalently:
Graphics[Table[Line[s],{s,dog}]]). To multiply the matrix m by each vertex in the dog lists,
we use Map[m.#&,dog,{2}]. This “maps” the Function[v,m.v] over the dog list at the second

level. Map and Function are described in detail in Section 8.4 on page 403. Finally, to display

the transformed image, put this all together to get:

Graphics[{Brown, Map[Line, Map[m.#&, dog, {2}]]}]

You will probably not want to use Polygon to render an image made from multiple Line
objects.

We can reflect Zoe about the y-axis using the matrix
1 0

0 1
. We simply multiply each of Zoe’s

coordinates by this matrix, then make a Polygon from the transformed coordinates. Both the
original and transformed figures are shown below:

In[3]:= Graphics Brown, Polygon Table
1 0

0 1
.v, v, dog , Line dog ,

Axes True

Out[3]=

2 1 1 2

0.5

1.0

1.5

2.0

Here Zoe is reflected about the line y x, using the matrix
0 1

1 0
:

378 Linear Algebra

In[4]:= Graphics Brown, Polygon Table
0 1

1 0
.v, v, dog , Line dog ,

Axes True, PlotRange 3

Out[4]=
3 2 1 1 2 3

3

2

1

1

2

3

The most simple type of linear transformation is a dilation or contraction. The standard matrix for

this type of transformation is
c 0

0 c
. If 0 c 1 we have a contraction, while if c 1, we have a

dilation. Using Manipulate we allow c to vary dynamically. Below we display the dilation matrix
together with the graphical output. Toward this end, we introduce a displayMatrix command that
will round all matrix entries to two decimal places, leave room in front of each entry for a minus
sign, and generally make the matrix entries easy to read as the parameter c is manipulated.

In[5]:= displayMatrix m : MatrixForm

Map NumberForm Chop N , 10 3 , 3, 2 , NumberSigns " ", " " &, m, 2

The displayMatrix command utilizes both Map and Function, which are discussed in Section

8.4 on page 403, in order to operate individually on each matrix entry. It also makes use of

NumberForm, which is used to regulate the display of numbers, and Chop, which is used to

round sufficiently small numbers to zero. NumberForm is discussed in Section 8.3.

7.9 Visualizing Linear Transformations 379

In[6]:= Manipulate

Labeled Graphics Brown, Polygon Table
c 0

0 c
.v, v, dog , Line dog ,

Axes True, PlotRange 10 , the label

c 0

0 c
displayMatrix, Right, Top ,

c, 2.75 , .2, 5

Out[6]=

c

10 5 5 10

10

5

5

10 2.75 0.00

0.00 2.75

We can rotate a figure in two dimensions through an angle using the standard rotation matrix.

In[7]:= RotationMatrix MatrixForm

Out[7]//MatrixForm=

Cos Sin

Sin Cos

In[8]:= Manipulate

Labeled Graphics Brown, Polygon Table RotationMatrix .v, v, dog ,

Line dog , Axes True, PlotRange 4, PlotLabel "Bad Dog" ,

the label RotationMatrix displayMatrix, Right, Top , , .8 , 0, 2

Out[8]=

4 2 2 4

4

2

2

4

Bad Dog 0.70 0.72

0.72 0.70

380 Linear Algebra

We can compose linear transformations by multiplying the individual matrices for the transforma-
tions. Below we’ve combined a reflection about the x-axis with a dilation and a rotation.

In[9]:= Manipulate With m
1 0

0 1
.

c 0

0 c
.RotationMatrix ,

Labeled Graphics Brown, Polygon Table m.v, v, dog ,

Line dog , Axes True, PlotRange 10 ,

the label Row MatrixForm
1 0

0 1
, ".", displayMatrix

c 0

0 c
,

".", displayMatrix RotationMatrix , " ", displayMatrix m ,

Top , , 2 , 0, 2 , c, 2.5 , 1, 4

Out[9]=

c

1 0

0 1
.

2.50 0.00

0.00 2.50
.

0.42 0.91

0.91 0.42

1.04 2.27

2.27 1.04

10 5 5 10

10

5

5

10

In 3-dimensions, we can easily access any of the dozens of polyhedra available in the Polyhedron
Data collection, or any of the Geometry3D objects in the ExampleData collection. Here, for
instance, is the space shuttle:

In[10]:= ExampleData "Geometry3D", "SpaceShuttle"

Out[10]=

We can easily extract its vertex coordinates as follows (to save space we display only the first few):

7.9 Visualizing Linear Transformations 381

In[11]:= vertices N ExampleData "Geometry3D", "SpaceShuttle" , "VertexData" ;

Take vertices, 10

Out[12]= 4.99949, 0.68171, 0.569242 , 4.99976, 0.491153, 0.805206 ,

5.34948, 0.470935, 0.566062 , 4.99976, 0.491153, 0.805206 ,
4.90671, 0.620194, 0.686502 , 4.99949, 0.68171, 0.569242 ,
5.29975, 0.147914, 0.811038 , 5.56803, 0.1192, 0.568687 ,

4.90671, 0.620194, 0.686502 , 5.56803, 0.1192, 0.568687

Collections of these vertices are assembled to make the polygonal faces. The first face, for instance, is
a triangle comprised of the first, second, and third vertices in the above list.

In[13]:= faces ExampleData "Geometry3D", "SpaceShuttle" , "PolygonData" ;

Take faces, 10

Out[14]= 1, 2, 3 , 4, 5, 6 , 3, 7, 8 , 1, 9, 2 , 7, 3, 2 ,
10, 11, 12 , 12, 4, 6 , 12, 11, 4 , 13, 14, 15 , 16, 17, 18

In total there are 310 vertices and 393 faces:

In[15]:= Length vertices , Length faces

Out[15]= 310, 393

We can reassemble this information into a three-dimensional graphic using GraphicsComplex, like
this:

In[16]:= Graphics3D EdgeForm , GraphicsComplex vertices, Polygon faces

Out[16]=

So, proceeding as in the two-dimensional case, we dynamically display the figure resulting from the
application of a linear transformation to each of the vertices of the figure above. For instance, below
we show the effect of composing rotations about each of the three coordinate axes, respectively:

382 Linear Algebra

In[17]:= Manipulate

With m RotationMatrix , 1, 0, 0 .

RotationMatrix , 0, 1, 0 .RotationMatrix , 0, 0, 1 ,

vertices N ExampleData "Geometry3D", "SpaceShuttle" , "VertexData" ,

faces ExampleData "Geometry3D", "SpaceShuttle" , "PolygonData" ,

Labeled

Graphics3D

EdgeForm , GraphicsComplex Table m.v, v, vertices , Polygon faces ,

PlotRange 8 , displayMatrix m , Right, Top ,

, .5 , 0, 2 , , 0, 2 , , 0, 2

Out[17]= 1.00 0.00 0.00

0.00 0.88 0.48

0.00 0.48 0.88

Exercises 7.9
1. Draw a simple line drawing and construct a graph that demonstrates its reflection about the x-

axis.

2. One can apply matrix transformations to each vertex in any of the objects in the Polyhedron
Data collection.

a. Enter the input below to render a square gyrobicupola:

PolyhedronData "SquareGyrobicupola"

b. Extract the vertices and face indices for this polyhedron. Hint: A similar extraction was carried
out in the text for the space shuttle. The syntax is slightly different here, however. The relevant
properties are now called "VertexCoordinates" and "FaceIndices". Type PolyhedronData["
SquareGyrobicupola","Properties"] for a listing of all available properties.

c. How many vertices and faces are there in this example?

d. Construct a Manipulate that will enable you to rotate the polyhedron about any of the three
coordinate axes.

7.9 Visualizing Linear Transformations 383

8
Programming

8.1 Introduction
When you put several commands together to accomplish some purpose beyond the capacity of any
one individually, you are programming. Mathematica is intentionally designed for this purpose. Like
anything else, getting good at programming takes practice. But it is also exceedingly handy to have
familiarity with commands that lend themselves to such greater enterprises. We’ve seen plenty of
Mathematica in the first seven chapters; in this chapter we’ll discuss commands that are especially
useful for programming. Keep in mind that we only have room here for a brief introduction to these
concepts. Entire books, much longer than this one, have been written on this subject. Think of this
chapter as a gentle introduction.

We begin in Section 8.2 with some important background material, a consideration of the internal
form of any and every Mathematica expression. Every expression, input, output (or a cell, or an
entire notebook) is highly structured. Before it is possible to operate on any such expression, you
simply have to know what you are dealing with. You have to understand its structure.

Some of the most fundamental structures in Mathematica are the various types of numbers. These are
addressed in Section 8.3. The internal forms of the various types of numbers are discussed, along
with notions such as precision and accuracy. Mathematica has the capacity to carry out calculations
to arbitrarily high precision. In this section we also discuss a myriad of possibilities for the display of
numbers.

Section 8.4 introduces the workhorses of functional programming, commands like Map and Function

and MapThread. Section 8.5 introduces the staples of procedural programming, with predicate
commands (that return True or False), and control structures and looping commands such as If,
Do, While, and For. These commands instruct Mathematica to carry out a sequence of instructions,
and similar commands are often among the first encountered when one learns an elementary
programming language.

Section 8.6 discusses commands that limit the scope of auxiliary functions and symbols that are
sometimes needed in programming. These scoping commands are essential to insulate local defini-
tions from any global assignments that a user might make. Section 8.7 introduces the essential
commands that facilitate iteration, such as NestList, NestWhileList, FoldList, and FixedPointList.

Finally, section 8.8 discusses patterns and pattern matching in the context of defining commands,
making replacements, and for use in specific commands like Cases.

8.2 FullForm: What the Kernel Sees
Every Mathematica expression is either an atom or a nested expression. An atom is the most simple
type of expression: a number, a symbol, a string. It is an expression that cannot be decomposed into
simpler component pieces. The AtomQ command will tell you if an expression is atomic. Here are a
few examples:

In[1]:= Clear a, x ;

Grid Table exp, AtomQ exp , exp,

2, 2.0, 2 3, 2 3 , , a, Plot3D, Sin, "a string", 2 a, a x , Dividers Gray

Out[2]=

2 True

2. True
2

3
True

2 3 True

True

a True

Plot3D True

Sin True

a string True

2 a False

a x False

A nested expression has the form head[arg1, arg2, …]. The head is typically atomic (it is usually a

command name, although it may itself be a nested expression), and the arguments are either nested
expressions or atoms. The arguments are enclosed in square brackets (typically there are one or more
arguments, but zero arguments are permitted). The command Head will display the head of any
nested expression. Here are a few examples (for each expression in the left column, its head appears
in the right column):

In[3]:= Clear a, b, c, g, x, y, myCommand ;

Grid Table exp, Head exp , exp, myCommand x , g x, y , a b x, y , c , a b c ,

Dividers Gray

386 Programming

Out[3]=

myCommand x myCommand

g x, y g

a b x, y , c a

a b c a b

Even the expression a[b][c] qualifies as a legitimate nested expression. The head is the nested
expression a[b].

Every non-atomic Mathematica expression has this form, a head followed by square brackets enclos-
ing zero or more arguments.

That last statement should give you pause. Consider the expression 2 + a. It is not atomic (we saw
this in the second to last output above), so what is the head? Where are the square brackets? What
are the arguments? It does not appear to have the form head[arg1, arg2, …]. What gives?

In[4]:= Head 2 a

Out[4]= Plus

What’s going on is that the internal or FullForm of this expression is not revealed when we type 2 +
a. These paltry three characters are parsed into the following before being sent to the kernel for
evaluation:

In[5]:= 2 a FullForm

Out[5]//FullForm=

Plus 2, a

Ah, so this expression does have the form of a nested expression after all, and the head is indeed
Plus. Mathematica allows you to type 2 + a because you’re a human, and that’s what you’re used to
(this is called the infix form of the Plus command). In this and in dozens of other cases you are
permitted to create expressions that do not look like proper nested expressions. This flexibility is
granted simply to make your interactions with Mathematica more natural, and to make the typing as
simple as possible. But in each of these cases your input is parsed into a properly structured nested
expression before being sent to the kernel. It is crucial to understand this fact if you are to program
effectively in Mathematica. FullForm is a great tool for peeking under the hood to view the internal
form of any Mathematica expression. Here are some other examples (for each expression in the left
column we show its FullForm in the right column):

8.2 FullForm: What the Kernel Sees 387

In[6]:= Grid Table exp, FullForm exp ,

exp, 2 a, 2 a, a, 2^a, a , 2 a, , , 2, a , , a , a , a 1 ,

a && b, a b, a, a 2, a . b, a . b, a b, a b, a b, a b,

a Reals, a b, a ' x , a x x , Dividers Gray Quiet

Out[6]=

2 a Plus 2, a

2 a Times 2, a

a Times 1, a

2a Power 2, a

a Power a, Rational 1, 2
2

a
Times 2, Power a, 1

Pi

E

2, a List 2, a

Blank

a Pattern a, Blank

a Pattern a, BlankSequence

a 1 Part a, 1

a && b And a, b

a b Or a, b

a Not a

a 2 Rule a, 2

a . b ReplaceAll a, b

a . b ReplaceRepeated a, b

a b Equal a, b

a b Unequal a, b

a b Less a, b

a b LessEqual a, b

a Reals Element a, Reals

a b StringExpression a, b

a x Derivative 1 a x

a x x Integrate a x , x

Note that Quiet has been applied (in postfix form) in the previous input. This suppresses all
warning messages. In this case, for instance, the a /. b input generates a warning message that
b is neither a replacement rule nor a list of replacement rules.

388 Programming

Note that FullForm can be subtle to use in some cases, as an expression may evaluate before Full
Form is applied. If one enters FullForm[a = b], for instance, the expression a = b evaluates and
returns b, and then the FullForm of b (which is simply b) is displayed. In fact, the FullForm of a = b
is Set[a, b]. In such cases, wrapping the expression in Defer will prevent this sort of premature
evaluation.

In[7]:= FullForm a b

Out[7]//FullForm=

b

In[8]:= Defer FullForm a b

Out[8]= Set a, b

In[9]:= Defer FullForm a : b

Out[9]= SetDelayed a, b

Understanding the structure of the Mathematica language allows you to do many things. One clearly
sees at this point, for instance, the internal distinctions between the symbols =, :=, and . They
correspond respectively to the commands Set, SetDelayed, and Equal. You will soon be able to
harness your knowledge of the structure of expressions to operate in interesting ways on complex
expressions. This is the essence of programming in Mathematica.

One last symbol deserves our attention in this context: the semicolon. We have used this symbol to
suppress output on many occasions. It also allows us to evaluate several commands in a single input
cell, like this:

In[10]:= a 3; 2 a

Out[10]= 6

The FullForm of the input above can be seen via Defer:

In[11]:= Defer FullForm a 3; 2 a

Out[11]= CompoundExpression Set a, 3 , Times 2, a

And here is the FullForm of an expression that ends in a semicolon:

In[12]:= Defer FullForm a 3;

Out[12]= CompoundExpression Set a, 3 , Null

The command is CompoundExpression, and each argument is itself an expression. The arguments
are evaluated in turn, but only the output associated with the expression in the final argument is
displayed. CompoundExpression is an invaluable tool in writing Mathematica programs, for it
allows several inputs to be evaluated in turn, one after the other, with only the output of the last
input displayed.

8.2 FullForm: What the Kernel Sees 389

Here’s one more example that may be revealing. Copy any graphic you like into an input cell, and
ask for its FullForm or InputForm to see its underlying structure. In this case we used the Drawing
Tools palette to create a simple image with the Line Segments tool.

In[13]:= FullForm

Out[13]//FullForm=

Graphics List Line List List 0.21111111111111117`, 0.8333333333333334` ,

List 0.2972222222222223`, 0.5972222222222223` ,
List 0.18611111111111114`, 0.41666666666666674` ,

List 0.31666666666666665`, 0.1972222222222222` ,
Line List List 0.5611111111111111`, 0.8361111111111111` ,

List 0.4722222222222222`, 0.6027777777777779` ,

List 0.5722222222222222`, 0.40000000000000013` ,
List 0.4833333333333334`, 0.19999999999999996` ,

Line List List 0.7527777777777778`, 0.8305555555555556` ,
List 0.8611111111111112`, 0.6222222222222222` ,

List 0.7361111111111112`, 0.3944444444444444` ,
List 0.8166666666666667`, 0.18055555555555558` ,

Rule PlotRange, List List 0, 1 , List 0, 1

In fact, Mathematica notebooks are themselves valid nested expressions. If you were to open a
Mathematica notebook in a text editor, you would see a plain text file with the structure
Notebook[arg1, arg2, …]. The individual arguments in a notebook are cells, and every cell is
nested expression in its own right of the form Cell[arg1, arg2, …], and so on. This state of
affairs is most definitely intentional, and is even a little bit devious. It is devious in that the
FrontEnd does not reveal the highly structured nature of the underlying document, just as it

does not reveal the FullForm of expressions such as a , unless you ask for it. But under-
neath, the structure is there. The benefit (and a distinguishing feature of Mathematica) is that
you have access to this underlying form. Because cells and even entire notebooks have the
structure of a valid expression, it is possible to program Mathematica to operate on an entire
notebook. This was done, for example, in the writing of this book. Each chapter in this book is
a Mathematica notebook. The entire notebook expressions for all of the chapter files were sent

390 Programming

to the kernel to programmatically generate the table of contents. They were sent again to
make the index, and so on. While the details of these specific techniques lie beyond the scope
of this book, it is important to understand the potential for operating programmatically on an
entire notebook.

Exercises 8.2
1. Find the Head of each of the following expressions:

a. x 2

b. 2

c. 1, 2, 3

d. 1 &

2. Find the FullForm of each of the following expressions:

a. x 2

b. 1/2

c. 2

d. 1, 2, 3

3. What is the head of the expression a'[x]? Find its FullForm, and base your answer on what you
see. Check your answer with Head.

4. What is the FullForm of the expression 2x + 1 /. x 3? Use Defer and FullForm to find out.

5. What is the FullForm of the expression x = 3; 2x? Use Defer and FullForm to find out.

6. The command TreeForm produces a visual representation of the FullForm of any expression.
Find the TreeForm of the expression 2x + 1 /. x 3.

7. The Part command was introduced in Chapter 3 to extract a part of a list. It is typically invoked
via typing double square brackets. For instance the input {a, b, c}[[2]] will produce the output b.
But Part can also be used to extract parts of compound Mathematica expressions.

a. Apply TreeForm to the input a b c d2.

b. Extract the zeroth, first, and second parts of this same input.

c. Find parts 2,1 and 2,2 .

d. Find parts 2,2,1 and 2,2,2 .

8. Go to the Graphics menu, create a new graphic, bring up the Drawing Tools palette, and draw an
arrow. Copy the arrow graphic into a new input cell, and apply TreeForm to the result.

9. A String in Mathematica is any collection of characters or symbols enclosed in double quotations.
Strings are atomic expressions. There are many commands available to operate on strings, but
one of the most basic is StringExpression. StringExpression[string1, string2] will concatenate the

8.2 FullForm: What the Kernel Sees 391

two strings string1 and string2 into a single string. The infix form of StringExpression is ~~. That
is, one may invoke StringExpression by typing string1~~string2.

a. Type and enter a string. What do you see? What do you see if you apply FullForm to the
input?

b. Apply FullForm to the input "I am"~~" putting strings together."

c. Apply Defer to the input FullForm["a"~~"b"].

d. The command ToString will take any expression and convert it to a string. It is often used in
conjunction with StringExpression to create a string that depends on some external input.
Use ToString and StringExpression to create a command that will take a numerical input n
and return the string "n is my favorite number."

10. A notebook is comprised of cells. Each cell expression in a notebook has the head Cell. To see
the underlying form of a Cell expression requires a special technique, as the FrontEnd will
display Cell expressions nicely, that is, in a manner which hides the underlying structure of the
expression.

a. Click anywhere in any cell in any notebook, and in the menus go to Cell ShowExpression.
The underlying cell structure will be revealed. In this state, you can edit it directly if you like.
Then toggle it back to normal with the same technique. Try this on several different cells in
one of your notebooks.

b. A Cell is a versatile structure, capable of many forms, from input to output to text to graphics.
So it may not be surprising to learn that Cell accepts a myriad of options. How many options
would you guess Cell can accept? Test your answer using the Options command.

8.3 Numbers

Types of Numbers: Integer, Rational, Real, and Complex
When working with a calculator or spreadsheet, one is typically not concerned with whether one
enters a whole number (such as 12) or a decimal number (such as 12.0). These are, after all, the same
number. In Mathematica, however, they are treated very differently, and for a good reason. Decimal
numbers are cursed with an inherent ambiguity stemming from the fact that while there are an
infinite number of decimal places, we cannot possibly write them all. There are two distinct
situations in which one would write a decimal number with finitely many places. In one, we write
such a number when we are rounding it, such as when writing 3.14159. In the other, we agree to
stop writing decimal digits if beyond a certain point all the digits are known to be zero, such as when
writing 1 4 .25. Unfortunately, when one gives a computer a decimal number such as 3.14159 or
.25, there is no way for the computer to know which situation you are in. When you type .25,
should the computer interpret that to mean 1 4, or should it instead read it as the first two digits of
some potentially longer number, whose other decimal places are not known? Mathematica chooses
the latter: it treats all decimal numbers as approximations, where only the given decimal digits are
known, and where all additional decimal digits are treated as unknown. Mathematica refers to such
numbers as Real numbers.

392 Programming

By contrast, an Integer, or whole number, is exact. There is no ambiguity. Likewise, fractions with
integer numerator and denominator are also exact. Such fractions are called Rational numbers.
While any kind of number is an atomic expression in Mathematica, the Head command (introduced
in the last section) can be used to identify the type of any number.

In[1]:= Head 12.0

Out[1]= Real

In[2]:= Head 12

Out[2]= Integer

In[3]:= Head 12 7

Out[3]= Rational

It is often a shock for new Mathematica users to encounter output such as the following:

In[4]:=
22

7

Out[4]=
22

7

Mathematica simply will not convert an Integer or Rational number to a Real unless instructed to
do so. In cases where you seek a decimal output, either enter at least one Real number in the input,
or use the N command to convert it for you. Note that typing 22. is the same as writing 22.0.

In[5]:=
22.

7

Out[5]= 3.14286

In[6]:=
22

7
N

Out[6]= 3.14286

In addition to Integer, Rational, and Real numbers, there are also complex numbers, such as 2+3 ,
where represents the square root of 1. Regardless of which type of numbers comprise the individ-
ual real and imaginary components of such a number, Mathematica treats the entire expression as a
Complex number.

In[7]:= Head 2 3

Out[7]= Complex

8.3 Numbers 393

In[8]:= Head 2.0 3.0

Out[8]= Complex

Displaying Numbers
It is important to understand that while real (decimal) numbers are displayed with six significant
digits, internally they are stored to at least machine precision (usually 16 significant digits). Perhaps
you have already discovered this; if you copy a real number from an output cell and then paste it
into a new input cell you will see the “full” machine representation of the number. Alternately, you
can use the command InputForm to display all the digits of a real number.

In[9]:= N

Out[9]= 3.14159

In[10]:= N InputForm

Out[10]//InputForm=

3.141592653589793

Note Mathematica’s InputForm for scientific notation:

In[11]:= N 1020 InputForm

Out[11]//InputForm=

3.1415926535897933*^20

It is possible to display all the digits of a real number in any format you can imagine. While
Mathematica’s InputForm is handy for peeking under the hood, a more practical command for
displaying numbers is NumberForm. Here, for example, we see the first 12 digits of (including the
digit to the left of the decimal point).

In[12]:= NumberForm N , 12

Out[12]//NumberForm=

3.14159265359

This is not too exciting, as it looks like the output for N[,12]. However, if the second argument to
NumberForm is a list of two positive integers, the first number specifies the total number of digits to
be displayed and the second specifies the number of digits to the right of the decimal. This can be
very useful. Here we see the first ten decimal places of (compare the output carefully with the
output above; NumberForm displays the number rounded to the correct number of specified digits):

In[13]:= NumberForm N , 11, 10

Out[13]//NumberForm=

3.1415926536

394 Programming

If you ask for more total digits than needed, they will not be displayed.

In[14]:= NumberForm 1.0, 10, 5

Out[14]//NumberForm=

1.00000

However the option NumberPadding allows you to specify characters to pad the areas to the left
and right of the displayed digits.

In[15]:= NumberForm 1.0, 10, 5 , NumberPadding " ", "0"

Out[15]//NumberForm=

1.00000

The padding on the left in the output above appears to have one extra character; this is the space
reserved for the sign character in the case of negative numbers:

In[16]:= NumberForm 1.0, 10, 5 , NumberPadding " ", "0"

Out[16]//NumberForm=

1.00000

A similar command is PaddedForm, which works essentially the same way as NumberForm, but it
will also “pad” the number with white space on the left, leaving room to accommodate all the
requested digits (and the sign character). Using PaddedForm will often free you from having to add
a NumberPadding option to NumberForm.

In[17]:= NumberForm 1.0, 10, 5

NumberForm 1.0, 10, 5 , NumberPadding " ", "0"

PaddedForm 1.0, 10, 5

Out[17]//NumberForm=

1.00000

Out[18]//NumberForm=

1.00000

Out[19]//PaddedForm=

1.00000

PaddedForm is useful for displaying numbers in a table so that numbers in a column are all dis-
played with the same number of places to the right of the decimal, and with decimal points aligned.

8.3 Numbers 395

In[20]:= Table n, PaddedForm N n , 5, 2 , n, 0, 6 Grid

Out[20]=

0 0.00

1 3.14

2 6.28

3 9.42

4 12.57

5 15.71

6 18.85

Numbers that are very small or very large, however, will disturb the neat display above. Such num-
bers will (sensibly enough) be displayed in scientific notation (with the requested 2 places shown to
the right of the decimal):

In[21]:= PaddedForm .000001234, 12, 2

Out[21]//PaddedForm=

1.23 10 6

In[22]:= PaddedForm 1 001234.5678, 12, 2

Out[22]//PaddedForm=

1.00 106

If you do not want such numbers represented in scientific notation (for instance, if you are display-
ing monetary values and want your answer in dollars and cents), both NumberForm and Padded
Form accept the option setting ExponentFunction (Null&), which prohibits the display of
exponents.

In[23]:= PaddedForm .000001234, 12, 2 , ExponentFunction Null &

Out[23]//PaddedForm=

0.00

In[24]:= PaddedForm 1 001234.5678, 12, 2 , ExponentFunction Null &

Out[24]//PaddedForm=

1001234.57

This mechanism provides a sensible means of representing quantities such as money, where pre-
cisely two decimal places should be displayed. The following command could be used whenever a
monetary value x is to be shown. This particular implementation allows for at most ten digits to the
left of the decimal (so don’t use it to display the national debt).

In[25]:= Clear dollar ;

dollar x : PaddedForm N x , 12, 2 , ExponentFunction Null &

396 Programming

In[27]:= dollar 0.0049 , dollar 0.0050 , dollar , dollar 109 Column

Out[27]=

0.00

0.01

3.14

3141592653.59

Suppose you have one dollar, and it loses 1 3 of its value each year. Here’s what happens to your
dollar over time. The second column shows the numerical value to the default six significant digits,
while the third column displays this same value rounded to the nearest penny:

In[28]:= Grid Table n, N 2 3 n , dollar 2 3 n , n, 0, 15 ,

Alignment ".", Dividers Gray

Out[28]=

0 1. 1.00

1 0.666667 0.67

2 0.444444 0.44

3 0.296296 0.30

4 0.197531 0.20

5 0.131687 0.13

6 0.0877915 0.09

7 0.0585277 0.06

8 0.0390184 0.04

9 0.0260123 0.03

10 0.0173415 0.02

11 0.011561 0.01

12 0.00770735 0.01

13 0.00513823 0.01

14 0.00342549 0.00

15 0.00228366 0.00

More complex structures such as loan amortization tables can be built in a similar fashion.

If the number we wish to display is an exact integer (no decimal point) we need not specify digits of
precision, and scientific notation will not be used.

In[29]:= NumberForm 1030

Out[29]//NumberForm=

1000000000000000000000000000000

But very large numbers are easier for humans to read if the digits are blocked in, say, groups of three.
NumberForm and PaddedForm have an option called DigitBlock to allow for this sort of display.

8.3 Numbers 397

In fact there are a host of options that allow you full control over the display of numbers. Look up
NumberForm in the Documentation Center for more information.

In[30]:= NumberForm 1030, DigitBlock 3

NumberForm 1030, DigitBlock 5, NumberSeparator " "

Out[30]//NumberForm=

1,000,000,000,000,000,000,000,000,000,000

Out[31]//NumberForm=

1 00000 00000 00000 00000 00000 00000

Note that you can go into Mathematica’s Preferences panel, and make global adjustments to these
settings. In the Preferences panel, look under Appearance Numbers Formatting , and tweak to your
heart’s content. This will invoke your display preferences for every session.

In this example we modify the command dollar to use 3-digit blocks:

In[32]:= Clear dollar ;
dollar x :

PaddedForm N x , 12, 2 , ExponentFunction Null & , DigitBlock 3

In[34]:= dollar 109

Out[34]//PaddedForm=

1,000,000,000.00

NumberForm and its cousin PaddedForm have several other close relatives including Scientific
Form, EngineeringForm, and AccountingForm. These work much the same way, but have differ-
ent default settings. Information can be had in the Documentation Center.

Precision and Accuracy
Here’s an experiment. Find another program on your computer that is capable of doing arithmetic,

for instance a calculator program or a spreadsheet. Ask that program to evaluate 21023 and 21024.
Now try it in Mathematica. As with any calculation, with Mathematica you can ask for a numerical
approximation or an exact answer:

In[35]:= N 21023, 10

Out[35]= 8.988465674 10307

398 Programming

In[36]:= 21024

Out[36]= 179769313486231590772930519078902473361797697894230657273430081157

732675805500963132708477322407536021120113879871393357658789768

814416622492847430639474124377767893424865485276302219601246094

119453082952085005768838150682342462881473913110540827237163350
510684586298239947245938479716304835356329624224137216

In most cases you’ll find that other programs will give an answer like the output above for 21023, but

they will choke on 21024, and fail to produce an answer. This is because most programs rely on your
computer’s hardware, in particular on its floating point unit (FPU), to carry out arithmetic opera-
tions. And this number is simply too big for most floating point units commonly in use at the time
of this writing. It’s a matter that most of us rarely think about, but while the real number system is
infinite, the number system utilized by most FPU’s (commonly IEEE double–precision floating point
arithmetic) is finite. That is, there is a finite quantity of numbers available in this system, and so

there is necessarily a largest number. In most systems it happens to be just under 21024. The bound-
ary occurs at a power of two since the FPU converts numbers to base 2 before operating on them.
You can have Mathematica query your hardware and determine the largest number supported by the
FPU on your machine by entering the following:

In[37]:= $MaxMachineNumber

Out[37]= 1.79769 10308

In[38]:= N 21024

Out[38]= 1.797693134862316 10308

Mathematica handles numbers differently than most other programs. It will make use of your
computer’s FPU whenever possible in order to save time, since hardware is generally several orders
of magnitude faster than software. But when you input a real number too large, too small, or too
precise for the FPU to handle, or if the result of evaluating your input produces such a number,
Mathematica will seamlessly switch into high precision mode, abandoning the FPU and carrying out
the calculation itself. In one sense you never need to worry about it, for it happens automatically. In
another sense, it is useful to understand just how Mathematica interprets real numbers so that you
can better understand its output, and so that you can manually switch to high precision arithmetic
should you desire to do so.

For instance, enter the following input. Then select the output with your mouse, copy it, and paste
it into a new input cell. This is what you will see:

In[39]:= N

Out[39]= 3.14159

3.141592653589793`

8.3 Numbers 399

This procedure causes Mathematica to give you a peek under the hood at how it views this number.
You can also force Mathematica to show it to you with the command FullForm (the command
InputForm will also display all the digits of the number, but it does not display the backquote
character `).

In[40]:= N FullForm

Out[40]//FullForm=

3.141592653589793`

We already know that the N command will by default display only six significant digits of a num-
ber, while internally there is a machine number lurking underneath. Machine numbers, that is,
numbers accessible to your computer’s FPU, never have more than a fixed number of significant
digits, usually 16. We will use the term precision to indicate how many significant digits a real
number has, and hence we say that machine numbers generally have a precision of 16. Machine
numbers are identified (in FullForm) by the backquote ` appearing as the final character. If you ever
copy and paste a number, revealing its internal structure as a machine number, don’t worry. Num-
bers can be input in this form and the output is no different than it would otherwise be.

In[41]:= 100 3.141592653589793`

Out[41]= 314.159

One way to input a high precision number is to type a decimal number with a total of more than 16
digits. Another is to use N specifying (with the second argument) more than 16 digits of precision.

In[42]:= N 2, 40

Out[42]= 2.000000000000000000000000000000000000000

If you copy and paste the output above, or apply FullForm to it, you will see the internal structure
of a high precision number:

In[43]:= N 2, 40 FullForm

Out[43]//FullForm=

2.`40.

The FullForm of a high precision number is the number itself followed by the backquote character `
followed by the number’s precision. High precision numbers may also be entered directly this way:

In[44]:= 2`40

Out[44]= 2.000000000000000000000000000000000000000

In order to understand Mathematica’s internal form for any high precision number, we just combine
the notation above with the internal form for scientific notation (discussed in the previous subsec-
tion). For example:

400 Programming

In[45]:= N 2 10100, 40 FullForm

Out[45]//FullForm=

2.`40. ^100

A simple way to force Mathematica to jump into high precision mode when evaluating an input is to
make sure every number appearing in the input is a high precision number. If any single number in
the input has only machine precision, the answer can be no more precise. The Precision command
displays the precision of any quantity.

In[46]:= Precision 2`40

Out[46]= 40.

In[47]:= Precision N 2, 40

Out[47]= 40.

In[48]:= Precision 2.

Out[48]= MachinePrecision

When high precision numbers are combined arithmetically, the precision is no greater than that of
the least precise number in the input.

In[49]:= N 2, 40 N 2, 30

Out[49]= 4.00000000000000000000000000000

In[50]:= Precision

Out[50]= 30.

However, with some operations the precision can decrease below that of the least precise number in
the input. In the following example it is useful to think of each number as an infinite decimal
number, the first few digits of which are 2 followed by 29 or 39 zeros. When subtracted, their
difference begins 0.000000 … (with 29 zeros after the decimal point), but beyond that nothing is
known. No significant digits of the difference can be surmised. The precision is 0.

In[51]:= N 2, 30 N 2, 40

Out[51]= 0. 10 30

In[52]:= Precision

Out[52]= 0.

This may seem unfair. However, we do know that the result is zero to 29 decimal places, even
though we don’t know any of the actual nonzero digits of the difference. The command Accuracy
will tell you (roughly) how many digits to the right of the decimal point are known to be correct.

8.3 Numbers 401

In[53]:= Accuracy

Out[53]= 29.699

The following won’t give a high precision number, since the machine precision number 2.0 appears
in the input. You cannot take a machine precision real number and increase its precision. In fact,
you cannot do any operation involving a machine precision number and end up with high precision
output.

In[54]:= N 2., 40

Out[54]= 2.

In[55]:= Precision

Out[55]= MachinePrecision

Finally, note that exact numbers have infinite precision:

In[56]:= Precision 2

Out[56]=

In[57]:= Precision

Out[57]=

Exercises 8.3
1. You may be familiar with the parable about the peasant who is to be rewarded by the king with

many sacks of rice. The peasant says, “Why don’t you simply give me one grain of rice the first
day, 2 the second day, 4 the third day, and so on, each day giving me twice the quantity of the
previous day, and do this for one month?” The King, thinking this will cost less, agrees. Make a
table showing how many grains of rice the King owes each day, from day one to day 31. Use
DigitBlocks of length three to make the numbers easy to read.

2. In this section we advocate the use of PaddedForm to display numbers in a table or column,
each with the same number of decimal places and with the decimal points aligned. Another
technique for accomplishing such alignment without necessarily restricting the number of
decimal places is with the Alignment option in the Grid and Column commands. Look up this
option in the Documentation Center, and use it to display the Table below in a column. You

may also wish to consult Exercise 7 in Section 3.5.

402 Programming

In[58]:= Table 10n N , n, 0, 5

Out[58]= 3.14159, 31.4159, 314.159, 3141.59, 31415.9, 314159.

8.4 Map and Function
Two fundamental Mathematica programming commands, Map and Function, are introduced in this
section. An understanding of these commands is something that distinguishes a Mathematica power
user from a casual user. They will facilitate your being able to do powerful list manipulations, and
expand your capability to do interesting tasks with great efficiency. We’ll tackle them one at a time,
then show how they can be used together.

Map is a command for applying a function to each member of a list. For instance, we can test a list
of numbers to see which of the numbers are primes:

In[1]:= Map PrimeQ, 2, 3, 4, 5, 6

Out[1]= True, True, False, True, False

Or we can apply an undefined function to a list of undefined quantities:

In[2]:= Clear f, a, b, c ;

Map f, a, b, c

Out[3]= f a , f b , f c

The first argument of Map is a function or command. The second argument is a list. The members
of the list are fed to the function, one by one, and the resulting list of values is returned.

There is a commonly used infix syntax for Map. Instead of typing Map[f, list], one can instead type
f /@ list. Effectively, one can Map a function over a list with just two keystrokes:

In[4]:= f a, b, c

Out[4]= f a , f b , f c

This will seem strange at first, but it is akin to typing 2 3 instead of the more formal Plus[2, 3]. It
departs from the standard “square bracket” notation employed by most Mathematica commands.
With a bit of practice, however, it’s quite natural.

We now turn our attention to a second command, Function, that is typically used to construct
functions to be used only once (for instance, functions to be Mapped over a list). In order to create a
function that squares its argument, for example, and apply it to every item in a list, either of these
inputs will do:

8.4 Map and Function 403

In[5]:= Map Function x, x2 , a, b, c

Out[5]= a2, b2, c2

In[6]:= Function x, x2 a, b, c

Out[6]= a2, b2, c2

This may seem like overkill; we’ve typed more input than the output we produced. But the idea is
extremely powerful, as we can now map any function over any list. We’ll explore more interesting
examples shortly.

In general, to create a function one types Function[input,output]. The input variable x above could
be replaced by any symbol; it’s simply a dummy variable. An alternate syntax is commonly used
that both minimizes typing and standardizes the name of the dummy variable to be the Slot charac-
ter . To give a Function using this syntax, use only one argument: the output expression (using
the for the variable):

In[7]:= Map Function 2 , a, b, c

Out[7]= a2, b2, c2

Even more brevity in typing can be attained by disposing entirely of the Function command name.
One may simply type the output expression (again using only for the variable) and then type the
ampersand character & to mark the end of the function. It’s a bit odd at first, but you’ll pick up on it

quickly. Instead of Function 2 , for example, one instead may type a paltry three characters: 2 &.

For instance:

In[8]:= Map 2 &, a, b, c

Out[8]= a2, b2, c2

Or even better:

In[9]:=
2 & a, b, c

Out[9]= a2, b2, c2

This last form is the most cryptic, but it is also the quickest to type, and is by far the most com-
monly encountered syntax convention for mapping a function over a list. You will see it frequently
in examples in the Documentation Center. Here are a few examples. Remember the Slot character
is simply a stand-in for each member of the list that follows.

404 Programming

In[10]:= Column N , & Range 20

Out[10]=

3.

3.1

3.14

3.142

3.1416

3.14159

3.141593

3.1415927

3.14159265

3.141592654

3.1415926536

3.14159265359

3.141592653590

3.1415926535898

3.14159265358979

3.141592653589793

3.1415926535897932

3.14159265358979324

3.141592653589793238

3.1415926535897932385

In[11]:= GraphicsRow Plot Sin x4 , x, 0, 2 , PlotStyle & Dashed, Dotted, Thick

Out[11]=
0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

8.4 Map and Function 405

In[12]:= Plot x & 1 6, 1 5, 1 4, 1 3, 1 2, 1, 2, 3, 4, 5, 6 ,

x, 0, 1 , Ticks None, AspectRatio 1

Out[12]=

In[13]:= GraphicsRow

Plot x , x, 0, 1 , Ticks None, AspectRatio 1, AxesOrigin 0, 0 &

1 6, 1 5, 1 4, 1 3, 1 2, 1, 2, 3, 4, 5, 6

Out[13]=

In[14]:= Text Style Grid , " ", Expand & Table 1 x n, n, 9 , Alignment Left ,

"TraditionalForm"

Out[14]=

1 x 1 x

1 x 2 1 2 x x2

1 x 3 1 3 x 3 x2 x3

1 x 4 1 4 x 6 x2 4 x3 x4

1 x 5 1 5 x 10 x2 10 x3 5 x4 x5

1 x 6 1 6 x 15 x2 20 x3 15 x4 6 x5 x6

1 x 7 1 7 x 21 x2 35 x3 35 x4 21 x5 7 x6 x7

1 x 8 1 8 x 28 x2 56 x3 70 x4 56 x5 28 x6 8 x7 x8

1 x 9 1 9 x 36 x2 84 x3 126 x4 126 x5 84 x6 36 x7 9 x8 x9

Note that it is possible to Map a Function over a list without using either command. Beginning in
Mathematica 6, one may use the special iterator form {x, list} in a Table to accomplish the same
thing. In fact, this idea has been used repeatedly throughout this book. For instance:

406 Programming

In[15]:= Table x2, x, a, b, c

Out[15]= a2, b2, c2

In[16]:= GraphicsRow

Table Plot Sin x4 , x, 0, 2 , PlotStyle sty , sty, Dashed, Dotted, Thick

Out[16]=
0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

Keep in mind, however, that Mathematica has been around since the late 1980s. Prior to version 6,
the Map-Function combo was ubiquitous. Its use still pervades examples in the Documentation
Center, and is found in much of the code you are likely to see. And it’s more than a relic. It is, with
a little practice, very easy both to type and to read. It avoids the use of a dummy variable (like the
sty variable in the example above). And in cases where the list being mapped over is generated by
Table, the Map-Function combo negates the need to nest one Table inside another.

It should also be noted that both Function and Map are widely used independently of each other.
In short, both are essential programming tools.

A Function can be given multiple arguments. This form is required by the Sort command, which is
used to sort a given list. For instance:

In[17]:= myList RandomInteger 100, 15

Out[17]= 40, 1, 79, 47, 51, 68, 45, 12, 19, 18, 64, 100, 91, 5, 11

In[18]:= Sort myList

Out[18]= 1, 5, 11, 12, 18, 19, 40, 45, 47, 51, 64, 68, 79, 91, 100

The sorting may be accomplished via a sorting function which returns True precisely when its two
arguments are given in the desired order. Each of the notations below accomplish the same thing:
they put the list in reverse order:

In[19]:= Sort myList, Function x, y , x y

Out[19]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

In[20]:= Sort myList, Function 1 2

Out[20]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

8.4 Map and Function 407

In[21]:= Sort myList, 1 2 &

Out[21]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

Note that there are many other ways to accomplish this. For instance, one could Reverse the list
after it is sorted in ascending order, or one could call the built-in Greater command, which accom-
plishes the same thing as our Function above:

In[22]:= Reverse Sort myList

Out[22]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

In[23]:= Sort myList, Greater

Out[23]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

But here we sort a list of vectors according to their Norm. There is no better way to accomplish this
feat than with a sorting Function:

In[24]:= myList RandomInteger 100, 10, 3

Out[24]= 82, 7, 96 , 97, 10, 6 , 13, 96, 6 , 28, 63, 42 , 45, 75, 17 ,
87, 98, 40 , 84, 86, 58 , 62, 0, 6 , 59, 35, 65 , 2, 97, 35

In[25]:= Sort myList, Norm 1 Norm 2 &

Out[25]= 62, 0, 6 , 28, 63, 42 , 45, 75, 17 , 59, 35, 65 , 13, 96, 6 ,
97, 10, 6 , 2, 97, 35 , 82, 7, 96 , 84, 86, 58 , 87, 98, 40

And here we sort the same list of vectors according to the value of the third coordinate:

In[26]:= Sort myList, 1 3 2 3 &

Out[26]= 62, 0, 6 , 13, 96, 6 , 97, 10, 6 , 45, 75, 17 , 2, 97, 35 ,

87, 98, 40 , 28, 63, 42 , 84, 86, 58 , 59, 35, 65 , 82, 7, 96

In[27]:= Clear myList

RegionFunction and MeshFunctions specifications in 3D plotting commands are typically each
given as a Function with multiple arguments. In this setting the Slot values #1, #2, and #3 stand for
the coordinate values x, y, and z respectively. Below the RegionFunction setting specifies that the

domain is the interior of the circle of radius 2 centered at the origin, while the MeshFunctions
setting specifies that Mesh lines will be drawn at equally spaced z values.

408 Programming

In[28]:= Plot3D x2 y2
, x, 2, 2 , y, 2, 2 , RegionFunction Norm 1, 2 2 & ,

MeshFunctions 3 & , PlotPoints 30

Out[28]=

Functional Programming
Mathematica is a functional programming language. That is, unlike languages such as BASIC and C,
Mathematica commands can operate not only on specific types of numbers and data structures, but
on arbitrary expressions. In particular, the argument to one function may be another function. This
provides a powerful and elegant paradigm for programming. While we will not provide a
philosophical discussion on the advantages and nature of functional programming, suffice it to say
that if you’ve read and followed this section to this point you’re already doing it. Map and Function
are your point of entry. Commands such as Apply, Thread, and MapThread (introduced below)
will expand your horizons, while Nest, Fold, replacement rules and pattern matching (introduced
later in the chapter) will take you to the next level.

A useful command that is similar to Map is Apply. Like Map, Apply takes two arguments: a func-
tion and an expression (often a list). The output is the second argument, with its head replaced by
the function in the first argument. That’s it; Apply will pluck the head off of any expression and
replace it with something else. For example, Apply[Times, List[a, b, c]] will return Times[a, b, c]:

In[1]:= Apply Times, a, b, c

Out[1]= a b c

Apply can be given in infix form via @@.

In[2]:= Times a, b, c

Out[2]= a b c

Here’s another example. We randomly generate 40 points in the plane (ordered pairs of numbers,
with each coordinate between 1 and 1), then replace Point by Line to connect the individual
points with line segments, and by Polygon to fill the resulting regions. Finally, we display all three
together.

8.4 Map and Function 409

In[3]:= pts Point RandomReal 1, 1 , 40, 2 ;

Graphics pts

Out[4]=

In[5]:= GraphicsRow

Graphics Line pts , Graphics Gray, Polygon pts ,

Graphics Gray, Polygon pts , Line pts, pts ,

Dividers All

Out[5]=

In[6]:= Clear pts

The command Thread can be used to “thread” a function over several lists. In the example below,
the (undefined) function is called f. It is called with two arguments, each of which is a list. Wrap-
ping this expression in Thread causes f to be called on corresponding members of the two lists, with
the output being a list of the results:

In[7]:= Thread f a, b, c , 1, 2, 3

Out[7]= f a, 1 , f b, 2 , f c, 3

Here are two applications. The first shows how to use Thread to programmatically create a list of
rules from a list of left-side values and a list of right-side values. In this case, the command Rule
plays the role of the function f above. The second example illustrates that Thread has the same
effect as Transpose on a list of lists (i.e., on a matrix). In this case List plays the role of the function
f above.

In[8]:= Thread a, b, c 1, 2, 3

Out[8]= a 1, b 2, c 3

410 Programming

In[9]:= Thread a, b, c , 1, 2, 3

Out[9]= a, 1 , b, 2 , c, 3

The command MapThread combines the functionality of Map and Thread. The example below
illustrates a typical implementation. It essentially does what Thread does, but there are two argu-
ments, with the function (in this case f) being given alone as the first argument.

In[10]:= MapThread f, a, b, c , 1, 2, 3

Out[10]= f a, 1 , f b, 2 , f c, 3

An example that illustrates the utility of MapThread follows. Suppose you wish to construct a 3D
graphic of a right cylinder whose top and bottom are regular polygons. These polygons are easily
constructed (we utilize Map to add the third coordinate to each vertex):

In[11]:= n 10;

pts Table Cos t , Sin t , t, 0, 2 ,
2

n
;

bottom Map Append , 0 &, pts ;

top Map Append , 1 &, pts ;

Graphics3D Map Polygon, top, bottom

Out[15]=

The rub is constructing the n rectangles that make up the sides. Suppose that b1, b2 is a list of two
adjacent vertices on the bottom polygon, and that t1, t2 are the vertices on the top polygon
directly above these. The side of the cylinder with these four vertices will have the form
Polygon[{b1, b2, t2, t1}]. To get this, we will Partition the top and bottom vertices into sublists of
length 2 with an offset (or overlap) of 1, and Reverse each ordered pair of vertices on the top. We’ll
then use MapThread to Join the corresponding lists. Here’s an illustration of the idea:

In[16]:= Partition b1, b2, b3 , 2, 1

Out[16]= b1, b2 , b2, b3

In[17]:= Reverse Partition t1, t2, t3 , 2, 1

Out[17]= t2, t1 , t3, t2

8.4 Map and Function 411

In[18]:= MapThread Join, ,

Out[18]= b1, b2, t2, t1 , b2, b3, t3, t2

Here’s the finished product:

In[19]:= sides MapThread Join, Partition bottom, 2, 1 , Reverse Partition top, 2, 1 ;

Graphics3D Polygon Join top, bottom , sides

Out[20]=

In[21]:= Clear n, pts, top, bottom, sides

Exercises 8.4
1. The command First, when applied to a list, will return the first item in the list. More generally,

First[f[a,b,c]] will return the first argument a for any command f. Compare the outputs of the
commands Options[NSolve] and First/@ Options[NSolve]. What is the command f to which
First is being applied in this case?

2. Use Function to define a command which when given an integer argument n between 1 and 26
will return the nth letter of the alphabet. Use it to find the 19th letter of the alphabet.

3. What is the FullForm of the pure function 2 &?

4. What is the FullForm of the pure function Norm[{#1, #2}] < 3?

5. One could have, back at the beginning of Chapter 3, taken a different approach to defining a

function such as f x x2 3 x 1 in Mathematica. Back then we advocated the following conven-

tion to define this function: f x : x2 3 x 1. In this exercise we’ll consider an alternate

approach: f Function x, x2 3 x 1 .

a. Define f using Function, then make a Plot of f on the domain 5 x 2.

b. Use Mathematica to differentiate and integrate f .

412 Programming

6. How would you use Function to define the multivariable real-valued function

f x, y x2 y x 3 y?

7. How would you use Function to define the vector field f x, y x2 y x 3 y, cos x ?

8. Map, Function, and Apply can be used to transform a simple Table into a stunning display. In
this exercise you will work with the table below, where each row holds the left and right sides of
a trigonometric identity.

t Table Tan k a , Together TrigExpand Tan k a , k, 2, 9 ;

a. Use Map, Function, Apply and Equal on t, and display the result with Column and Tradition
alForm to produce the output below:

tan 2 a 2 cos a sin a

cos2 a sin2 a

tan 3 a
sec a 3 cos2 a sin a sin3 a

cos2 a 3 sin2 a

tan 4 a
4 cos3 a sin a cos a sin3 a

cos4 a 6 sin2 a cos2 a sin4 a

tan 5 a
sec a sin5 a 10 cos2 a sin3 a 5 cos4 a sin a

cos4 a 10 sin2 a cos2 a 5 sin4 a

tan 6 a
2 3 sin a cos5 a 10 sin3 a cos3 a 3 sin5 a cos a

cos6 a 15 sin2 a cos4 a 15 sin4 a cos2 a sin6 a

tan 7 a
sec a sin7 a 21 cos2 a sin5 a 35 cos4 a sin3 a 7 cos6 a sin a

cos6 a 21 sin2 a cos4 a 35 sin4 a cos2 a 7 sin6 a

tan 8 a
8 sin a cos7 a 7 sin3 a cos5 a 7 sin5 a cos3 a sin7 a cos a

cos8 a 28 sin2 a cos6 a 70 sin4 a cos4 a 28 sin6 a cos2 a sin8 a

tan 9 a
sec a sin9 a 36 cos2 a sin7 a 126 cos4 a sin5 a 84 cos6 a sin3 a 9 cos8 a sin a

cos8 a 36 sin2 a cos6 a 126 sin4 a cos4 a 84 sin6 a cos2 a 9 sin8 a

b. Use Map, Function, Apply and Rule on t, and display the result with TabView and Tradition
alForm to produce the output below:

2 cos a sin a

cos2 a sin2 a

tan 2 a tan 3 a tan 4 a tan 5 a tan 6 a tan 7 a tan 8 a tan 9 a

9. Look up the term functional programming in Wikipedia, and contrast it with procedural
programming.

10. A cipher is an encryption scheme whereby each individual character in the message is replaced
by some other character or symbol. For instance, one could encode a message by replacing every
a with b, every b with c, and in general replacing each letter with the next letter, except for z
which is replaced with a. A cipher such as this that is based on a simple shift (replacing each
letter with the letter a fixed number of characters to its right) is called a Caesar cipher.

a. Use StringReplace, CharacterRange, Thread, and RotateLeft to build a command encode

8.4 Map and Function 413

that will implement this cipher on any String comprised of lowercase letters.

b. Create a decode command to decode an encrypted message (you may wish to use
RotateRight).

11. Modify the commands in the previous exercise so that a second argument controls the number
of places that each character is shifted to the left in the encryption process.

8.5 Control Structures and Looping
In contrast to the techniques introduced in the previous section, procedural programming is a
paradigm in which one gives step by step instructions to the computer. This is often the first type of
programming one encounters, using a language such as BASIC or C. Mathematica supports this style
of programming with looping commands such as Do, For, and While, and control structures such as
If and Which. In this section we’ll discuss the use of these commands.

The most simple looping command is Do. Its syntax is like that of Table; the first argument is an
expression, and additional arguments are iterators. The expression is evaluated once for each value
assumed by the iterated variable. For example:

In[1]:= myList ;

Do PrependTo myList, k , k, 10 ;

myList

Out[3]= 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Above we begin with an empty list myList, and then PrependTo (put at the beginning of) this list
each of the first ten whole numbers in turn, beginning with 1. While effective, this procedural code
is certainly not the easiest way to produce this list. Here’s another way:

In[4]:= Reverse Range 10

Out[4]= 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

As a second example, we use Do to write a procedural program for calculating the factorial of any
integer. Yes, there is a built-in command Factorial (!) that does this already; the point is simply to
illustrate how Do works. We begin by having Do calculate 4 factorial. First the dummy variable x is
set to 1. Then as k assumes the integer values 1 to 4 in turn, x is set to k times its current value. So
first x becomes 1 1 1, then 2 1 2, then 3 2 6, then 4 6 24.

In[5]:= x 1;
Do x k x, k, 4 ;

x

Out[7]= 24

414 Programming

We use this idea to create a command fac to calculate the factorial of any positive integer n. We use
SetDelayed (:=) for we do not want to evaluate the right side until fac is called.

In[8]:= fac n : x 1; Do x k x, k, n ; x

For example:

In[9]:= TabView Table ToString n " " fac n , n, 15 , 13

Out[9]=
6 227020800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In[10]:= Clear fac, x

Note that the first argument to Do can be a CompoundExpression (a sequence of commands
separated by semicolons). This allows you to Do more than one thing, or to organize your code into
simple steps. For instance, below we get serious and harness Do to implement the secant method for
approximating the root of an equation f x 0. You may recall that this method begins with two

points x0 and x1 near the root in question. One then builds a sequence of values x1, x2, x3,… that

(one hopes) will be successively better approximations to the actual root. The sequence is con-
structed recursively via the second-order difference equation

xn 1 xn
xn xn 1

f xn f xn 1
f xn .

Below we harness Do to carry out nine steps of this process on the cubic f x x3 2 x 2 (you can

check that f has only one real root), starting at x0 1 and x1 3 2. In this implementation we

use x0 and x1 to represent the current values of xn 1 and xn, respectively, in the equation above. We

use xtemp to temporarily hold the value of xn so that xn 1 may assume this value in the next

iteration. Note also that the iterator for Do in this case is the ultra-simple {9}, which simply means,
“do this nine times.”

In[11]:= f x : x3 2 x 2

In[12]:= x0 1;

x1 3 2;

Do xtemp x1;

x1 x1
x1 x0

f x1 f x0
f x1 ;

x0 xtemp;

Print N x1, 40 , 9

8.5 Control Structures and Looping 415

2.090909090909090909090909090909090909091

1.709454061251664447403462050599201065246

1.757205908865359830981764868540767091628

1.769832257373596686295309726912982898092

1.769287639221607075547801570536291382136

1.769292352411024860110478553708965415028

1.769292354238637603574664697348116397970

1.769292354238631415240401342331442514107

1.769292354238631415240409464335033492634

In this case we obtain 38 digit precision, for the actual real root (to forty digit precision) looks like
this:

In[15]:= N Reduce f x 0, x, Reals , 40

Out[15]= x 1.769292354238631415240409464335033492671

While Do is effective, the secant method and the Newton-Raphson method for approximating roots
can be implemented more efficiently using NestList. Implementations can be found in Section 8.7.

See page 437 for Newton-Raphson, and Exercise 5 on page 442 for the secant method.

Do can also accept more than one iterator. Below k assumes integer values from 0 to 3, while m
assumes the values a, b, and c.

In[16]:= myList ;

Do AppendTo myList, k m , k, 0, 3 , m, a, b, c ;

myList

Out[18]= a, b, c, 1 a, 1 b, 1 c, 2 a, 2 b, 2 c, 3 a, 3 b, 3 c

In[19]:= Clear myList

Predicates
Many control structures rely on conditions that are either true or false. If a condition is true, a
certain set of instructions are given, while if the condition is false, an alternate set of instructions are
given. In logic, a statement that is either true or false is called a predicate. In computer science, a
command that returns one of the values true or false is sometimes referred to as a query. Mathematica
has many predicate commands, which often end in the letter Q (for query). These commands return
either the symbol True or the symbol False.

416 Programming

In[20]:= PrimeQ 216 1

Out[20]= True

In[21]:= Table EvenQ n , n, 10

Out[21]= False, True, False, True, False, True, False, True, False, True

Another useful predicate command is FreeQ, which will return True if the expression appearing in
its first argument is completely free of the pattern or expression in its second argument. Note that
for atomic expressions (such as numbers), one can use their Head (e.g., Integer, Rational, Real,
Complex) for the second argument.

In[22]:= FreeQ 2, 3, 4 , Complex

Out[22]= True

In[23]:= FreeQ 2, 3, 4 2 , Complex

Out[23]= False

In[24]:= FreeQ Solve x3 34 x2 9 x 1 0, x , Complex

Out[24]= False

An equation can be a useful predicate.

In[25]:= 2 3

Out[25]= False

In[26]:= N 1.0

Out[26]= True

Note also that one can reverse the output of a predicate command by wrapping it in Not. The prefix
form of Not[expr] is !expr.

In[27]:= False

Out[27]= True

In[28]:= PrimeQ 8

Out[28]= True

In the case of equations, one may type != for Unequal, or use the button on the BasicMathInput
palette.

8.5 Control Structures and Looping 417

In[29]:= 2 3

Out[29]= True

Here’s an application that requires predicates: the Select command is used to select those items from
a list that satisfy a condition. More precisely, a predicate command is applied to each member of the
given list, and Select returns those items in the list for which the predicate is True. Here we Select
all integers from 1 to 30 that are prime:

In[30]:= Select Range 30 , PrimeQ

Out[30]= 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

It is common to use a Function to create a specialized predicate. Here we select those items in the
given list whose value is at least 4:

In[31]:= Select 1, 2, 3, 4, 5, 6 , 4 &

Out[31]= 4, 5, 6

Here are all integers from 1 to 1000 with more than 3 distinct prime factors:

In[32]:= Select Range 1000 , Length FactorInteger 3 &

Out[32]= 210, 330, 390, 420, 462, 510, 546, 570, 630, 660, 690,
714, 770, 780, 798, 840, 858, 870, 910, 924, 930, 966, 990

Select is useful for extracting numerical items from long lists. For instance, a few of the countries
listed in CountryData do not currently have oil consumption figures available.

In[33]:= CountryData "Andorra", "OilConsumption"

Out[33]= Missing NotAvailable

Recalling that CountryData[] returns a list of all countries in the data set, the input and output
below reveals that (at the time of this writing) there are 237 countries in the world, and there are
numerical oil consumption values known for 211 of these, while these data are missing for the re-
maining 26.

In[34]:= Length CountryData , Select CountryData ,

NumericQ CountryData , "OilConsumption" & , Select CountryData ,

CountryData , "OilConsumption" Missing "NotAvailable" &

Out[34]= 237, 211, 26

418 Programming

Control Structures: If, Which, Piecewise
The most basic control structure is the If command. Its usage is straightforward: it accepts three
arguments. The first is a predicate. The second is what is to be evaluated if the predicate is True, and
the third is what is to be evaluated if the predicate is False. Here, for example, we test a few nearby
numbers for primality, and display the results in a table:

In[36]:= Text Grid

Table k, If PrimeQ k , "prime", "composite" , k, 101, 117, 2 ,

Dividers Gray

Out[36]=

101 prime
103 prime
105 composite
107 prime
109 prime
111 composite
113 prime
115 composite
117 composite

Here’s an example in which we combine an If control structure with a Do loop to investigate a
conjecture made by Leibniz himself in the field of number theory. Leibniz observed that:

22 1 is divisible by 3,

24 1 is divisible by 5,

26 1 is divisible by 7,

28 1 is NOT divisible by 9,

210 1 is divisible by 11,

212 1 is divisible by 13,

214 1 is NOT divisible by 15,

216 1 is divisible by 17, and so on.

He conjectured that 2n 1 will be evenly divisible by n 1 if and only if n 1 is an odd prime. The
numbers on the right in these examples, after all, are primes precisely in those cases where

divisibility occurs. One can restate this conjecture as follows: 2n 1

n 1
 will be an integer precisely when

n 1 is an odd prime. Here we check it for the values of n up to 200. It would appear that Leibniz
was on to something!

8.5 Control Structures and Looping 419

In[37]:= Table If PrimeQ n 1 IntegerQ
2n 1

n 1
, True, False , n, 2, 200, 2

Out[37]= True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True, True

The predicate above (the first argument in the If command) in this case is an equation with one of
True or False appearing on each side. It will be True if and only if the two symbols agree. For
instance:

In[38]:= True True, True False, False True, False False

Out[38]= True, False, False, True

A quick way to make sure a long list (such as the Table above) contains only the symbol True is to
Apply the And command to it. And gives True only if each of its arguments is True. We see, for
instance, that Leibniz was correct up through n 338:

In[39]:= And Table If PrimeQ n 1 IntegerQ
2n 1

n 1
, True, False , n, 2, 338, 2

Out[39]= True

But, unfortunately, when n 340 the conjecture fails. And it fails for several larger values of n as
well. Here are the values of n 1 for which it fails up through 10000:

In[40]:= counterExamples ;

Do If PrimeQ n 1 IntegerQ
2n 1

n 1
,

AppendTo counterExamples, n 1 , n, 2, 10 000, 2 ;

counterExamples

Out[42]= 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821,
3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911

So the conjecture, despite its promising start, is most definitely false. How exactly does it fail? Either

341 is not prime while 2340 1

341
 is an integer, or 341 is prime while 234 1

341
 is not an integer. It turns out

to be the former:

420 Programming

In[43]:= PrimeQ 341

Out[43]= False

In[44]:= IntegerQ
2n 1

n 1
. n 340

Out[44]= True

All of our counterexamples fail this way:

In[45]:= PrimeQ counterExamples

Out[45]= False, False, False, False, False, False, False, False, False, False, False,

False, False, False, False, False, False, False, False, False, False, False

Does it never fail the other way round? That is, if p is an odd prime, must it be the case that 2p 1 1

p

is an integer? The answer is yes. This is a consequence of Fermat’s little theorem (which you can look
up online at MathWorld). So to his credit, Leibniz was half right. If he had a copy of Mathematica, he
certainly would have been able to see the folly of his original conjecture. Given that the first counter-

example occurs at n 340, and involves checking that 2340 1 is divisible by 341, it is understand-
able that he believed this conjecture. And given that you have access to Mathematica, it is a reason-
ably simple matter for you to make investigations of this nature to peer deeply into the world of
numbers.

Which is similar to If. The arguments come in pairs. The first argument in each pair is a predicate,
and the second is an expression to evaluate if that predicate is True. Which will return the output
associated with the first predicate that is True. For instance:

In[47]:= Text Grid Table n, Which n 1, "is a unit", PrimeQ n , "is a prime",

EvenQ n , "is an even composite", OddQ n , "is an odd composite" ,

n, 10 , Alignment Right, Left

Out[47]=

1 is a unit
2 is a prime
3 is a prime
4 is an even composite
5 is a prime
6 is an even composite
7 is a prime
8 is an even composite
9 is an odd composite
10 is an even composite

The number n 1 satisfies the first and last predicate, but it is the expression corresponding to the
first that is evaluated.

8.5 Control Structures and Looping 421

Similar to Which is the Piecewise command, introduced in Section 3.6. It has the advantage of
reading very nicely when its infix form is utilized. Type pw followed by one or more
(Mac OS) or (Windows), one for each additional line.

In[48]:= Text Grid Table n,

"is a unit" n 1

"is a prime" PrimeQ n

"is an even composite" EvenQ n

"is an odd composite" OddQ n

, n, 10 ,

Alignment Right, Left

Out[48]=

1 is a unit
2 is a prime
3 is a prime
4 is an even composite
5 is a prime
6 is an even composite
7 is a prime
8 is an even composite
9 is an odd composite
10 is an even composite

Looping with While and For
The most basic looping command is Do. The commands While and For also allow you to repeat a
procedure, but rather than using an iterator to control the body of the loop, a predicate is utilized
instead. Each of these procedural commands closely mirrors its counterpart in the C language.

The While command takes two arguments. The first is a predicate. The second is the body, which
will be evaluated repeatedly until the predicate returns False. Here we use a While loop to find the
first prime number greater than 1000. We Set a dummy variable k to be 1000, and then Increment k
(increase its value by 1) until it is a prime. The value of this prime (the current value of k) is then
returned.

In[49]:= k 1000;
While PrimeQ k , Increment k ;

k

Out[51]= 1009

Note that the Increment command has the alternate postfix syntax ++. That is, Increment[k] can
be typed as k++. Here, for instance, we use the same technique to find the first prime greater than
one million:

422 Programming

In[52]:= k 1 000000;
While PrimeQ k , k ;
k

Out[54]= 1 000003

The For command accepts four arguments (no pun intended), although three will suffice if the body
is empty. You can, for instance, use For to write a procedure like those above to find the first prime
number exceeding 1000: for k starting at 1000, and as long as k is not a prime, continue increment-
ing k by one. At this point, return the value of k. Here is how to implement this program:

In[55]:= For k 1000, PrimeQ k , k ; k

Out[55]= 1009

The general syntax takes the form For[start, test, increment, body]. Upon entry, start is evaluated, and
then the increment and body are evaluated repeatedly until the test returns False. In the example
below, we take a starting number and repeatedly divide it by 2 until the result is no longer an
integer. The body makes use of the Print command, which forces the value of k to be printed at
each step.

In[56]:= For k 1296, IntegerQ k , k k 2, Print k

1296

648

324

162

81

Exercises 8.5
1. Enter the input ?*Q to get a listing of all commands that end with a capital Q. Here you will find

many of the basic predicate commands that will output one of the symbols True or False.

2. The great French mathematician Pierre de Fermat (1601–1665) postulated that every number
exceeding by one the quantity two raised to a power of two must be a prime number. That is,

every number of the form 2 2n
1 is prime according to Fermat. It was about a century later that

he was proved wrong, by none other than Leonard Euler. Find the first counterexample to
Fermat’s famous conjecture.

3. The two most commonly used methods for incrementing a dummy variable are Increment
(postfix form ++), described in this section, and PreIncrement (prefix form ++). Enter the com-
mands j = 1; j++ and k = 1; ++k, and describe the difference.

8.5 Control Structures and Looping 423

4. Find the smallest positive integer n with the property that
0
21 20 1 n

xn x 1

10
.

5. Write a For loop to carry out the following procedure: Beginning with the number 1, keep
adding a random integer chosen between 1 and 100 to the current value until such time as the
result is a prime.

a. Write the loop so that all intermediate results are displayed.

b. Write the loop so that a list of all intermediate values, including the last, is displayed.

c. Write the loop so that only the number of iterations required is displayed.

d. Run the procedure from part c 1000 times (using Table), and Tally the results.

8.6 Scoping Constructs: With and Module
When writing a program it is common to make one or more intermediate assignments. See, for

instance, the example at the end of Section 8.4 on page 411, where we wrote a program to display a

3D graphic of a right cylinder whose base is a regular n-gon. In that example assignments were made
to the symbols n, pts, top, bottom, and sides. These assignments were only used to create the
image, and were not needed afterward. Another example appears below. It provides a means of
drawing a regular n-gon for any integer n 2.

In[1]:= n 10;

Graphics Line Table Cos t , Sin t , t, 0, 2 ,
2

n

Out[2]=

The only potentially bad consequence of this construction is that the symbol n has been Set to the
value 10. This has the potential to interfere with other evaluations involving this symbol that you
might try to make. For instance, if after entering the input above, you try to Solve an equation for n
you will run into trouble:

424 Programming

In[3]:= Solve 3 n 1 22, n

General::ivar : 10 is not a valid variable.

Out[3]= Solve False, 10

Essentially, you must be diligent in Clearing all such assignments before using these symbols in
another setting. A better practice is to make assignments locally. This is easily accomplished by
putting them inside of a scoping command, such as With or Module. Whatever is assigned in a
scoping command stays in the scoping command.

In[4]:= Clear n ;

With n 5 , Graphics Line Table Cos t , Sin t , t, 0, 2 ,
2

n

Out[5]=

In this case, n has not been assigned a value in the Global` context (where one typically works):

In[6]:= n

Out[6]= n

This means that the local assignment made to the symbol n will not interfere with subsequent
evaluations:

In[7]:= Solve 3 n 1 22, n

Out[7]= n 7

With accepts two arguments. Its first argument is a list of assignments. Its second argument is an
expression. The assignments given in the first argument only work in the expression appearing in
the second argument. Their scope is local; they do not persist afterward, nor do they affect any
previous assignments. The command name With suggests its use; you can read the input code like a
sentence that begins, “With n 10, do the following….” Here’s another example. Note how the

8.6 Scoping Constructs: With and Module 425

With statement does not affect the earlier assignment n = 3, and how this assignment does not affect
the n appearing within the With statement.

In[8]:= n 3;

With n 10 , n2

Out[9]= 100

In[10]:= n

Out[10]= 3

Another useful scoping construct, and indeed a more general one, is Module. It works much like
With, insulating any symbols you have already defined from its own local variables, and vice-versa.
The main difference between Module and With (from the user’s perspective) is that the local
variables in a Module do not need to be assigned in the first argument (although they do have to be
listed there). Delayed assignments (:=) may also be used in a Module, while only immediate assign-
ments (=) can be used in With. Here’s a simple example:

We’re going to draw a star shape. We’ll begin with a list of 2 n points equally spaced around the unit
circle. We then multiply every second point (as we move clockwise around the circle) by a scalar, to
move it farther from the origin along its radial axis. Finally, we connect the resulting list of points
with line segments. Let’s do this step by step with n 5:

In[11]:= n 5;

pts Table Sin t , Cos t , t, 0, 2 ,
2

2 n

Out[12]= 0, 1 ,
5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 , 0, 1 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 , 0, 1

Note how our list has 2 n 1 11 points, with the first equal to the last. To get a corresponding list
of scale factors for each of these points, we utilize the Riffle command to intersperse a scale-factor of
2.5 at every second position in a list of n 1 6 ones. The resulting list has length 2 n 1 to match
our list of points.

426 Programming

In[13]:= scaleList Riffle Table 1, n 1 , 2.5

Out[13]= 1, 2.5, 1, 2.5, 1, 2.5, 1, 2.5, 1, 2.5, 1

The final picture is obtained by multiplying the two lists (which multiplies their corresponding
members), and wrapping the resulting list of points in the Line command:

In[14]:= Graphics Line scaleList pts

Out[14]=

In[15]:= Clear n, pts, scaleList

Here is how we could organize the individual commands above into a coherent piece of code, all in
a single input cell, and in such a way that none of the local variables interferes with a global symbol
of the same name. Note that while n and scaleFactor are assigned in the first argument, the other
local variables pts and scaleList are listed but not assigned there. Rather, they are assigned in the
body of the Module. This body (the second argument to Module) is a CompoundExpression
(expressions separated by semicolons). The first two such expressions define the local variables pts
and scaleList, and the third creates the Graphics. Note also that the values assigned to pts and
scaleList depend on the values of n and scaleFactor. This would be impossible using With, where
all local variables must be assigned in the first argument, and independently of one another.

In[454]:= Module n 5, scaleFactor 2.5, pts, scaleList ,

pts Table Sin t , Cos t , t, 0, 2 ,
2

2 n
;

scaleList Riffle Table 1, n 1 , scaleFactor ;

Graphics Line scaleList pts

Finally, we can use this code to create a command for sketching stars, letting the user select values
for n and the scale factor.

8.6 Scoping Constructs: With and Module 427

In[16]:= star n , scaleFactor : Module pts, scaleList ,

pts Table Sin t , Cos t , t, 0, 2 ,
2

2 n
;

scaleList Riffle Table 1, n 1 , scaleFactor ;

Graphics Line scaleList pts

For instance:

In[17]:= GraphicsGrid Table star n, k , n, 5, 7 , k, 1, 4, .5

Out[17]=

Note that it is not necessary to use any local variables in the definition above, and hence not neces-
sary to use a Module at all. One could just do the following:

In[18]:= star n , scale :

Graphics

Line Riffle Table 1, n 1 , scale Table Sin t , Cos t , t, 0, 2 ,
2

2 n
This is essentially just the last line of code in the earlier Module, with local variables pts and scale
List replaced by their definitions. While more elegant in one sense, some would find the code here
more difficult to read. A Module allows you to break a complex set of instructions into smaller
pieces, with each one easy to read and understand. In more complex settings, a Module is actually a
more efficient way to code. For instance, if a single large Table appears more than once in a
program, it is generally more efficient to assign a local variable to represent it (so the Table is
evaluated only once), and then use that local variable every time the Table is needed.

This happens in the example provided below, where the local variable circlePts is used twice. This
example shows code to produce illustrations of a circular frustum (loosely speaking, a cone with its
tip cut off). The output is a Manipulate in which the user controls the top and bottom radii and the
height h between them. The code is based on the example given at the end of Section 8.4 on page

411. In this case the top and bottom circles are approximated by many-sided polygons. The number
of sides for these polygons is determined by the step size (.05) in the Table that defines circlePts.

428 Programming

In[19]:= Manipulate

Module circlePts, bottomPts, topPts ,

circlePts Table Cos t , Sin t , t, 0, 2 , .05 ;

bottomPts Map Append , h 2. &, r2 circlePts ;

topPts Map Append , h 2. &, r1 circlePts ;

Graphics3D EdgeForm , Polygon MapThread Join,

Partition bottomPts, 2, 1, 1 , Reverse Partition topPts, 2, 1, 1 ,

PlotRange 1, Boxed False, ImageSize 200 ,

PlotLabel Style "surface area \n r1 r2 h2 r1 r2
2 "

ToString PaddedForm r1 r2 h2 r1 r2 2 , 4, 2

,

r1, .6, "r1" , .01, 1, Appearance "Labeled" ,

r2, 1., "r2" , .01, 1, Appearance "Labeled" ,

h, 1. , 0, 2, Appearance "Labeled" , Alignment Center

Out[19]=

r1 0.6

r2 1.

h 1.

surface area

r1 r2 h2 r1 r2
2 5.41

8.6 Scoping Constructs: With and Module 429

Scoping and Dynamic Elements
Most of the dynamic interfaces and controls that we have seen, such as sliders and buttons, have
been generated by the Manipulate command. But, as you would expect, Manipulate makes calls to
a host of lower-level commands that do the real magic, and you have access to these commands as
well. The fundamental command at the heart of all such live interactive interfaces is Dynamic.
Wrap an expression in Dynamic and the front end will automatically update it whenever its value
changes. Below, for example, we make a Slider that ranges from 0 to 3, and that is used to control
the values assumed by the symbol x.

In[20]:= Slider Dynamic x , 0, 3 , Dynamic x

Out[20]= , 1.78

Note that moving the slider (we moved the one above to 1.78) will actually make an assignment to
the symbol x:

In[21]:= x

Out[21]= 1.78

The construction of dynamic interfaces with Mathematica, while remarkably simple compared with
most other programming languages, is a vast subject that falls beyond the scope of this book. The
tutorials in the Documentation Center titled “Introduction to Dynamic” and “Advanced Dynamic
Functionality” are excellent resources for those who wish to explore this arena. Our purpose here is
to introduce the DynamicModule command, and to understand its role in the context of the other
scoping commands. Like Module, any symbols declared in a DynamicModule will be insulated
from assignments made elsewhere. Below, for instance, we duplicate the input above within a
DynamicModule.

In[22]:= DynamicModule x 2.5 ,

Slider Dynamic x , 0, 3 , Dynamic x

Out[22]= , 2.5

The dynamic content is now completely insulated from the global variable x, whose value is still
1.78:

In[23]:= x

Out[23]= 1.78

430 Programming

Here’s a simple but more interesting example. Below we take a thick, orange PolarPlot whose
independent variable tops out at the dynamically controlled quantity u, and superimpose it with
the same (but thin) PolarPlot on the full domain 0 2 . A slider allows you to adjust u, so that
you can follow the parameterization from 0 to 2 .

In[24]:= DynamicModule u 4.5 ,

Column Slider Dynamic u , .01, 2 ,

Dynamic Show PolarPlot Cos 2 Cos 4 3 Sin 5 , , 0, 2 ,

PolarPlot Cos 2 Cos 4 3 Sin 5 , , 0, u ,

PlotStyle Directive Thick, Orange , Frame Gray

Out[24]=

2 2 4

4

2

2

4

This example illustrates once again the powerful implications of working in a functional program-
ming environment. The Dynamic command accepts general Mathematica expressions (such as the
Show expression above), and permits them to be dynamically updated.

The interface and input code above is nearly identical to what one could produce using Manipu
late. The real benefit of using dynamic programming constructions (instead of Manipulate) is the
precise control that is afforded regarding which quantities get dynamically updated and which do
not. This is controlled by careful placement of Dynamic elements. Above, both the static polar plot
and the dynamic orange plot are re-evaluated whenever the slider is moved. This is a consequence of
wrapping the entire Show expression in Dynamic. An alternate and slightly more sophisticated
input that produces the same output follows. In this case, the static plot is evaluated only once.
Only the thick orange plot is dynamically updated by the controller.

8.6 Scoping Constructs: With and Module 431

In[25]:= DynamicModule u 4.5, dynamicPlt ,

dynamicPlt Dynamic First PolarPlot Cos 2 Cos 4 3 Sin 5 ,

, 0, u , PlotStyle Directive Thick, Orange ;

Column Slider Dynamic u , .01, 2 ,

Show PolarPlot Cos 2 Cos 4 3 Sin 5 , , 0, 2 , Graphics dynamicPlt ,

Frame Gray

Out[25]=

2 2 4

4

2

2

4

In the input above we applied First to the thick, orange PolarPlot. This returns the first argument of
the Graphics generated by PolarPlot (essentially a Line object with dozens or hundreds of points).
Dynamic is applied to this quantity, and it is later displayed (by wrapping it in Graphics) together
with the static plot. The behavior of this output and the previous one are essentially the same, but
in principle this latter one is zippier and more responsive as the slider is moved, as fewer items need
to be dynamically updated. If you were to add a static but complicated ContourPlot to the Show
argument in each of the last two inputs, the relative zippiness provided by this latter approach
would be obvious.

A DynamicModule, unlike a Module, stores its information in the Front End. If you save a note-
book with the output cell above included and re-open it later, it will display properly and the slider
will still work, even if you do not re-evaluate the input. Moreover, you could copy the output above
and paste it in several different places. Each pasted copy would work independently of the others. In
essence, the DynamicModule can be thought of as providing insulation in such a way that it stakes
out specific real estate in a notebook in which the localizations take place.

432 Programming

Exercises 8.6

1. Here is one way to generate the nth partial sum 1 1

2

1

3

1

n
 of the harmonic series. Explain

how it works, and use it to calculate the 100th partial sum of the harmonic series. Compare the

output with that of the built-in command HarmonicNumber. See also Section 8.7 on page 439

for an alternate definition using Fold.

harmonicNumber n : Module s 0 , For i 1, i n, i , s s
1

i
; s

2. A local variable named x within a Module creates a symbol with a name such as x$30075, where
the stuff to the right of the local variable name is the current value of the system variable $Mod
uleNumber. This variable is incremented each time any Module is called. Create a Do loop that
will evaluate the expression Module[{x}, Print[x]] ten times.

3. In addition to With and Module, there is a third scoping command called Block, whose syntax
and purpose matches that of Module. Block uses a slightly different approach to insulate its local
variables. To illustrate how it works, suppose that you have entered x = 3 in a session, and then
create a Block with the local assignment x = 2. No new symbols will be created. Rather, when the
Block is evaluated the value of x will be temporarily cleared and the local assignment will be
utilized. After Block is finished the old value of x will be restored.

a. Enter the input below to see Block in action.

x 3; Block x 2 , Print x ; x

b. Enter the inputs below and explain the different outputs.

Clear x ; expr x 1

Block x 2 , x expr

Module x 2 , x expr

Clear expr

8.7 Iterations: Nest and Fold
Consider the following input:

In[1]:= Clear f, x ;
NestList f, x, 3

Out[2]= x, f x , f f x , f f f x

The command NestList is a fundamental tool for iterating a function. When one enters Nest
List[command, start, n], a list of length n 1 is created with start as the first entry. This is followed by
the result of applying command to start and then the result of applying command to this result, and

8.7 Iterations: Nest and Fold 433

so on, up through n applications of command. The command Nest is similar, and will output only
the last item in this list.

In[3]:= Nest f, x, 3

Out[3]= f f f x

Here’s a famous example of the type of problem that is especially amenable to computer exploration
using iterations. It is known as the reverse-add problem, or sometimes as the versum problem (this
being a derivative of “reverse sum”). Take a positive integer and add it to the integer obtained by
writing the original number backwards. For instance, if the original number is 29, one adds
29 92 121. The result in this case is a palindrome, a number that reads the same forward and
backward. If you start with 39 and carry out this procedure you get 39 93 132 which is not a
palindrome. However, apply the procedure to 132 and you get the palindrome 363. It was conjec-
tured long ago that no matter what the starting number a palindrome will eventually result when
this procedure is iterated.

Here is a means of using Mathematica to carry out the reverse-add procedure. Each step of the
procedure can be accomplished by extracting the digits of the input number (IntegerDigits), revers-
ing this list of digits (Reverse), then converting the reversed digit list back to a number (FromDigits)
and finally adding it to the original.

In[4]:= Clear step ;

step n : n FromDigits Reverse IntegerDigits n

For example:

In[6]:= 39, step 39 , step step 39

Out[6]= 39, 132, 363

In[7]:= NestList step, 39, 2

Out[7]= 39, 132, 363

To explore the conjecture (that every input will lead eventually to a palindrome), let’s make a
command that will identify palindromes. The command palStyle accepts an integer as input and
outputs that integer with a frame around it if it is a palindrome and in black otherwise.

In[8]:= palStyle n : If IntegerDigits n Reverse IntegerDigits n , Framed n , n

For example, starting with 79 we see three palindromes in the first 20 iterations:

434 Programming

In[9]:= palStyle NestList step, 79, 20

Out[9]= 79, 176, 847, 1595, 7546, 14003, 44044 , 88 088 , 176176, 847847,

1596595, 7 553546, 14 007103, 44 177144 , 88 354288, 176599676,

853595347, 1 597190705, 6668108656, 13236127322, 35608290553

For this particular application it would be nice to have a mechanism whereby the iterations would
stop as soon as a palindrome is produced, for it is simply not clear how many iterations may be
required. The command NestWhileList (or NestWhile if only the last item is to be output) is the
ticket. The syntax is like that of NestList, but instead of using a positive integer for the third argu-
ment to indicate the number of iterations, use a predicate instead. The iterations will continue as
long as the predicate returns True. Here, for instance, we set up a pure function for this purpose:

In[10]:= NestWhileList step, 79, IntegerDigits Reverse IntegerDigits &

Out[10]= 79, 176, 847, 1595, 7546, 14 003, 44044

And here we see the number of iterations required to reach a palindrome for each of the first 195
integers. That is, above each integer n on the horizontal axis we see a vertical bar indicating the
minimal number of iterations required to reach a palindrome. Integers n that are palindromes
appear directly on the horizontal axis:

In[11]:= ListPlot Table n,

Length NestWhileList step, n, IntegerDigits Reverse IntegerDigits &

1 , n, 195 , Filling Axis, PlotStyle PointSize .002 ,

PlotRange All, AspectRatio 1 3, AxesOrigin 0, 0

Out[11]=

We stopped at 195 here for a very good reason. The number 196 will not produce a palindrome even
after millions of iterations. For this reason it is strongly suspected that the original conjecture is false,
although at the time of this writing this has not been proved. In other words, no one really knows if
after enough iterations of this procedure starting at 196 a palindrome will be produced. All that is
known is that a palindrome will not be produced quickly. If you were to call our NestWhileList
input with 196 as the starting value, it would run (if you let it) for days, weeks, maybe years. Suffice
it to say that you might get bored waiting. For this reason it is possible to add an escape mechanism
to NestWhileList so that after a certain number of iterations it will stop, regardless of whether the
predicate is True or not. The following input accomplishes this. The fourth argument (1) indicates
that the predicate needs only one argument (the last result). The final argument (50) specifies the

8.7 Iterations: Nest and Fold 435

maximal number of iterations to allow. Here we see that there are no palindromes in the first 50
iterations when one starts with 196:

In[12]:= palStyle

NestWhileList step, 196, IntegerDigits Reverse IntegerDigits &, 1, 50

Out[12]= 196, 887, 1675, 7436, 13783, 52 514, 94 039, 187088, 1 067869, 10 755470, 18 211171,
35 322452, 60 744805, 111589511, 227574622, 454050344, 897100798,
1794102596, 8 746117567, 16 403234045, 70 446464506, 130992928913 ,

450822227944, 900544455998 , 1800098901007, 8801197801088,
17 602285712176, 84 724043932847, 159547977975595, 755127757721546 ,

1400255515443103 , 4413700670963144 , 8827391431036288 ,
17 653692772973576 , 85 191620502609247 , 159482241005228405 ,

664304741147513356 , 1317620482294916822 , 3603815405135183953 ,
7197630720180367016 , 13 305261530450734933 , 47 248966933966985264 ,
93 507933867933969538 , 177104867844767940077 , 947154635293536341848 ,

1795298270686072793597 , 9 749270977546801719568 ,
18 408442064004592449047 , 92 502871604050616929528 ,

175095833209091234750057 , 925153265399993573340628

Let’s apply this procedure to each of the first thousand numbers and make a list of the results:

In[13]:= data Table NestWhileList step, n,

IntegerDigits Reverse IntegerDigits &, 1, 50 , n, 1000 ;

For example:

In[14]:= palStyle data 485

Out[14]= 485, 1069, 10 670, 18271, 35 552, 61 105, 111221, 233332

Here is a ListPlot like that produced earlier, but with a Tooltip added which will display the coordi-
nates of a data point as you mouseover it.

In[15]:= ListPlot Tooltip First , Length 1 & data,

Filling Axis, PlotStyle PointSize .002 ,

AspectRatio 1 3, PlotRange All, AxesOrigin 0, 0

Out[15]=

Below are all numbers between 1 and 1000 that, like 196, do not produce a palindrome after 50

436 Programming

iterations. In fact, even with many more iterations none of these numbers have ever produced a
palindrome. See Exercise 2.

In[16]:= First Select data, Length 51 &

Out[16]= 196, 295, 394, 493, 592, 689, 691, 788, 790, 879, 887, 978, 986

In[17]:= Clear data

For a second example of programming iteratively, consider the Newton-Raphson method for approxi-
mating a root of an equation f x 0, where f is a differentiable function. The technique, you may

recall, entails making an initial guess x0 for the root, and then calculating a sequence of (what we

hope will be) successively better approximations x1, x2, x3, … via the iterative formula

xn 1 xn
f xn

f ' xn

Here is a command newtonStep that can be iterated with NestList. In order that it may be iterated,
it needs to accept a single numerical input. But we would also like to be able to specify the function f

whose root we wish to approximate. We accommodate both of these demands by using the syntax
below:

In[18]:= Clear newtonStep, f, x ;

newtonStep f Function x, Simplify x
f x

f ' x
;

We can now specify a function f explicitly like this:

In[20]:= f x : 2 x2;

newtonStep f x

Out[21]=
1

x

x

2

Or as a pure function, like this:

In[22]:= newtonStep 2 2 & x

Out[22]=
1

x

x

2

Either way, we know that the function f x 2 x2 has a positive root at x 2 . Here we use the

Newton-Raphson technique to approximate this root, using the initial value of N[1,40]:

8.7 Iterations: Nest and Fold 437

In[23]:= NestList newtonStep f , N 1, 40 , 8 Column

Out[23]=

1.000000000000000000000000000000000000000

1.500000000000000000000000000000000000000

1.416666666666666666666666666666666666667

1.41421568627450980392156862745098039216

1.41421356237468991062629557889013491012

1.41421356237309504880168962350253024361

1.41421356237309504880168872420969807857

1.4142135623730950488016887242096980786

1.4142135623730950488016887242096980786

We see that seven iterations are sufficient to give 38 digit accuracy in this case (since the last two
rows—the seventh and eight iterates—agree at every digit, and since two digits of precision were lost
during the iteration process). This agrees with our knowledge of the root:

In[24]:= N 2 , 38

Out[24]= 1.4142135623730950488016887242096980786

It may be worth recalling that the built-in command FindRoot is designed to be used in cases such
as this, where a good approximation to the root of a function is desired. Programming the Newton-
Raphson method is intended to shed light on the behavior of this algorithm. We don’t mean to
imply that it is the best and only tool for this purpose.

In[25]:= FindRoot 2 x2 0, x, 1 , WorkingPrecision 40

Out[25]= x 1.414213562373095048801688724209698078570

There are several other iteration commands available beyond Nest and NestList. One of the most
useful is FixedPointList. This is a special case of NestWhileList that halts when the outputs become
indisinguishable from one another. That is, it provides a simpler means of doing what the NestWhile
List input below does:

In[26]:= NestWhileList newtonStep f , N 1, 40 , UnsameQ, 2 Column

Out[26]=

1.000000000000000000000000000000000000000

1.500000000000000000000000000000000000000

1.416666666666666666666666666666666666667

1.41421568627450980392156862745098039216

1.41421356237468991062629557889013491012

1.41421356237309504880168962350253024361

1.41421356237309504880168872420969807857

1.4142135623730950488016887242096980786

438 Programming

In[27]:= FixedPointList newtonStep f , N 1, 40 Column

Out[27]=

1.000000000000000000000000000000000000000

1.500000000000000000000000000000000000000

1.416666666666666666666666666666666666667

1.41421568627450980392156862745098039216

1.41421356237468991062629557889013491012

1.41421356237309504880168962350253024361

1.41421356237309504880168872420969807857

1.4142135623730950488016887242096980786

And, as you would expect, there is a FixedPoint command that simply returns the final value:

In[28]:= FixedPoint newtonStep f , N 1, 40

Out[28]= 1.4142135623730950488016887242096980786

Here we use Newton’s method to give an approximation of 4 (i.e., as a root of f x sin x cos x).

In[29]:= FixedPoint newtonStep Sin Cos & , N 1, 40

Out[29]= 0.78539816339744830961566084581987572105

In[30]:= N 4, 38

Out[30]= 0.78539816339744830961566084581987572105

Note that FixedPoint and FixedPointList can accept a third argument, which specifies the maximal
number of iterations. This is useful when it is not clear in advance that the iteration will converge.

The commands Fold and FoldList are used to iterate a function of two variables over its first vari-
able, while the second variable assumes successive values in a given list. That sounds worse than it
is. The input below illustrates the idea. The first argument is the function to be iterated, the second
argument is the starting value for this function’s first variable, and the third argument is the list of
values for the function’s second variable. The length of this list controls the number of iterations to
perform:

In[31]:= Clear f, a ;

FoldList f, a, 1, 2, 3

Out[32]= a, f a, 1 , f f a, 1 , 2 , f f f a, 1 , 2 , 3

In[33]:= Fold f, a, 1, 2, 3

Out[33]= f f f a, 1 , 2 , 3

Here is how to use FoldList to create a list whose nth member is the nth partial sum

1 1

2

1

3

1

n
 of the harmonic series:

8.7 Iterations: Nest and Fold 439

In[34]:= FoldList 1
1

2
&, 1, Range 2, 10

Out[34]= 1,
3

2
,

11

6
,

25

12
,

137

60
,

49

20
,

363

140
,

761

280
,

7129

2520
,

7381

2520

Notice that changing the initial value from 1 to 1. causes numerical approximations to be used
throughout. This increases the speed of computation and produces results sufficient for plotting:

In[35]:= FoldList 1
1

2
&, 1., Range 2, 10

Out[35]= 1., 1.5, 1.83333, 2.08333, 2.28333, 2.45, 2.59286, 2.71786, 2.82897, 2.92897

In[36]:= ListPlot FoldList 1
1

2
&, 1., Range 2, 200

Out[36]=

50 100 150 200

2

3

4

5

6

An even simpler means of calculating partial sums is via the Accumulate command. Given a finite
list {a, b, c,…}, Accumulate will return a list of the partial sums: {a, a+b, a+b+c,…}.

In[37]:= Accumulate Table 1 n, n, 10

Out[37]= 1,
3

2
,

11

6
,

25

12
,

137

60
,

49

20
,

363

140
,

761

280
,

7129

2520
,

7381

2520

Another useful iteration command is Differences, which will return the differences between succes-
sive members in a list.

In[38]:= Differences 1, 4, 9, 16

Out[38]= 3, 5, 7

Whereas one could use Nest to iterate this command, it will accept a second argument (specifying
the number of iterations desired) to save you the trouble:

440 Programming

In[39]:= Differences Range 10 2

Out[39]= 3, 5, 7, 9, 11, 13, 15, 17, 19

In[40]:= Differences Range 10 2, 2

Out[40]= 2, 2, 2, 2, 2, 2, 2, 2

In[41]:= Differences Range 10 2, 3

Out[41]= 0, 0, 0, 0, 0, 0, 0

The input below shows a means of displaying successive differences for the first ten terms in the
harmonic sequence, where each row after the first represents the differences for the row above. The
display is a Column with each row aligned at its center. Individual rows are Grids (each with only
one row), where the ItemSize option is utilized to guarantee a fixed width for each item. It is this
fixed width that is needed to produce an easy-to-read display. Exercise 10 in Section 8.8 will have
you build a command to automate this procedure for any initial list.

In[43]:= Column Table Grid Differences Table 1 n, n, 10 , k , ItemSize 3.25 , k, 0, 9 ,

Alignment Center

Out[43]=

1 1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

2

1

6

1

12

1

20

1

30

1

42

1

56

1

72

1

90

1

3

1

12

1

30

1

60

1

105

1

168

1

252

1

360

1

4

1

20

1

60

1

140

1

280

1

504

1

840

1

5

1

30

1

105

1

280

1

630

1

1260

1

6

1

42

1

168

1

504

1

1260

1

7

1

56

1

252

1

840

1

8

1

72

1

360

1

9

1

90

1

10

Exercises 8.7
1. If one were to set f = Function[x, 2x], then the input Nest[f, x, 4] would produce the output 16x.

Give the definition of a Function called f so that Nest[f, x, 4] produces the outputs below. Be sure
to check your answers.

a. 10000 x

8.7 Iterations: Nest and Fold 441

b. x16

c. 1 1 1 1 x

d. 1

1
1

1
1

1
1

1 x

2. When the reverse-add procedure is applied to some numbers, a palindrome is not produced even
after millions of iterations. It is suspected (although it has not yet been proved) that a palin-
drome will never result with these numbers. The numbers in this class are known as the Lychrel
numbers (do an internet search for A023108 and follow the link to the Online Encyclopedia of
Integer Sequences for more information). Carry out an investigation of the orbit of the number
196 under ten thousand iterations of the reverse-add procedure, and confirm that no palindrome
is produced.

3. When an iteration scheme has a fixed point, it is often a matter of interest to understand how
quickly the fixed point is approached. Does it take many iterations to get (for instance) 100 digits
of precision, or just a few? A very simple means for garnering a qualitative assessment of the rate
of convergence for an iterative sequence of real numbers can be had as follows: Make an Array
Plot where each row represents an iterate, and where each digit is represented by a different
tonal value. When a particular decimal position stabilizes to its final value, the column in the
array representing that position will be monotone from that point on down. This concept is
illustrated below:

a. Use NestList to iterate the function f x 1

x

x

2
 ten times, with a starting value of N[1,20].

b. Map the function First[RealDigits[#]]& over the output above to convert each number into a
list of its digits.

c. Wrap the output above with ArrayPlot to produce a visual representation.

d. Repeat parts a through c in a single input, but where the initial value is N[1,100].

e. Repeat part d, where the function to be iterated is f x 1

x

x

3
, and where there are 200 (as

opposed to 10) iterations in total. Contrast the results to those of part d.

4. Add the option setting ColorFunction "Rainbow" to your favorite ArrayPlot and see what
happens.

5. The secant method for finding a real root of an equation f x 0 was discussed in Section 8.5 on

page 415, where it was implemented via a Do loop. If you go online and visit MathWorld

(www.mathworld.com) and lookup “secant method,” you will find the Mathematica code shown
below for implementing the secant method using NestList. Explain how the code works, and run

nine iterations on the function f x x3 2 x 2 with starting values x0 1 and x1 3 2. Does

it give the same result as the implementation using Do? (We did exactly this example on page

415.)

442 Programming

In[43]:= secantMethodList f , x , x0 , x1 , n :
NestList Last 0, Function x, f Last Subtract

Subtract Function x, f &, x0, x1 , n

6. When a function f is iterated and converges to a fixed point x , it must be the case that f x x

(why?). Geometrically, this means that the point x , x is the intersection of the graphs of
y f x and y x. One often illustrates the convergence of the iteration from a particular starting

value x0 by making a cobweb diagram. This is comprised of the graphs of y f x and y x,

together with line segments joining the points x0, x0 , x0, f x0 , f x0 , f x0 , f x0 , f f x0 ,

and so on, with alternating vertical and horizontal segments heading ever deeper into the
iteration scheme. An illustration is provided below for the function f x 2.9 x 1 x and starting

point x0 0.5. Program Mathematica to produce such a diagram.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

7. Make a Manipulate showing cobweb diagrams (like that of the previous exercise) for the family
of functions f x a x 1 x , with a slider for a ranging from 2.5 to 3.7, and a second slider for

the starting point x0 ranging from 0.1 to 0.9.

8. The command ContinuedFraction will accept a real number as input and will output a list of
integers that specifies the simple continued fraction form of the input (provided a finite or repeat-
ing continued fraction exists). The output {1,2,3}, for example, represents the continued fraction

1 1

2
1

3

.

a. Enter ContinuedFraction[10/7], and check that 10

7
1 1

2
1

3

.

b. Use Fold and Defer to write a command named displayCF that will accept a (finite) digit list
as input and will display the simple continued fraction corresponding to that digit list. For

instance, displayCF[{1,2,3}] should return 1 1

2
1

3

. Moreover (by using Defer), you will be able

to click on and then enter the output to evaluate it.

c. Use displayCF to display a continued fraction that approximates to within 10 20. You can

use ContinuedFraction Rationalize , 10 20 , for instance, to find a continued fraction

sequence for a rational number close to .

8.7 Iterations: Nest and Fold 443

9. Use Accumulate to find the first ten partial sums of the series 1 1

4

1

9

1

16

1

25
. Euler

showed this series converges to
2

6
 in 1735, solving a decades old problem (known as the Basel

problem) and securing fame for himself in the process. Make a ListPlot of the first thousand

partial sums together with a horizontal line at height
2

6
. Comment on the rate of convergence.

8.8 Patterns
For those who wish to program with Mathematica, patterns are often the most inaccessible aspect of
the language. They are the last frontier to be conquered. For those who “get it” on the other hand,
patterns are most definitely a source of power. With an understanding of the fundamentals of
patterns, there is the possibility of developing toward power-user status. Without such an
understanding, there is little hope.

The first thing to recognize is that you have been using patterns for quite a while. The most typical
instance is in a function definition that includes an underscore (_) on the left hand side, like the first
input shown below. While the subject of patterns is far too vast to adequately cover here, our hope
is to be able to convey enough basic knowledge and some illustrative examples so that you will be
able to recognize the power of patterns and replacement rules as you go about your work.

A pattern is a structure that can be used to represent an entire class of expressions. Mathematica has
extensive tools for building sophisticated patterns, for detecting when a particular expression
matches a given pattern, and for making replacements according to criteria given as patterns. We
have already used the most basic type of pattern when defining functions. The x_ on the left side of
the definition below, for example, is a pattern.

In[1]:= Clear f, g, u ;

f x : x 1

Here is the FullForm of this definition:

In[3]:= Defer FullForm f x : x 1

Out[3]= SetDelayed f Pattern x, Blank , Plus x, 1

The pattern itself, x_, is show below:

In[4]:= FullForm x

Out[4]//FullForm=

Pattern x, Blank

We already have a pretty clear sense that this means x is the independent variable. If the function f
above is called with a numerical argument, say for instance that the user enters f[2], then the
expression on the right side of the definition will be evaluated with 2 replacing the x and the result

444 Programming

is 3. In the broader context of Mathematica itself, the pattern x_ can represent any structurally valid
expression (either an atom or a nested expression, as discussed in Section 8.2). For instance:

In[5]:= f g u

Out[5]= 1 g u

One important use of patterns is to restrict the class of expressions that will match the left side of a
definition. If, for instance, one wanted to define a function f that would only work with numeric
arguments, this structure would do the trick:

In[6]:= Clear f ;
f x ?NumericQ : x 1

In[8]:= f 24

Out[8]= 25

Non-numeric input does not match the pattern x_?NumericQ, and so the definition given above is
not applied; rather the expression is returned unevaluated:

In[9]:= f g u

Out[9]= f g u

There is much to say here. First note the structure of the pattern. The name of the pattern (we used
x) can be, of course, whatever you like. It is simply the name used to refer to the pattern on the
right side of the definition. The underscore is essential; we’ll discuss this soon. The ? can be followed
by any predicate command. An expression matches the pattern if and only if the predicate returns
True for that expression. A handy way to explore this idea is with the command MatchQ. The first
argument is an expression and the second is a pattern.

In[10]:= MatchQ g u , x ?NumericQ

Out[10]= False

In[11]:= MatchQ 24, x ?NumericQ

Out[11]= True

For the purpose of matching the name x is not even necessary. The underscore (Blank[]) suffices:

In[12]:= MatchQ 24, ?NumericQ

Out[12]= True

Next, note that the same symbol f may be given a different definition for a different form of input.
Recall that the function f was defined above for numeric input x as x 1. We can add another
definition for an input that is a string; f will then return an output corresponding to either type of
input.

8.8 Patterns 445

In[13]:= f x ?StringQ : "YOUR INPUT WAS: " x

In[14]:= f "blah blah blah"

Out[14]= YOUR INPUT WAS: blah blah blah

In[15]:= f 3

Out[15]= 4

In[16]:= f apple

Out[16]= f apple

Since apple is neither a string nor numeric (its head is Symbol), f returns unevaluated.

This notion of multiple definitions, one for each of several forms of input, can be useful. For exam-
ple, consider the famous Collatz conjecture (for Lothar Collatz, who proposed it in 1937): start with a
positive integer n. If n is even, return n 2. If n is odd, return 3 n 1. Iterate this process while the
result is not 1. The conjecture states that regardless of the starting number, the process will eventu-
ally lead to the number 1. The conjecture has been tested extensively, and while it appears to be
true, it has not been proven. But programming the function to be iterated is a snap:

In[17]:= Clear f ;

f n ?EvenQ : n 2;
f n ?OddQ : 3 n 1

Here, for example, is the orbit of the starting number 342. It takes a while, but it eventually gets to
1. See Exercise 5 to further explore this conjecture.

In[20]:= NestWhileList f, 342, 1 &

Out[20]= 342, 171, 514, 257, 772, 386, 193, 580, 290, 145, 436, 218, 109, 328, 164, 82,
41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182,

91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790,
395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132,

566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,
1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077,
9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244,

122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

446 Programming

Now the function f above could also effectively be defined as a Piecewise function. Patterns in this
case provide an alternate approach. There are other cases where patterns provide a uniquely elegant
means of identifying a pertinent class of expression. In order to see such examples it is necessary to
broaden our knowledge of pattern structures. The next fundamental pattern structure we introduce
is a _ (Blank[]) followed immediately by a symbol, typically a command name. Any expression
having that symbol as its Head will match this pattern. It is the internal FullForm of the expression
(discussed in Section 8.2) that determines a match.

In[21]:= MatchQ 1, 2, 3 , List

Out[21]= True

In[22]:= MatchQ 1, 2, 3 , Times

Out[22]= False

If a particular expression (such as {1,2,3} below) matches two patterns, the more specific will gener-
ally be used first:

In[23]:= Clear f ;

f x List : Apply Times, x ;

f x : x

In[26]:= f 1, 2, 3

Out[26]= 6

In[27]:= f g u

Out[27]= g u

Note that the evaluation sequence is important. Structurally, the input 232 is represented as
Power[23, 2] before evaluation. Its head is Power. After evaluation it becomes 529, and its head is
Integer. Expressions will be evaluated before being matched to a pattern.

In[28]:= Defer FullForm 232

Out[28]= Power 23, 2

In[29]:= MatchQ , Integer & 23, 232,
0

1

2 t t,
0

1

t t

Out[29]= True, True, True, False

One may combine the two pattern structures discussed above. Suppose, for instance, you wish to
create a function which will only accept a positive integer as its argument. This can be accomplished
with the pattern _Integer?Positive. It will only match an expression that evaluates to an Integer,
and which returns True when the predicate command Positive is applied.

8.8 Patterns 447

In[30]:= MatchQ , Integer?Positive & 23, 23, 23.

Out[30]= True, False, False

In[31]:= Clear f ;

f x Integer ?Positive : 3 x 1

In[33]:= f 23, 23, 23.

Out[33]= 70, f 23 , f 23.

In case you were wondering, yes, this could also be accomplished via the slightly more cumbersome
pattern _?(Positive[#]&&IntegerQ[#]&).

In[34]:= MatchQ , ? Positive && IntegerQ & & 23, 23, 23.

Out[34]= True, False, False

Now let’s consider those pesky underscores. While a single underscore _ (Blank[]) will match any
expression, a double underscore __ (two underscores back-to-back, full name BlankSequence[]) is an
object that will match any sequence of one or more expressions (i.e., expressions separated by com-
mas). Just as with the single underscore, it can be preceded by a name (e.g., x__) and it can be
followed by either a question mark and predicate, or by a command name. For instance, consider
the following definition. The pattern x__Integer will be matched by a sequence of one or more
integers. Every argument in the sequence must be an integer in order for there to be a match. The
name x refers to the entire sequence.

In[35]:= Clear f, a ;

f x Integer : Times x

In[37]:= f 1, 2, 3

Out[37]= 6

In[38]:= f 3

Out[38]= 3

In[39]:= f 1, 2, a

Out[39]= f 1, 2, a

Using the double underscore, you can easily create a command that is based on a built-in command.
For instance, below we create a command f that simply invokes ParametricPlot3D with the same
arguments. It produces two versions of the same image. The pattern args__ represents the entire
sequence of arguments.

448 Programming

In[40]:= Clear f, t ;

f args : GraphicsRow ParametricPlot3D args ,

ParametricPlot3D args, PlotStyle Dotted , ImageSize 280

In[42]:= f Sin t Cos 50 t , Sin t Sin 50 t , t , t, 0, ,
BoxRatios 1, Boxed False, Axes False

Out[42]=

Finally, there is the triple underscore ___ (BlankNullSequence[]), which will match any sequence of
zero or more expressions. This is especially useful for adding optional arguments to a user-defined
command. For example, the command myPlot will call the Plot command with some specific
option settings, including a PlotLabel and AxesLabel that are based on the values of the requisite
arguments. In the definition below, f and iter represent the requisite arguments for the Plot com-
mand, while opts represents any additional option settings the user wishes to add. Since such
settings have the head Rule, we demand this via the pattern opts___Rule. The triple underscore is
appropriate here since myPlot might be called without any options.

In[43]:= Clear myPlot ;

myPlot f , iter List, opts Rule : Plot f, iter, opts, PlotStyle Thick,

PlotLabel "y " ToString TraditionalForm f , AxesLabel iter 1 , "y"

In[45]:= myPlot 1 x2, x, 1, 1

Out[45]=

1.0 0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

y

y 1 x2

8.8 Patterns 449

Note that the PlotLabel and AxesLabels are based on the values provided to the myPlot command’s
requisite arguments (in the example below, for instance, the variable t is used instead of x). Note
also that because opts appears on the right side of the myPlot definition before the specific option
settings (e.g., PlotStyle Thick), any user-supplied option settings will override these defaults. For
instance, here a different PlotStyle is specified:

In[46]:= myPlot t, t, 0, 3 , PlotStyle Dashed

Out[46]=

0.5 1.0 1.5 2.0 2.5 3.0
t

5

10

15

20

y

y t

The three types of underscores can also be used in a StringExpression (~~). The inputs below
demonstrate their use in this setting. Given several strings, StringExpression will concatenate them
into a single string, as in the PlotLabel setting for myPlot above. Below the command Dictionary
Lookup is used to scour the dictionary for words that begin with “angle.” In the first case it finds all
such words that have a single additional character (there are three). In the second case it finds all
such words with one or more additional letters (there are seven, including the three from the first
output). In the last it finds all such words with zero or more additional letters. The output is the
same as the second case with one exception: the word “angle” itself is also present.

In[47]:= DictionaryLookup "angle"

Out[47]= angled, angler, angles

In[48]:= DictionaryLookup "angle"

Out[48]= angled, anglepoise, angler, anglers, angles, angleworm, angleworms

In[49]:= DictionaryLookup "angle"

Out[49]= angle, angled, anglepoise, angler, anglers, angles, angleworm, angleworms

So far we have discussed the three types of underscores, that it is permissible to name a pattern by
preceding any type of underscore with a symbol (e.g., x_), and that it is possible to restrict the type
of expression that will match a pattern in one of two ways: by following the underscore with either
a command name (such as x_Integer), or with a question mark followed by a predicate command
(such as x_?NonNegative). When defining your own commands this knowledge will get you a long
way, as patterns like these are very common on the left side of definitions. But patterns have many
other uses, and there are countless cases where more sophisticated pattern objects are needed. The
next order of business will be to explain how such objects are constructed.

450 Programming

We will do this by introducing the Cases command. Like Select, this command is used to extract
items from a list. Unlike Select (which applies a predicate command to the list items and returns
those for which the predicate is True), Cases returns those items from the list that match a pattern.
For instance:

In[50]:= Cases 0, 2, 2, 4, 4, 6, 6 , ?NonNegative

Out[50]= 0, 2, 4, 6

For the most basic use of Cases, the first argument is the list, and the second is a pattern object. It is
the multitude of possible variations for this second argument we wish to address. Here are some
illustrative examples:

In[51]:= Clear x, g, a, b, c ;

Cases x . NSolve 3 x4 x3 5 x2 7 x 1, x , Real

Out[52]= 0.758966, 0.162674

In[53]:= Cases NSolve 3 x4 x3 5 x2 7 x 1, x , x Real

Out[53]= x 0.758966 , x 0.162674

In[54]:= Cases 1, a, a2, a3, a , a4 , Power a,

Out[54]= a2, a3, a , a4

In[55]:= Cases 1, a, a2, a3, a , a4 , a ? 3&

Out[55]= a , a4

In[56]:= Cases 1, a, a2, a3, a , a4 , a Integer

Out[56]= a2, a3, a4

In[57]:= Cases g 1 , g a , g a, b , g a, b, c , g

Out[57]= g 1 , g a

In[58]:= Cases g 1 , g a , g a, b , g a, b, c , g Symbol

Out[58]= g a

In[59]:= Cases g 1 , g a , g a, b , g a, b, c , g Symbol

Out[59]= g a , g a, b , g a, b, c

In[60]:= Cases g 1 , g a , g a, b , g a, b, c , g , b,

Out[60]= g a, b , g a, b, c

8.8 Patterns 451

The point here is that a pattern object can be any ordinary expression, but typically it will contain
one or more of the various underscores.

Pattern objects can also make use of a number of special commands. For instance, Except[pattern] is
a pattern object that will match any expression except those that match pattern. It is useful in cases
when it is more convenient to say what something isn’t rather than what it is. The input below is a
simplified example of a list where some members have the form Missing["Not Available"]. For
instance, many of the curated data commands such as CountryData will use this symbol when
there is missing data. Cases and Except can be used to extract those data values that are not missing.

In[61]:= Cases 1, 2, Missing "Not Available" , Except Missing

Out[61]= 1, 2

The Repeated (..) command is useful for matching repeating sequences of objects. In the first input
below we find all cases of a list comprised of the same expression a repeated multiple times. In the
next input we find all cases of a list comprised only of integers.

In[62]:= Cases .12, 2, 3 , 2, 2, 2 , 3, 2, 3 , a ..

Out[62]= 2, 2, 2

In[63]:= Cases .12, 2, 3 , 2, 2, 2 , 3, 2, 3 , Integer ..

Out[63]= 2, 2, 2 , 3, 2, 3

Other such pattern commands include Longest, Shortest, Condition, and PatternSequence.

Most of the pattern objects used in the Cases examples above were not named. Another setting that
often makes use of pattern objects is that of making replacements, and this enterprise generally
requires that patterns be named. Here are two simple examples. In the first, no patterns are used. In
the second, a simple named pattern is used to make the replacements:

In[64]:= 1 x x2 x3 . x x2

Out[64]= 1 x2 x4 x6

In[65]:= 1 x x2 x3 . a Integer a 1

Out[65]= 2 x x3 x4

In the second example every integer in the expression is increased by 1. It is important to make clear

that the x in the expression does not get transformed to x2 under this replacement (even though x is
mathematically equivalent to x1). Rather, patterns are matched to the underlying FullForm of the
expression in question.

Now imagine that in the last example you wish to increase by 1 only the exponents (not the 1 at the
far left). The pattern object Power[x, n_] will match the exponents, or equivalently xn . Note that
you need to name the pattern (in this case n) in order to refer to it on the right side of the rule.

452 Programming

In[66]:= 1 x x2 x3 . xn xn 1

Out[66]= 1 x x3 x4

If you want to increase the exponents on all of the x’s, the simplest means of doing so is with
the pattern object Power[x, n_.]. Note the dot (a simple period) after the underscore. The n_.
represents an optional argument to a function, and it will assume a default value if it is
omitted. For the Power command, the default value is 1. In other words, MatchQ[x, Power[x,
n_.]] will return True. So the rule Power[x, n_.] Power[x, n+1] will do the trick.

In the example below, a simple replacement rule is used to turn an integer into a row of a table:

In[67]:= Grid Range 10 . n Integer Defer n , " ", n , Alignment Right

TraditionalForm

Out[67]//TraditionalForm=

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3 628800

Here’s yet another example of named patterns being used in the context of making replacements.
We begin with a table, where on any row you will find two mathematically equivalent trigonometric
expressions.

In[68]:= Clear a, k, n ;

Grid

Table Cos k a , TrigExpand Cos k a , k, 2, 9 ,

Alignment Left, Dividers Gray

TraditionalForm

8.8 Patterns 453

Out[69]//TraditionalForm=

cos 2 a cos2 a sin2 a

cos 3 a cos3 a 3 cos a sin2 a

cos 4 a cos4 a 6 sin2 a cos2 a sin4 a

cos 5 a cos5 a 10 sin2 a cos3 a 5 sin4 a cos a

cos 6 a cos6 a 15 sin2 a cos4 a 15 sin4 a cos2 a sin6 a

cos 7 a cos7 a 21 sin2 a cos5 a 35 sin4 a cos3 a 7 sin6 a cos a

cos 8 a cos8 a 28 sin2 a cos6 a 70 sin4 a cos4 a 28 sin6 a cos2 a sin8 a

cos 9 a cos9 a 36 sin2 a cos7 a

126 sin4 a cos5 a 84 sin6 a cos3 a 9 sin8 a cos a

Looking carefully at the expanded expressions in the right column, we observe that the sine func-
tion only occurs with an even exponent. This means we can easily eliminate all sine functions from

the expressions on the right: use the fact that sin2 a 1 cos2 a . Or raising each side of this

identity to an arbitrary integer power n, we have sin2 n a 1 cos2 a
n
. Here is how one could

make such a replacement:

In[70]:= TrigExpand Cos 7 a . Sin a n ?EvenQ 1 Cos a 2 n 2

Out[70]= Cos a 7 21 Cos a 5 1 Cos a 2 35 Cos a 3 1 Cos a 2 2
7 Cos a 1 Cos a 2 3

Finally, we Expand this to get a nice expression for cos 7 a as a polynomial in cos a :

In[71]:= Expand

Out[71]= 7 Cos a 56 Cos a 3 112 Cos a 5 64 Cos a 7

Here is the table that results from this procedure:

In[72]:= Grid

Table Cos k a ,

TrigExpand Cos k a . Sin a n ?EvenQ 1 Cos a 2 n 2
Expand , k, 2, 9 ,

Alignment Left, Dividers Gray

TraditionalForm

454 Programming

Out[72]//TraditionalForm=

cos 2 a 2 cos2 a 1

cos 3 a 4 cos3 a 3 cos a

cos 4 a 8 cos4 a 8 cos2 a 1

cos 5 a 16 cos5 a 20 cos3 a 5 cos a

cos 6 a 32 cos6 a 48 cos4 a 18 cos2 a 1

cos 7 a 64 cos7 a 112 cos5 a 56 cos3 a 7 cos a

cos 8 a 128 cos8 a 256 cos6 a 160 cos4 a 32 cos2 a 1

cos 9 a 256 cos9 a 576 cos7 a 432 cos5 a 120 cos3 a 9 cos a

Exercise 6 asks you to use this table to prove that cos 21 is a root of the polynomial

f x 1 16 x 32 x2 48 x3 96 x4 32 x5 64 x6.

The Cases command discussed earlier in this section can also make replacements. That is, one can
find all cases within a list (or indeed any expression) of subexpressions that match a particular
pattern, and replace each of these by something else. It sounds a bit far fetched, but it’s actually

incredibly powerful and useful. There was an example in Section 7.9, for instance, where we
extracted all Line objects from a graphic and replaced each with the underlying list of points. Let’s
recreate an example like that one:

In[73]:= Cases , Line pts pts, Infinity

Out[73]= 0.211111, 0.833333 , 0.297222, 0.597222 ,
0.186111, 0.416667 , 0.316667, 0.197222 ,

0.561111, 0.836111 , 0.472222, 0.602778 , 0.572222, 0.4 , 0.483333, 0.2 ,
0.752778, 0.830556 , 0.861111, 0.622222 ,

0.736111, 0.394444 , 0.816667, 0.180556

The first argument to Cases here is not a list, but rather a Graphics that was produced with the
Drawing Tools palette. Note the third argument to Cases is Infinity. Cases goes into the FullForm of
the Graphics and searches at every level (since the third argument is Infinity) for subexpressions
matching the pattern object Line[pts_]. Each matching expression is replaced by pts, and a list of all

8.8 Patterns 455

such matching expressions is returned. The result in this case is three lists of points (or more pre-
cisely, a list of three lists of points).

When making replacements, it is often desirable to assign a name to an entire pattern object. The
Pattern command is used for this purpose. The infix form of this command is the colon (:). An
expression of the form name:pattern is used to associate name with pattern. In the (simple but common)
setting where the pattern object is a simple underscore, the colon can be eliminated altogether. That
is the expression x_ (that is so commonly seen) is equivalent to x:_. The colon is essential when
naming a more intricate pattern object. Consider, for instance, the example below in which every
row that begins with 1 in a matrix gets replaced with that same row multiplied by 3:

In[74]:=

1 3 5 7

7 9 1 8

1 2 3 4

2 5 9 1

. a : 1, 3 a MatrixForm

Out[74]//MatrixForm=

3 9 15 21

7 9 1 8

3 6 9 12

2 5 9 1

The name a is associated with the pattern object {1, __}. So 3a represents the scalar 3 times this list,
which has the effect of multiplying every member of the list by 3.

Note that when you make a replacement via ReplaceAll (/.), the very first item in the evaluation
sequence will be the right side of the Rule. That is, when you enter the cell containing a replace-
ment, the right side of the Rule is evaluated first. In the example below (which is just like the
previous example, except here we Reverse each row in the matrix that begins with 1) this is problem-
atic. The input Reverse[a] generates an error message (because a is a Symbol, not a List). The
output, however, is correct.

In[75]:=

1 3 5 7

7 9 1 8

1 2 3 4

2 5 9 1

. a : 1, Reverse a MatrixForm

Reverse::normal : Nonatomic expression expected at position 1 in Reverse a .

Out[75]//MatrixForm=

7 5 3 1

7 9 1 8

4 3 2 1

2 5 9 1

In a case such as this, it is better to delay evaluation of the right side of the Rule until after the
replacements have been made. Then Reverse will be applied only to an actual list, and all is fine.

456 Programming

The key to doing this is to use RuleDelayed (:> or) instead of Rule:

In[76]:=

1 3 5 7

7 9 1 8

1 2 3 4

2 5 9 1

. a : 1, Reverse a MatrixForm

Out[76]//MatrixForm=

7 5 3 1

7 9 1 8

4 3 2 1

2 5 9 1

Another example may help to clarify the distinction between Rule and RuleDelayed. In the first
input below, the right side of Rule is evaluated prior to making the replacements. Hence every
replacement receives the same random integer. In the second input, the right side of RuleDelayed is
not evaluated until after the replacements have been made. Hence RandomInteger[100] is evalu-
ated three times.

In[77]:= a, a, a . a RandomInteger 100

Out[77]= 94, 94, 94

In[78]:= a, a, a . a RandomInteger 100

Out[78]= 31, 74, 22

In order to understand the evaluation sequence upon entering a particular expression, wrap
the expression with Trace. The result will be a list of every expression that is encountered
during the evaluation process, with the final item being the output. In the case of an expres-
sion with head ReplaceAll whose second argument is a Rule, the right side of the Rule will be
the first thing evaluated.

The final pattern command that we will introduce is called Optional. This allows you to build a
command with an optional argument. Optional accepts a pattern object as its first argument, and
the default value to be used if that pattern is omitted as its second argument. For instance, this
command will draw a random sample from the list x. If a second argument is given, that will be the
size of the sample. If no second argument is given, a random sample of size three will be generated.

In[79]:= Clear f ;

randomSample x List, Optional y , 3 : RandomChoice x, y

In[81]:= randomSample Range 100 , 5

Out[81]= 3, 6, 58, 85, 23

8.8 Patterns 457

In[82]:= randomSample Range 100

Out[82]= 49, 68, 13

The infix form of Optional is a colon (:). There are two distinct commands whose infix form is
given by a colon (:). For an expression matching the form symbol:pattern, the meaning is
Pattern[symbol, pattern]. On the other hand, for an expression matching the form
pattern:expression, the meaning is Optional[pattern, expression]. So the left side of the definition
above could have been entered as randomSample[x_List, y_:3]. This can be confusing to
someone trying to learn about patterns, but it never leads to syntactic ambiguity, for the first
argument to Pattern must be symbol, while the first argument to Optional should be a
pattern object. Mercifully, this dual use of a single symbol is exceedingly rare (another
example is !, which is used for both Factorial and the logical negation command Not).

Exercises 8.8
1. Define a function f with a single argument. The function will return unevaluated unless

a. the argument is an even integer greater than 10. In this case the function returns the string
"success".

b. the argument is either an even integer, or is greater than 10. In this case the function returns
the string "success".

2. Explain the following output. Doesn’t x_1 represent a pattern that will only match the number 1?

In[83]:= Clear f ;

f x 1 : "success";

f 1, 2, 2., "donkey"

Out[85]= success, success, success, success

3. Find a word that contains the five letters “angle,” (contiguous, and in that order) and which
begins with the letter “q” and ends with the letter “s.”

4. A DNA molecule is comprised of two complementary strands twisted into a double helix, where
each strand may be represented as an ordered sequence of the letters A, C, G, and T. The comple-
mentary strand is built from a given strand by replacing every A by T, every T by A, every G by
C, and every C by G. In other words, A is swapped with T, and C is swapped with G. Define a
command complementaryDNA that will take a list of character strings from the four-letter
alphabet "A","C","G", and "T" (which is how we will represent a strand of DNA) and return the
complementary strand, in which all As and Ts are switched, and in which all Gs and Cs are
switched.

5. This exercise concerns the Collatz conjecture, which was discussed in this section.

a. Write a command collatz, that when given a positive integer will return the orbit of that
integer under the iterated Collatz process. The conjecture states that every orbit ends at 1, so

458 Programming

use NestWhileList with iterations occurring as long as the iterated function does not return 1.
To be safe, put a cap on it so that it will never carry out more than 1000 iterations.

b. Run the collatz command on each of the first 20 integers, and make a Table of the results.
Map the command Length over this table to see how many iterations were carried out for
each input. Make a ListPlot of the results. Did any number require all 1000 possible itera-
tions? If not, we can be confident that every orbit ends in 1.

c. Map the Partition command over your data table to replace an orbit such as {5,16,8,4,2,1}
with a list of pairs of successive numbers, like this: {{5,16},{16,8},{8,4},{4,2},{2,1}}.

d. Flatten the result at level 1 to produce a single list of pairs, then feed that list of pairs to the
Union command (to eliminate duplicate pairs). The list should end like this:
{…{88,44},{106,53},{160,80}}.

e. Use Map to Apply the command Rule to each pair from part c to obtain an amalgamated list
of all orbits. It should end like this: {…, 88 44, 106 53, 160 80}. Now feed the result to the
command GraphPlot to get a visualization of the orbit space for the Collatz process.

f. Repeat the entire exercise for the first 100 integers (rather than just the first twenty). Do it yet
again for the first thousand.

6. Use the trigonometric example from page 454 to prove that cos 21 is a root of the polynomial

f x 1 16 x 32 x2 48 x3 96 x4 32 x5 64 x6. You may wish to take a look at the example

from Section 4.6 on page 180.

7. Make a replacement to Range[15] and wrap the result in TabView to produce the output shown
below.

362 880

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8. Make a command scaleRuns that will take a list of zeros and ones, and return a list in which
every run of k consecutive ones in is replaced with k consecutive ks. For instance, the input
{1,1,0,1,1,1,0,0} should produce the output {2,2,0,3,3,3,0,0}. You may want to make use of the
Split command and the Repeated command.

9. Use the scaleRuns command of the previous exercise to build a command that will take a list of
zeros and ones and display it using an ArrayPlot with a single row (with one item in the array
for each member of the list), and where each consecutive run of ones is shaded according to the
length of the run. Use Partition to modify this command so that it will break a long sequence
(say with more than 50 elements) into several rows.

10. Make a command differenceTable that will accept two arguments. The first is a list. The second
is an optional argument (with default value 3) that specifies the ItemSize for each item in a
Grid. The output will be a difference table display like the one appearing at the end of Section

8.7 on page 441. You can model the command on the input for the example given there.

8.8 Patterns 459

Index

, 414

, 36

, 45

, 52

`, 44

;, 40

?, 41

., 153

, 85

, 19, 360

, 10

, 42

: , 52

 , 153

 , 449

 Expand , 148

 Factor , 172

 Simplify , 180

 TrigReduce , 179

 , 13

 , 232

 , 153

 , 5

 , 203

 , , 281

 , 227

 , 222

 , 230

 , 150

 , 5

, 417
, 409

&&, 96, 158
, 8
, 448
, 422
, 450

, 96

;;,127, 344
??, 127

, 403
., 288

: , 457
, 404

^, 2
, 2
, 444

 , 2
, 20

?, 445
, 2

:, 456, 458

, 422
expr, 417
, 2
, 199
, 9

$, 24 , 9
, 9
, 197
, 2
, 6
, 6
, 158, 388
, 59, 388
, 457
, 159
, 159

Abort Evaluation , 38
AccountingForm, 398
Accumulate, 440
Accuracy, 401

Add Column, 120, 340

Add Row, 120, 340
Ad n, 43
addition, 2
adjoint, 352
Alignment, 87
All, 128, 343
Ambient, 263
And, 96, 388, 420
Animate, 83
Animator, 83
antiderivative, 222
Apart, 175

Appearance, 398
Appearance, 126, 283
Apply, 409, 420
approximate number, 7
ArcCos, 12
ArcCot, 12
ArcCsc, 12
ArcSec, 12
ArcSin, 12
ArcTan, 12
arguments, 10
Array, 338
ArrayFlatten, 340
ArrayRules, 356
Arrow, 253
AspectRatio, 60
assignment, 20

local, 54, 425
Assuming, 224
Assumptions, 177
AstronomicalData, 134
asymptote, 55, 174
AtomQ, 386
Auto Save Package, 35
Automatic, 60
average rate of change, 200
axes, 54

at origin, 61
label, 68
remove, 64
scaling, 60

Axes, 64, 260
AxesEdge, 260
AxesLabel, 68
AxesOrigin, 61
AxesStyle, 64

Arrowheads, 65
Axis, 106

Background, 64
Band, 356
Basel problem, 444
basis, 365

orthogonal, 367
orthonormal, 367

beep, 47
BlankNullSequence, 449
BlankSequence, 448
Blend, 63
Block, 433
Blue, 63
Boxed, 260
BoxRatios, 260
brackets, 89

cell, 3
curly, 19
round, 8
square, 10, 25

Butt, 46

C 1 , 158
Caesar cipher, 413
Cancel, 172
Cardano, 157
Cartesian, 328
Cartesian coordinates, 314, 318
Cases, 141, 451
cell

bracket, 3

462 Index

default, 30
initialization, 35
inline, 29
input, 3, 34
new, 27
numbering, 34
output, 3, 34

Section, 28

Subsection, 28

Text, 27

Title, 28
Cell, 392
Celsius, 46
Center, 88
centering, 28
chain rule, 224
characteristic polynomial, 374
CharacterRange, 413
check spelling, 27
Checkbox, 83
CheckboxBar, 83
ChemicalData, 134
Circle, 115
circular frustum, 428
CityData, 141
Clear, 21
ClippingStyle, 259

Close, 38
cobweb diagram, 443
cofactors, 352
Collatz conjecture, 446, 458
Collect, 157
color, 63

Blend, 63
Darker, 63
gradient, 304
Lighter, 63
slider, 81

ColorData, 261
ColorFunction, 216, 261
ColorSetter, 83
Column, 168
command, 10

completion, 42
infix, 387
looping, 414
postfix, 37
prefix, 37
syntax, 10
templates, 42

Complete Selection , 42
Complex, 393

complex number, 18
ComplexExpand, 164
CompoundExpression, 389
concave, 216
Condition, 452
conjugate pairs, 152
ContinuedFraction, 443
ContourLabels, 271
ContourPlot, 97, 268
ContourPlot3D, 274
Contours, 102, 269
ContourShading, 102, 269
ContourStyle, 102
contraction, 379
control panel, 16
ControlPlacement, 82
ControlType, 82
Convert, 45

Convert Notebook , 33
ConvertTemperature, 46
coordinates

Cartesian, 314, 318
convert, 314, 318
cylindrical, 319
polar, 314
spherical, 320

CoordinatesFromCartesian, 317
CoordinatesToCartesian, 317

Copy, 28

Correspondence, 30
Cos, 12
Cot, 12
CountryData, 131
crash, 47
critical points, 208, 286
Cross, 255
cross product, 255
cros ection, 257, 299
Csc, 12
cube root, 5

complex, 57, 165
function, 57

Cubics, 159
Cuboid, 277
Curl, 329
curvature, 308, 313

Cut, 28
Cylinder, 276
Cylindrical, 319
CylindricalDecomposition, 294

D, 203, 207, 281

Index 463

D'Andria, Lou, 85
Darker, 63
Dashed, 64
Dashing, 64
data, 120
DateListPlot, 131
decimal approximation, 7
decimal point, 2
decimals, 6, 392
Defer, 389
definite integral, 227
Definition, 41
Degree, 13, 253
degrees to radians, 13

Delete all Output, 23
delete graphics cells, 23
Denominator, 174
derivatives, 202

directional, 283
higher order, 206
partial, 280

Det, 350
determinant, 350
diagonalization, 375
DiagonalMatrix, 339
DictionaryLookup, 450
difference equation, 142, 189
difference quotient, 199
Differences, 440
differential equation, 218
DigitBlock, 397
dilation, 379
Dimensions, 337
directional derivative, 283
Directive, 64, 262
discontinuities, 96
discriminant, 286
Disk, 115
Div, 329
divergence, 329
Dividers

horizontal, 88
vertical, 88

All, 88
division, 2
DNA molecule, 458
Do, 414

Documentation Center, 23, 42
dollar, 396
domain, 15, 54
Dot, 255
dot product, 252, 368

Drawing Tools, 112

DSolve, 218
dy

dx
, 202

Dynamic, 283, 430
DynamicModule, 430

Edit Stylesheet , 30
Eigensystem, 371
Eigenvalues, 371
Eigenvectors, 371
Element, 306
elementary row operations, 346
ElementData, 141
EllipticE, 226
EngineeringForm, 398
entering commands, 1
Epilog, 108, 154
equal, 6, 20, 101
error message, 25
Evaluate, 105

Evaluate Cells, 23, 35

Evaluate Notebook , 35
EvaluationNotebook, 138
EvenQ, 446
exact number, 7
Excel, 138
Except, 141, 452
Exclusions, 70, 264
ExclusionsStyle, 70
Expand, 15, 148
exponent, 5
ExponentFunction, 396
expression, 23
ExpToTrig, 179
extrema

global, 213, 284
local, 208, 284

Face, 28
FaceIndices, 383
Factor, 15, 147
Factorial, 414
FactorInteger, 14
Fahrenheit, 46
False, 95
Fermat's conjecture, 423
Fermat's little theorem, 421
Fibonacci numbers, 189
Filling, 106, 123
FillingStyle, 64
FinancialData, 134
FindFit, 124

464 Index

FindMaximum, 291
FindMinimum, 291
FindRoot, 184, 438
First, 127, 412, 432
Fit, 122
FixedPoint, 439
FixedPointList, 438
Flatten, 160
FlipView, 83
floating point unit, 399
Fold, 439
FoldList, 439
font, 28
FontFamily, 91
FontWeight, 91
Foot, 45

Footers, 31
For, 423
formal letter, 30
Formats, 140
Frame, 64
FrameStyle, 64
FreeQ, 417
FresnelC, 225
FresnelS, 225
FromDigits, 19, 434
front end, 2
FullForm, 85, 387
FullSimplify, 179
function

built in, 51
clearing, 53
define, 51
implicitly defined, 97
multivariable, 257
piecewise defined, 94
plot, 53

Function, 403
functional programming, 409
fundamental theorem of algebra, 169

Gallon, 45
gamepad controllers, 86
Gaussian elimination, 346
Geometry3D, 381
gif format, 33
Global, 53
Glow, 262, 298
gradient, 281
GradientFieldPlot, 326
GradientFieldPlot3D, 327
Gradients, 261

Gram Schmidt process, 367
graph, 53
Graphics, 112, 432

directives, 63
primitives, 114

Graphics3D, 276
GraphicsComplex, 382
GraphicsGrid, 110
GraphicsRow, 109
Gray, 64
Greater, 408
Grid, 87, 150, 342
GridLines, 66
GridLinesStyle, 66
grouping bracket, 3, 28
grouping terms, 8

harmonic series, 439
HarmonicNumber, 433
Head, 386

Headers, 31
help, 41
high precision number, 400
homogeneous, 362
homotopy, 324
Hour, 45
HSB, 74
HTML, 33
Hue, 74

Icons, 121
If, 419
Im, 18
ImageSize, 84
imaginary number, 18
implicit differentiation, 217
Import, 136
improper integral, 232
inconsistent, 360
Increment, 422
infinite loop, 144
Infinity, 197
infix form, 387
inflection points, 215
initial condition, 219
initialization cell, 35
inline cell, 29
Inner, 255
inner product, 255, 368
input

cell, 3
previous, 36

Index 465

InputField, 83
InputForm, 10, 18, 394
instantaneous rate of change, 201
Integer, 143, 393
IntegerDigits, 18, 434
Integer?Positive, 447
Integers, 212
Integrate, 223, 293
InterpolatingFunction, 220
Inverse, 349
inverse trigonometric functions, 12
ItemSize, 85, 441
iterated integral, 293
iterator, 15, 54

jaggies, 100
Jigger, 45
Joined, 145
JordanDecomposition, 375
justification, 28

Kepler, 135
kernel, 2, 34

local, 48
keyboard shortcuts, 38
Kilo, 45

label, 68

axes, 68
plot, 68

Labeled, 69
Lagrange multipliers, 291
LakeColors, 299
Last, 127
LegendPosition, 104
Leibniz's conjecture, 419
Length, 131, 366
less than, 6
level curves, 266
Lighter, 63
Lighting, 262
LightTerrain, 217
LightYear, 45
Limit, 196
Line, 115
line integral, 332
linear transformation, 377
linearly independent, 364
LinearSolve, 359
LinearSolveFunction, 359
list, 126
List, 126

Listable, 127
ListAnimate, 83
ListPlot, 121
Liter, 45
ln, 26
loading packages, 43
Locator, 81, 282 283
logarithmic scale, 71
logarithms, 13
logistic growth, 189
LogLinearPlot, 71
LogLogPlot, 71
LogPlot, 71
long division, 174
Longest, 452
looping commands, 414
LU decomposition, 376
Lychrel numbers, 442

machine numbers, 400
MachinePrecision, 402

Make Template , 42
Manipulate, 16, 76
manipulator, 76
Map, 85, 352, 378 379, 403
MapThread, 411
MatchQ, 445
MathKernel, 2, 34
matrix

add column, 340
add row, 340
addition, 348
adjoint, 352
block, 341
cofactors, 352
determinant, 350
diagonal, 339
elementary, 347
enter, 335
general, 339
identity, 339
inverse, 349
lower triangular, 338
minors, 351
multiplication, 348
nonsingular, 362
null space, 362
nullity, 366
operations, 348
power, 349
rank, 366

466 Index

row space, 365
scalar multiplication, 348
singular, 362
upper triangular, 347
zero, 338

MatrixForm, 335
MatrixPower, 349
MatrixQ, 336
Maximize, 212, 284
maximum, 208
MaxMachineNumber, 399
MaxRecursion, 79, 259, 270
menu

Cell, 10, 18, 23, 35, 173, 392

Edit, 23, 28

Evaluation, 23, 35, 38

File, 23

Format, 28 32

Help, 23

Insert, 29, 31, 36, 74, 120

Palettes, 4, 32, 148
MenuView, 83
Mesh, 62, 265
MeshFunctions, 63, 265
MeshShading, 267, 279
MeshStyle, 64, 273
Mile, 45
Min, 338
Minimize, 212, 284
minimum, 208
Minors, 351
Missing, 141
modify cell style, 30
Module, 214, 283, 426
multiplication, 2

N, 11
Names, 45
naming things, 20
natural logarithm, 13
.nb, 23
NDSolve, 220
Needs, 44
Nest, 434
NestList, 146, 190, 433
NestWhile, 435
NestWhileList, 435
Neutral, 262
new cell, 27

New Graphic, 113

New Template , 32
Newton Raphson method, 185, 437

NIntegrate, 237
NMaximize, 284
NMinimize, 284 285
nonhomogeneous, 358
NonNegative, 450
nonsingular, 349
Norm, 252, 367

Normal, 32
Normal, 248, 355
Normalize, 367
Not, 417
notebook, 1
Notebook, 390
NSolve, 149
Null, 41, 389, 396
nullity, 366
NullSpace, 362 363
number

Complex, 393
decimal, 392

Formatting, 398
high precision, 400
Integer, 393
machine, 400
padded, 395
Rational, 393
Real, 392

NumberForm, 394
numbering cells, 34
NumberPadding, 395
Numerator, 174
numerical approximation, 11
numerical integration, 237
NumericQ, 445

OddQ, 446
Opacity, 116, 262

Open Recent, 38
Opener, 83
OpenerView, 83
opening saved notebooks, 27, 34
optimization, 284, 208 214, 284, 291
optimization word problem, 213

Option Inspector, 31
Optional, 457
Options, 85, 412
Or, 96, 388
origin, 54, 61
orthogonal, 367
Orthogonalize, 367
orthonormal basis, 367
osculating circle, 308

Index 467

output
cell, 3
previous, 36
suppressing, 40

O x , 247

packages, 43
paclet, 131
PaddedForm, 395
page break, 31
page numbers, 31
palette

AlgebraicManipulation, 148

BasicMathInput, 4

Drawing Tools, 112

SlideShow, 32

SpecialCharacters, 22
palindrome, 434
paraboloid, 319
parallelogram

area, 255
law, 256

parametric
curve, 301
surface, 311

parametricCylindricalPlot3D, 320
ParametricPlot, 302
ParametricPlot3D, 309 313
parametricSphericalPlot3D, 322
parentheses, 8, 25
partial derivatives, 280
partial fraction decomposition, 175
Partition, 90, 411

Paste, 28
PatternSequence, 452
pause, 76
Pi, 9
Piecewise, 95, 198, 264
piecewise defined functions, 94, 197 198
play

backward, 76
forward, 76

Plot, 15, 54
color, 63
filled, 106
options, 59
superimposed, 103

Plot3D, 258 268
PlotLabel, 68
PlotLegends, 104, 272
PlotMarkers, 121
PlotPoints, 79, 100, 258, 270

PlotRange, 17, 59, 79, 259
PlotStyle, 63, 262
plotting functions, 15, 53

implicitly defined, 97
multivariable, 258

Point, 115, 154
PointSize, 117, 154, 208
polar coordinates, 314
polarParametricPlot, 317
PolarPlot, 315 316, 431
Polygon, 115
PolyhedronData, 381, 383
polynomial

cubic, 156 157
expanding, 147
factoring, 147
long division, 174
quartic, 154
quintic, 155

PolynomialQuotient, 174 175
PolynomialRemainder, 174 175
PopupView, 83
postfix command, 37
Power, 2, 5, 57, 388
Precision, 401
predicate, 91, 416
prefix command, 37
PreIncrement, 423
PrependTo, 414
previous input, 36
previous output, 36
prime factorization, 14
PrimeQ, 403, 421

Print, 31
Print, 118, 423

Print Selection , 31

Printing Settings, 31
procedural programming, 414
product rule, 204
programming, 19, 385

functional, 409
procedural, 414

Properties, 131

QRDecomposition, 369
quadratic formula, 151
Quartics, 159
query, 416
Quiet, 388

Quit, 23

Quit Kernel, 48

468 Index

radian, 12
RadioButtonBar, 83
radius of curvature, 308
Rainbow, 442
RandomComplex, 130
RandomInteger, 130, 337
RandomReal, 130
Range, 67
rank, 366
Raster, 115
rate of change

average, 200
instantaneous, 201

Rational, 393
rational functions, 171
Rationalize, 443
Re, 18
Real, 392
realPower, 58
Reals, 163
Rectangle, 115
recurrence relation, 142, 189
RecursionLimit, 144
Red, 63
red caret, 24
Reduce, 157
reduced row echelon form, 346
reflection, 378
region of convergence, 247
RegionFunction, 263
RegionPlot, 295
RegionPlot3D, 295
Remove, 46
Repeated, 452, 459
ReplaceAll, 153, 288, 388, 452
replacement rule, 150, 153, 256
ReplaceRepeated, 288, 388
Rescale, 298
residuals, 125
resize a graphic, 55
Rest, 141
Reverse, 408
revers d problem, 434
revers ose, 4
RevolutionPlot3D, 242, 258, 319
RGBColor, 74
riddle, 85
Riemann sum, 230
Riffle, 426
Right, 70

root
cube, 5
nth, 5
principal, 167
square, 17

Root, 155
roots, 147

approximate, 148
complex, 152
exact, 154
irrational, 149

RotateLeft, 413
RotateRight, 414
RotationMatrix, 380
RowReduce, 346
RSolve, 189
Rule, 449
RuleDelayed, 457
Running..., 38, 47

Save, 23
ScaleFactor, 329
scatter plot, 122
scientific notation, 11, 394
ScientificForm, 398
Sec, 12
secant method, 415
Second, 45
second derivative, 206

Section, 28
Select, 141, 418
selection placeholder, 5
sequence, 246
Series, 247
Set, 52
SetDelayed, 52
SetDirectory, 138
SetterBar, 79

Shapes, 121
Short, 41
Shortest, 452
Show, 107

Show Toolbar, 27

ShowExpression, 392
Sign, 255
significant digits, 11, 394
Simplify, 157, 172, 176
Simpson's rule, 231
Sin, 12
slider, 16, 76
Slider, 430
Slider2D, 80

Index 469

SlideShow, 32
SlideView, 83
Slot, 404
Solve, 150, 360
Sort, 407, 142
space shuttle, 381
Spacings, 88
span, 364
Span, 127, 344
SparseArray, 354
Specularity, 262
speed, 76
spelling, 27
Sphere, 276
spherical coordinates, 320
SphericalPlot3D, 258, 320
Spikey, 1
Split, 459
Sqrt, 18
square gyrobicupola, 383
square root, 17
StandardForm , 207
StarryNightColors, 267
String, 44, 69
StringExpression, 85, 391, 450
StringQ, 446
StringReplace, 413

Style, 28
Style, 91

StyleSheet, 29
Subscript, 256

Subsection, 28
subtraction, 2
suffix, 23
Sum, 92, 230
superformula, 324
suppressing output, 40
surface integral, 331
surface of revolution, 242, 312
SymbolName, 85
syntax, 24
System, 43
systems of equations, 162, 358

Table, 86, 337

Table of Contents, 33

Table Matrix, 120, 335
TabView, 83
Take, 45, 342
Tally, 424
Tan, 12
tangent line, 202, 205

Tartaglia, 157
Taylor series, 247
Teaspoon, 45
TemperatureMap, 301
Text, 27, 115

Text Color, 91
Thick, 64
Thickness, 64
Thread, 250, 410
Ticks, 67
Timing, 41

Title, 28
ToExpression, 85
Together, 176
TogglerBar, 83

Toolbar, 27
Tooltip, 103, 122, 134, 436
topographical map, 261
Torrence, Alexandra, 85
Torrence, Robert, 114
ToRules, 160
torus, 311
ToString, 85, 392
Tr, 350
Trace, 351, 457
TraditionalForm, 38, 159, 173
Transpose, 129, 349
trapezoidal rule, 231
TreeForm, 391
TrigExpand, 179
TrigFactor, 179
trigonometric functions, 12
trigonometric identities, 179, 413
TrigReduce, 179
TrigToExp, 179
trivial solution, 362
True, 95
tutorials, 42
typesetting

mathematics, 29
shortcuts, 38

underscore, 52, 444

Undo, 38
Unequal, 417
Union, 459
unit normal vector, 307
unit tangent vector, 306
unit vector, 367
Units, 44
URL, 137

vector, 251

field, 325

470 Index

unit, 367
unit normal, 307
unit tangent, 306

vector space, 364
dimension, 366

VectorAnalysis, 317
VectorFieldPlot, 325
VectorFieldPlot3D, 327
VectorFieldPlots package, 325
VectorHeads, 327
versum problem, 434
VertexCoordinates, 383
vertical asymptote, 55
VerticalSlider, 83
ViewPoint, 261

web page, 33
Which, 421
While, 422
Whitneyumbrella, 311
wild card, 45
With, 54, 425
WorkingPrecision, 185
x , 444

, 160
Zoe, 377
zoom, 54, 92 93, 206, 257

$Aborted, 48
$Post, 336

Index 471

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	1 Getting Started
	1.1 Launching Mathematica
	1.2 The Basic Technique for Using Mathematica
	1.3 The First Computation
	1.4 Commands for Basic Arithmetic
	1.5 Input and Output
	1.6 The BasicMathInput Palette
	1.7 Decimal In, Decimal Out
	1.8 Use Parentheses to Group Terms
	1.9 Three Well-Known Constants
	1.10 Typing Commands in Mathematica
	Numerical Approximation and Scientific Notation
	Trigonometric Functions
	Logarithms
	Factoring Integers
	Factoring and Expanding Polynomials
	Plotting Functions
	Manipulate
	Square Root Function
	Real and Imaginary Parts of Complex Numbers
	Extracting Digits from a Number
	Programming
	Naming Things

	1.11 Saving Your Work and Quitting Mathematica
	1.12 Frequently Asked Questions About Mathematica’s Syntax
	Why Do All Mathematica Command Names Begin with Capital Letters?
	Why Does My Input Appear in Color as I Type?
	Why Are the Arguments of Commands Enclosed in Square Brackets?
	What Happens If I Use Incorrect Syntax?

	2 Working with Mathematica
	2.1 Opening Saved Notebooks
	2.2 Adding Text to Notebooks
	Text Cells
	Adding Mathematical Expressions to Text
	Modifying the Stylesheet

	2.3 Printing
	2.4 Creating Slide Shows
	2.5 Creating Web Pages
	2.6 Converting a Notebook to Another Format
	2.7 Mathematica’s Kernel
	Numbering Input and Output
	Reevaluating Previously Saved Notebooks

	2.8 Tips for Working Effectively
	Referring to Previous Output
	Referring to Previous Input
	Postfix Command Structure
	Prefix Command Structure
	Undoing Mistakes
	Keyboard Shortcuts
	Typesetting Input—More Shortcuts
	Suppressing Output and Entering Sequences of Commands

	2.9 Getting Help from Mathematica
	Getting Information on a Command whose Name You Know
	Command Completion
	Command Templates
	The Documentation Center

	2.10 Loading Packages
	2.11 Troubleshooting
	Recognizing a Crash
	Aborting Calculations and/or Recovering from a Crash
	Mac OS Procedure
	Windows Procedure

	Running Efficiently: Preventing Crashes

	3 Functions and Their Graphs
	3.1 Defining a Function
	Clearing a Function

	3.2 Plotting a Function
	3.3 Using Mathematica’s Plot Options
	How to Get the Same Scaling on Both Axes
	How to Get the Axes to Intersect at the Origin
	How to Display Mesh Points
	How to Add Color and Other Style Changes: Graphics Directives
	How to Remove the Axes or Add a Frame
	How to Place Arrowheads on the Axes
	How to Add Grid Lines and Adjust Ticks on the Axes
	How to Add Labels
	Exclusions and Vertical Asymptotes
	Putting a Logarithmic Scale on One or Both Axes

	3.4 Investigating Functions with Manipulate
	Other Dynamic Display Commands

	3.5 Producing a Table of Values
	Manipulating a Grid

	3.6 Working with Piecewise Defined Functions
	3.7 Plotting Implicitly Defined Functions
	3.8 Combining Graphics
	Superimposing Plots
	Producing Filled Plots
	Superimposing Graphics
	Graphics Side-by-Side
	Graphics in a Grid

	3.9 Enhancing Your Graphics
	Drawing Tools
	Graphics Primitives

	3.10 Working with Data
	3.11 Managing Data—An Introduction to Lists
	3.12 Importing Data
	3.13 Working with Difference Equations

	4 Algebra
	4.1 Factoring and Expanding Polynomials
	4.2 Finding Roots of Polynomials with Solve and NSolve
	4.3 Solving Equations and Inequalities with Reduce
	4.4 Understanding Complex Output
	4.5 Working with Rational Functions
	Solving Equations
	Simplifying Rational Expressions
	Formatting Output Using TraditionalForm
	Vertical Asymptotes
	Long Division of Polynomials
	Partial Fractions

	4.6 Working with Other Expressions
	Simplifying Things
	Manipulating Trigonometric Expressions

	4.7 Solving General Equations
	4.8 Solving Difference Equations
	4.9 Solving Systems of Equations

	5 Calculus
	5.1 Computing Limits
	5.2 Working with Difference Quotients
	Producing and Simplifying Difference Quotients
	Average Rate of Change
	Instantaneous Rate of Change

	5.3 The Derivative
	5.4 Visualizing Derivatives
	5.5 Higher Order Derivatives
	5.6 Maxima and Minima
	5.7 Inflection Points
	5.8 Implicit Differentiation
	5.9 Differential Equations
	5.10 Integration
	5.11 Definite and Improper Integrals
	Computing Definite Integrals
	Riemann Sums
	Computing Improper Integrals
	Defining Functions with Integrals
	Some Integrals Are Bad

	5.12 Numerical Integration
	5.13 Surfaces of Revolution
	5.14 Sequences and Series

	6 Multivariable Calculus
	6.1 Vectors
	The Dot Product and the Norm
	Rendering Vectors in the Plane
	The Cross Product

	6.2 Real-Valued Functions of Two or More Variables
	Plotting Functions of Two Variables with Plot3D
	Options for 3D Plotting Commands
	Plotting Functions of Two Variables with ContourPlot
	Plotting Level Surfaces with ContourPlot3D
	Graphics3D Primitives
	Differentiation of Functions of Two or More Variables
	Optimization
	Constrained Optimization
	Integration of Functions of Two or More Variables

	6.3 Parametric Curves and Surfaces
	Parametric Curves in the Plane
	Parametric Curves in Space
	Parametric Surfaces in Space

	6.4 Other Coordinate Systems
	Polar Coordinates
	Cylindrical and Spherical Coordinates
	Integration in Other Coordinate Systems

	6.5 Vector Fields
	Defining a Vector Field
	Plotting a Two-Dimensional Vector Field
	Divergence and Curl of a Three-Dimensional Vector Field

	6.6 Line Integrals and Surface Integrals
	Line Integrals
	Surface Integrals

	7 Linear Algebra
	7.1 Matrices
	Entering Matrices
	Editing Matrices

	7.2 Performing Gaussian Elimination
	Referring to Parts of Matrices
	Gaussian Elimination

	7.3 Matrix Operations
	7.4 Minors and Cofactors
	7.5 Working with Large Matrices
	7.6 Solving Systems of Linear Equations
	Nonhomogeneous Systems of Linear Equations
	Homogeneous Systems of Equations
	Using LinearSolve and NullSpace to Solve Nonhomogeneous Systems

	7.7 Vector Spaces
	Span and Linear Independence
	Bases
	Rank and Nullity
	Orthonormal Bases and the Gram–Schmidt Process
	QR-Decomposition

	7.8 Eigenvalues and Eigenvectors
	Finding Eigenvalues and Eigenvectors Automatically
	Finding Eigenvalues and Eigenvectors Manually
	Diagonalization

	7.9 Visualizing Linear Transformations

	8 Programming
	8.1 Introduction
	8.2 FullForm: What the Kernel Sees
	8.3 Numbers
	Types of Numbers: Integer, Rational, Real, and Complex
	Displaying Numbers
	Precision and Accuracy

	8.4 Map and Function
	Functional Programming

	8.5 Control Structures and Looping
	Predicates
	Control Structures: If, Which, Piecewise
	Looping with While and For

	8.6 Scoping Constructs: With and Module
	Scoping and Dynamic Elements

	8.7 Iterations: Nest and Fold
	8.8 Patterns

	Index

