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Preface

The  mathematician  and  juggler  Ronald  L.  Graham  has  likened  the  mastery  of  computer  program-
ming to the mastery  of  juggling.  The problem with juggling is  that the balls go exactly where you
throw them. And the problem with computers is that they do exactly what you tell them.

This is a book about Mathematica, a software system described as “the world’s most powerful global
computing  environment.”  As  software  programs  go,  Mathematica  is  big—really  big.  We  said  that
back in 1999 in the preface to the first edition of this book. And it’s gotten a good deal bigger since
then. There are more than 900 new documented symbols in version 6 of Mathematica. It’s been said
that there are more new commands in version 6 than there were commands in version 1. It’s gotten
so big that  the  documentation is  no longer produced in printed form. Our trees  and our backs are
grateful.  Yes,  Mathematica  will  do exactly  what  you ask  it  to do,  and it  has  the potential  to amaze
and delight—but you have to know how to ask, and that can be a formidable task.

That’s where this book comes in. It is intended as a supplementary text for high school and college
students.  As such, it  introduces commands and procedures in an order that roughly coincides with
the  usual  mathematics  curriculum.  The  idea  is  to  provide  a  coherent  introduction to  Mathematica
that does not get ahead of itself mathematically. Most of the available reference materials make the
assumption that the reader is  thoroughly familiar with the mathematical concepts underlying each
Mathematica  command and procedure. This  book does not. It  presents  Mathematica  as  a  means not
only of solving mathematical problems,  but of exploring and clarifying the concepts themselves.  It
also provides examples of procedures that students will need to master, showing not just individual
commands, but sequences of commands that together accomplish a larger goal.

While written primarily for students, the first edition was well-received by many non-students who
just wanted to learn Mathematica. By following the standard mathematics curriculum, we were told,
the presentation  exudes  a  certain  familiarity  and coherence.  What  better  way  to  learn  a  computer
program than to rediscover the beautiful ideas from your foundational mathematics courses?

What’s New in this Edition?

The impetus for a second edition was driven by the software itself.  The first edition coincided with
the release of Mathematica 4. While version 5 introduced a few notable new commands, much of the
innovations in that  release were  kept  under the  hood, so  to  speak.  The algorithms associated with
many  well-used  commands  were  improved,  but  the  user  interface  underwent  minimal  changes.
Mathematica 6 on the other hand is a different beast entirely. Perhaps the most fundamental innova-

tion is the introduction of dynamic user interface elements with commands such as Manipulate. It
is now possible to take essentially any Mathematica expression and add sliders or buttons that permit
a user  to  adjust  parameters  in  real  time.  The second edition was  re-written  from the  ground up to
take these  and other  changes into account.  Virtually every  section of every  chapter  has  undergone
extensive revision and expansion. This edition reflects the software as it exists today.



The organization of the book has not changed, but there are two notable new additions:

The second edition has exercises, several hundred in fact. These provide a means for experimenting
with and extending the ideas outlined in each section. They also provide a concrete and structured
framework  for  interacting  with  the  software.  It  is  through  such  interactions  that  familiarity  and
(ultimately) competence and even mastery  will  be attained.  Complete  solutions are freely available
online, as discussed in the next section.

In  addition,  a  new  chapter  has  been  added  (Chapter  8)  to  address  the  fundamental  aspects  of
programming with Mathematica. While this topic is far too expansive to cover thoroughly in a single
chapter, many of the fundamentals of programming are conveyed here. It is a fact that many of the
new  features  of  version  6  require  a  working  knowledge  of  pure  functions  and  other  ideas  that  fit
naturally into this context. You are likely to find yourself reading a section of this chapter here and
there as you explore certain topics in the earlier chapters. Think of it as a handy reference.

How to Use this Book 

Of course,  this  is  a  printed book and as  such is  perfectly suitable  for bedtime reading. But  in most
cases you will want to have the book laid open next to you as you work directly with Mathematica.
You can mimic the inputs  and then try variations. After you get used to the syntax conventions it
will be fun.

The first chapter provides a brief tutorial for those unfamiliar with the software. The second delves a
bit deeper into the fundamental design principles and can be used as a reference for the rest of the
book.  Chapters  3  and  4  provide  information  on  those  Mathematica  commands  and  procedures
relevant to the material  in a precalculus course.  Chapter  5 adds material relevant to single-variable
calculus,  and  Chapter  6  deals  with  multivariable  calculus.  Chapter  7  introduces  commands  and

procedures pertinent to the material in a linear algebra course.

Some  sections  of  the  text  carry  this  warning  sign.  These  sections  provide  slightly  more
comprehensive information for the advanced user. They can be skipped by less hardy souls.

Beginning in Chapter  3,  each section has  exercises.  Solutions  to  every  exercise  can be  freely down-
loaded from the website at www. .

Mathematica  runs on every major operating system,  from Macs and PCs to Linux workstations.  For
the  most  part  it  works  exactly  the  same  on  every  platform.  There  are,  however,  a  few  procedures
(such  as  certain  keyboard  shortcuts)  that  are  platform  specific.  In  such  cases  we  have  provided
specific  information  for  both  the  Mac  OS  and  Microsoft  Windows  platforms.  If  you  find  yourself
running  Mathematica  on  some  other  platform  you  can  be  assured  that  the  procedure  you  need  is
virtually identical to one of these.
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1
Getting Started

1.1 Launching Mathematica
The  first  task  you  will  face  is  finding where  Mathematica  resides  in  your  computer’s  file  system.  If
this is the first time you are using a computer in a classroom or lab, by all means ask your instructor
for help. You are looking for “Spikey,” an icon that looks something like this:

When you have located the icon, double click it with your mouse. In a moment an empty window
will appear.  This is your Mathematica  notebook; it  is the environment where you will carry out your
work.

The  remainder  of  this  chapter  is  a  quick  tutorial  that  will  enable  you  to  get  accustomed  to  the
syntax and conventions of Mathematica, and demonstrate some of its many features.

1.2 The Basic Technique for Using Mathematica
A  Mathematica  notebook  is  an  interactive  environment.  You  type  a  command  (such  as  2 2)  and
instruct Mathematica to execute it. Mathematica responds with the answer on the next line. You then
type another command, and so on. Each command you type will appear on the screen in a boldface
font. Mathematica’s output will appear in a plain font.

Entering Input
After typing a command, you enter it as follows:

On a machine running Windows: Hit the combination , or hit the  key on 
the numeric keypad if you have one (usually in the lower right portion of the keyboard).
On a Mac: Hit the  key (usually in the lower right portion of the keyboard), or hit 
the combination .



1.3 The First Computation
For your first computation, type

2 2

then hit  the  combination (Windows) or  the  key (Mac OS).  There  may be a  brief  pause
while  your  first  entry  is  processed.  During this  pause  the  notebook’s  title  bar  will  contain the  text
“Running...”

In[1]:= 2 2

Out[1]= 4

The reason that  this  simple  task takes  a  moment is  that Mathematica doesn’t  start  its  engine, so to
speak,  until  the  first  computation  is  entered.  In  fact,  entering  the  first  computation  causes  your
computer to launch a second program called the MathKernel (or kernel for short). Mathematica really
consists of these two programs,  the Front End, where you type your commands and where output,
graphics, and text are displayed, and the MathKernel, where calculations are executed. Every subse-
quent computation will be faster, for the kernel is now already up and running.

1.4 Commands for Basic Arithmetic
Mathematica works much like a calculator for basic arithmetic. Just use the +, –, *, and / keys on the
keyboard for  addition,  subtraction,  multiplication,  and division.  As  an  alternative  to  typing  *,  you
can  multiply  two  numbers  by  leaving  a  space  between  them  (the  ×  symbol  will  automatically  be
inserted when you leave  a  space between two numbers).  You can raise  a  number to a  power using
the ^ key. Use the dot (i.e., the period) to type a decimal point. Here are a few examples:

In[1]:= 17 1

Out[1]= 18

In[2]:= 17 1

Out[2]= 16

In[3]:= 123456789 123456789

Out[3]= 15 241578750190521

In[4]:= 123456789 123456789

Out[4]= 15 241578750190521

In[5]:= 123456789 ^2

Out[5]= 15 241578750190521
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In[6]:= 9.1 256.127

Out[6]= 0.0355292

In[7]:= 34 4

Out[7]=
17

2

This  last  line  may  seem  strange  at  first.  What  you  are  witnessing  is  Mathematica’s  propensity  for
providing exact answers.  Mathematica  treats decimal numbers as approximations, and will generally
avoid them in the output if they are not present in the input. When Mathematica returns an expres-
sion with  no  decimals,  you  are  assured  that  the  answer  is  exact.  Fractions  are  displayed  in  lowest
terms.

1.5 Input and Output
You’ve surely noticed that Mathematica  is keeping close tabs on your work. Each time you enter an
expression, Mathematica  gives it a name such as In[1]:=, In[2]:=, In[3]:=. The corresponding output comes
with  the  labels  Out[1]=,  Out[2]=,  Out[3]=,  and  so  on.  At  this  point,  it  is  enough  to  observe  that  these
labels will appear all by themselves each time you enter a command, and it’s okay:

In[1]:=
1

2

6

Out[1]=
1

64

You’ve  surely  noticed something  else  too  (you’ll  need  to  be  running a  live  session  for  this),  those
brackets along the right margin of your notebook window. Each input and output is written into a
cell, whose scope is shown by the nearest bracket directly across from the respective input or output
text. Cells containing input are called input cells. Cells containing output are called output cells. The
brackets  delimiting  cells  are  called  cell  brackets.  Each  input–output  pair  is  in  turn  grouped  with  a
larger bracket immediately to the right of the cell brackets. These brackets may in turn be grouped
together by a larger bracket, and so on. These extra brackets are called grouping brackets.

At  this  point,  it’s  really  enough just  to  know these  brackets  are  there  and to  make the  distinction
between  the  innermost  (or  smallest,  or  leftmost)  brackets  which  delimit  individual  cells  and  the
others which are used for grouping. If you are curious about what good can possibly come of them,
try positioning the tip of your cursor arrow anywhere on a grouping bracket and double click. You
will close the group determined by that bracket. In the case of the bracket delimiting an input–output
pair, this will have the effect of hiding the output completely (handy if the output runs over several
pages).  Double click again to open the group.  This  feature is  useful  when you have created a long,
complex  document  and  need  a  means  of  managing  it.  Alternately,  you  can  double  click  on  any
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output cell bracket to reverse-close the group. This has the effect of hiding the input code and display-
ing only the output.

Since  brackets  are  really  only  useful  in  a  live  Mathematica  session,  they  will  not,  by  default,  show
when you print a notebook. Further details about brackets and cells will be provided in Section 2.2

on page 27.

One last  bit  of  terminology is  in  order.  When you hit  the   combination (Windows),  or  the
 key  (Mac  OS)  after  typing  an  input  cell,  you  are  entering  the  cell.  You’ll  be  seeing  this  phrase

quite a bit in the future.

1.6 The BasicMathInput Palette
There  may  already be  a  narrow,  light  gray  window full  of  mathematical  symbols  along the  side of
your  screen.  If  so,  you  are  looking at  one  of  Mathematica’s  palettes,  and  chances  are  that  it  is  the
BasicMathInput palette:

The BasicMathInput palette

If you see no such window, go to the Palettes menu and select BasicMathInput to open it.
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The BasicMathInput  palette is indispensable. You will use it to help typeset your Mathematica  input,
creating expressions that cannot be produced in an ordinary one-dimensional typing environment.
Palettes such as this provide you with a means of producing what the designers of Mathematica  call
two-dimensional input, which often matches traditional mathematical notation. For instance, use the

 button in the upper left corner of the palette to type an exponential expression such as 1719. To

do  this,  first  type  17  into  your  Mathematica  notebook,  then  highlight  it  with  your  mouse.  Next,

push the  palette button with your mouse. The exponent structure shown on that button will be

pasted  into  your  notebook,  with  the  17  in  the  position  of  the  black  square  on  the  palette  button
(the black square is called the selection placeholder).  The text insertion point will move to the place-
holder in the exponent position. Your input cell will look like this:

17

You can now type  the value of  the exponent,  in this  case 19,  into the placeholder, then enter  the
cell:

In[1]:= 1719

Out[1]= 239072435685151324847153

Another  way to  accomplish the same thing is  this:  First  hit  the palette  button,  then type 17
into  the  first  placeholder.  Next  hit  the   key  to  move  to  the  second  placeholder  (in  the
exponent  position).  Now  type  19  and  enter  the  cell.  This  procedure  is  perhaps  a  bit  more
intuitive, but it can occasionally get you into trouble if you are not careful with grouping. For

instance, if you want to enter 1 x 8, and the first thing you do is push the  button on the

palette,  then you must type (1+ x)  with parentheses, then ,  then 8. By contrast,  you could
type 1+ x with or without parentheses and highlight the expression with your mouse, then hit

the  palette  button,  and then type 8.  The parentheses are  added automatically,  if  needed,

when this procedure is followed.

If you don’t understand what some of the palette buttons do, don’t fret. Just stick with the ones that
you know for now. For instance, you can take a cube root like this: type a number and highlight it

with the mouse, then push the  button on the BasicMathInput  palette, then hit the  key, and

finally type 3. Now enter the cell:

In[2]:= 50 653
3

Out[2]= 37

This is equivalent to raising 50653 to the power 1/3:

In[3]:= 50 6531 3

Out[3]= 37
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And of course we can easily check the answer to either calculation:

In[4]:= 373

Out[4]= 50 653

Entering Input

Speaking in general terms, the buttons on the top portion of the BasicMathInput 
palette (in fact all buttons containing a solid black placeholder  on this and any other 
palette) are used this way:

Type an expression into a Mathematica notebook.

Highlight all or part of the expression with your mouse (by dragging across the 
expression).
Push a palette button. The structure on the face of the button is pasted into your 
notebook, with the highlighted text appearing in the position of the solid black square.
If there are more placeholders in the structure, use the  key or forward arrow (or 
move the cursor with your mouse) to move from one to the next.

The  buttons  on  the  middle  portion  of  the  BasicMathInput  palette  have  no  placeholders.  They  are
used simply to paste into your notebook characters that are not usually found on keyboards. To use
them,  simply  position  the  cursor  at  the  point  in  the  notebook  where  you  want  the  character  to
appear, then push a palette button.

For instance, the  symbol can be used to test if one number is less than or equal to another:

In[5]:= 50 653 225

Out[5]= False

In[6]:= 50 653 226

Out[6]= True

The special symbol  is used to test if one quantity is equal to another. It has the same meaning as
the equal sign in standard mathematical notation:

In[7]:= 50 653 50 6531 2

Out[7]= True

1.7 Decimal In, Decimal Out
Sometimes  you  don’t  want  exact  answers.  Sometimes  you  want  decimals.  For  instance  how big  is
this number? It’s hard to get a grasp of its magnitude when it’s expressed as a fraction:
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In[1]:=
1719

1917

Out[1]=
239072435685151324847153

5 480386857784802185939

And what about this?

In[2]:= 59 875
3

Out[2]= 5 4791 3

Mathematica tells us that the answer is 5 times the cube root of 479 (remember that a space indicates
multiplication,  and  raising  a  number  to  the  power  1 3  is  the  same  as  taking  its  cube  root).  The
output  is  exact,  but  again it  is  difficult  to  grasp  the  magnitude  of  this  number.  How can we  get  a
nice decimal approximation, like a calculator would produce?

If any one of  the numbers  you input  is  in decimal form, Mathematica  regards it  as  approximate.  It
responds by  providing an approximate  answer,  that  is,  a  decimal answer.  It  is  handy to remember
this:

In[3]:=
17.019

1917

Out[3]= 43.6233

In[4]:= 59 875.0
3

Out[4]= 39.1215

A quicker  way  to  accomplish  this  is  to  type  a  decimal point  after  a  number  with  nothing after  it.
That is, Mathematica regards “17.0” and “17.” as the same quantity. This is important for understand-
ing Mathematica’s output:

In[5]:= 59 875.
3

Out[5]= 39.1215

In[6]:=
30.

2

Out[6]= 15.

Note the decimal point in the output. Since the input was only “approximate,” so too is the output.
Get in the habit of using exact or decimal numbers in your input according to the type of answer,
exact or approximate, that you wish to obtain. Adding a decimal point to any single number in your
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input will cause Mathematica to provide an approximate (i.e., decimal) output. A detailed discussion

on approximate numbers can be found in Section 8.3 on page 392.

1.8 Use Parentheses to Group Terms
Use  ordinary  parentheses  ( )  to  group  terms.  This  is  very  important,  especially  with  division,
multiplication,  and  exponentiation.  Being  a  computer  program,  Mathematica  takes  what  you  say
quite literally; tasks are performed in a definite order, and you need to make sure that it is the order
you intend. Get  in the habit of making a mental check for appropriate parentheses before entering
each  command.  Here  are  some  examples.  Can  you  see  what  Mathematica  does  in  the  absence  of
parentheses?

In[1]:= 3 4 1

Out[1]= 15

In[2]:= 3 4 1

Out[2]= 13

In[3]:= 3 2

Out[3]= 9

In[4]:= 32

Out[4]= 9

In[5]:= 3 1 2

Out[5]= 2

In[6]:= 3 1 2

Out[6]=
7

2

The  last  pair  of  examples  above  shows  one  benefit  of  using  the  BasicMathInput  palette  instead of
typing from the keyboard. With the two-dimensional typesetting capability afforded by the palette
there is no need for grouping parentheses, and no chance for ambiguity:

In[7]:=
3 1

2

Out[7]= 2
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In[8]:= 3
1

2

Out[8]=
7

2

The  lesson  here  is  that  the  order  in  which  Mathematica  performs  operations  in  the  absence  of
parentheses  may not be what you intend. When in doubt,  add parentheses.  Also note: you do not
need to leave a space to multiply by an expression enclosed in parentheses:

In[9]:= 25 2 2

Out[9]= 100

Note  also  that  only  round  brackets  can  be  used  for  the  purpose  of  grouping  terms.  Mathematica
reserves different meanings for square brackets and curly brackets, so never use them to group terms.

1.9 Three Well-Known Constants
Mathematica  has  several  built-in  constants.  The  three  most  commonly used  are  ,  the  ratio  of  the
circumference to the diameter of a circle (approximately 3.14); ,  the base of the natural logarithm
(approximately 2.72); and ,  the imaginary number whose square is 1. You can find each of these
constants on the BasicMathInput palette.

In[1]:=

Out[1]=

In[2]:= 0.

Out[2]= 3.14159

Again, note Mathematica’s  propensity for  exact answers.  You will often use  to indicate the radian
measure  of  an  angle  to  be  input  into  a  trigonometric  function.  There  are  examples  in  the  next
section.

It is possible to enter each of these three constants directly from the keyboard, as well. You can type
p  for , ee  for , and ii  for . 

You can also type Pi for , E for , and I for . The capitalizations are important. These do not
look as nice, but it illustrates an important point: it is possible to type any Mathematica  input
using  only  the  characters  from an ordinary  keyboard.  That  is,  every  formatted mathematical
expression that can be input into Mathematica  has an equivalent expression constructed using
only  characters  from  the  keyboard.  Indeed,  versions  1  and  2  of  Mathematica  used  only  such
expressions.  These  days,  the  keyboard,  or  InputForm,  of  an  expression  is  used  when  you
include a Mathematica  input or output in an email message (say, to a friend or to your profes-
sor).  If  you  copy  a  formatted  expression  such  as  1 3  from  Mathematica  and  paste  it  into  an
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email or text editor, you’ll find that it becomes Pi^(1/3) (or just ^(1/3) if the editor has the 
symbol available). The point is that it is exceedingly simple to include formatted Mathematica
expressions  in  plain  text  environments.  Note  that  you  can  display  any  input  cell  in  Input

Form from within Mathematica by clicking on its cell bracket to select it, and going to the Cell
menu and choosing ConvertTo InputForm.

In[3]:= Pi

Out[3]= True

1.10 Typing Commands in Mathematica
In addition to the basic arithmetic features discussed earlier, Mathematica also contains hundreds of
commands.  Commands  provide  a  means  for  instructing  Mathematica  to  perform  all  sorts  of  tasks,
from computing  the  logarithm of  a  number,  to  simplifying  an  algebraic  expression,  to  solving  an
equation,  to  plotting a  function.  Mathematica’s  commands  are  more  numerous,  more  flexible,  and
more powerful than those available in any hand–held calculator, and in many ways they are easier
to use.

Commands  are  typically  typed  from  the  keyboard,  and  certain  rules  of  syntax  must  be  strictly
obeyed. Commands take one or more arguments, and when entered transform their arguments into
output. The typical syntax for a command is:

Command argument or Command argument1, argument2

Rules for Typing Commands
When typing commands into Mathematica, it is imperative that you remember a few 
rules. The three most important are:

Every built–in command begins with a capital letter.Furthermore, if a command name 
is composed from more than one word (such as ArcSin or FactorInteger) then each 
word begins with a capital letter, and there will be no space between the words.
The arguments of commands are enclosed in square brackets.

If there is more than one argument, they are separated by commas.

When  you  begin  typing  a  command,  the  individual  characters  will  be  blue.  They  will  change  to
black as  soon as  they match the name of a  built–in command. This  syntax coloring mechanism is
designed to help you spot typing errors. If you were to type Arcsin instead of ArcSin, for example, it
would remain blue, indicating that it’s not right.

Here are some examples of commonly used commands:
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Numerical Approximation and Scientific Notation
The  first  command  we  will  introduce  is  called  N.  You  can  get  a  numerical  approximation  to  any
quantity  x  by  entering  the  command N[x].  By  default,  the  approximation  will  have  six  significant
digits:

In[1]:= N

Out[1]= 3.14159

Very large or very small numbers will be given in scientific notation:

In[2]:= 1730

Out[2]= 8 193465725814765556554001028792218849

In[3]:= N 1730

Out[3]= 8.19347 1036

In[4]:= N
1

250

Out[4]= 8.88178 10 16

If you were wondering, yes, typing 17.30  has the same effect as typing N[1730]. But the command N
is more flexible. You can add an optional second argument that specifies the number of significant
digits displayed in the  output.  Type  N[x,  m]  to get  a  numerical  approximation to x  with m  signifi-
cant digits:

In[5]:= N 1730, 20

Out[5]= 8.1934657258147655566 1036

In[6]:= N , 500

Out[6]= 3.14159265358979323846264338327950288419716939937510582097494459230781640
62862089986280348253421170679821480865132823066470938446095505822317253

59408128481117450284102701938521105559644622948954930381964428810975665
93344612847564823378678316527120190914564856692346034861045432664821339

36072602491412737245870066063155881748815209209628292540917153643678925
90360011330530548820466521384146951941511609433057270365759591953092186
11738193261179310511854807446237996274956735188575272489122793818301194

91
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Trigonometric Functions
All trigonometric functions require  that  their argument  be given in radian  measure.  The command
names themselves  and the  square  brackets  are  most  easily  typed directly  from the keyboard,  while
many  arguments  (such  as  

4
)  are  best  typeset  with  the  BasicMathInput  palette.  Note  carefully  the

placement of capital letters in these commands. You can choose from Cos, Sin, Tan,  Sec,  Csc, Cot,
ArcCos, ArcSin, ArcTan, ArcSec, ArcCsc, and ArcCot:

In[7]:= Cos
4

Out[7]=
1

2

In[8]:= Sin
12

Out[8]=
1 3

2 2

In[9]:= ArcSin
1 3

2 2

Out[9]=
12

In[10]:= Tan
12

Out[10]= 2 3

In[11]:= Sec
12

Out[11]= 2 1 3

In[12]:= Csc
12

Out[12]= 2 1 3
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If  you wish  to  use  degrees,  enter  the  degree  measure  multiplied by  the  degrees-to-radians  conver-
sion factor of 

180
. This will simply convert your degree measure to radian measure. For instance, the

sine of 45 degrees is found as follows:

In[13]:= Sin 45
180

Out[13]=
1

2

Alternatively, you can use the built-in constant Degree, which is equal to 
180

. Either type Degree or

push  the   button  on the  BasicMathInput  palette.  Both  of  these  have  the  effect  of  reading nicely,

although in reality you are simply multiplying the argument by 
180

:

In[14]:= Sin 45

Out[14]=
1

2

In[15]:= Sin 45 Degree

Out[15]=
1

2

In[16]:= N
180

Out[16]= 0.0174533

In[17]:= N

Out[17]= 0.0174533

Logarithms
Type Log[x] to find the natural logarithm of x:

In[18]:= Log

Out[18]= 1

In[19]:= Log 45

Out[19]= 45
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Note that it is possible to build up input by nesting one command inside another. Before long you’ll
be doing this sort of thing without giving it a second thought:

In[20]:= N Log , 30

Out[20]= 1.14472988584940017414342735135

To find the base b logarithm of x, type Log[b, x]. Here is a base 10 logarithm:

In[21]:= Log 10, 1000

Out[21]= 3

And here is one in base 2:

In[22]:= Log 2, 512

Out[22]= 9

 Of course you can always check an answer:

In[23]:= 29

Out[23]= 512

Factoring Integers
You can factor any integer as a product of prime numbers using the command FactorInteger. Type
FactorInteger[n] to obtain the prime factorization of n:

In[24]:= FactorInteger 4 832875

Out[24]= 5, 3 , 23, 1 , 41, 2

The output here needs interpretation. It means that 4,832,875 can be factored as 53 23 412. Note
the form of  the  output:  a  list  whose members  are each lists  of  length two.  Each list  of  length two
encloses a prime number followed by its exponent value. Again, it is easy to check the answer:

In[25]:= 53 23 412

Out[25]= 4 832875

You  may  wonder  why  the  output  to  FactorInteger  appears  in  a  form  that  at  first  glance  is
somewhat  cryptic.  Why isn’t  the output  just  53 23 412?  The  rationale  is  subtle,  but  impor-
tant. The designers of Mathematica put the output in the form they did to make it easier for the
user to work programmatically with the output. That is, it is easy to extract just the primes 5,
23, and 41, or just the exponents 3, 1, and 2, from this output, and to input those values into
another command for further analysis. Remember that Mathematica is a sophisticated program-
ming  language  that  is  used  by experts  in  many disciplines.  In  this  and in many other  cases,
commands are designed to allow their output to be easily operated on by other commands. It
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makes  the  task  of  assembling  many  commands  into  a  single  program  much  simpler  for  the
user. For the beginner, however, these advantages may not be immediately obvious.

Factoring and Expanding Polynomials
Mathematica is very much at home performing all sorts of algebraic manipulations. For example, you
can factor just about any imaginable polynomial by typing the command Factor[polynomial] (recall

that a  polynomial is  an expression consisting of a sum of terms,  each of which is  the product of a
constant and one or more variables  each raised to a  nonnegative whole number power).  Typically,
lowercase letters such as x or t are used to represent the variables in a polynomial. Here’s an example
that you could probably do by hand:

In[26]:= Factor t2 9

Out[26]= 3 t 3 t

But here’s one that you probably couldn’t do by hand:

In[27]:= Factor 64 128 x 48 x2 144 x3 292 x4 288 x5 171 x6 61 x7 12 x8 x9

Out[27]= 2 x 6 1 x x3

Note that you do not need to type a space between a number and a variable to indicate multiplica-
tion as  long as  the  number  is  written  first;  Mathematica  will  insert  the  space  automatically  in  this
case.

You can also have Mathematica  expand a factored polynomial by typing Expand[polynomial]. Below

we confirm the output above:

In[28]:= Expand 2 x 6 1 x x3

Out[28]= 64 128 x 48 x2 144 x3 292 x4 288 x5 171 x6 61 x7 12 x8 x9

The  commands  Factor,  Expand,  and  a  host  of  others  that  perform  various  algebraic  feats  are
explored in Chapter 4, “Algebra.”

Plotting Functions
Mathematica has a variety of commands that generate graphics. One of the most common is the Plot
command, which is used for plotting functions. Plot  takes two arguments. The first is the function
to be plotted, the second is something called an iterator, which specifies the span of values that the
independent variable is to assume. It is of the form

{variable, min value, max value}

Here’s an example. Note that we view the function on the domain where the variable x ranges from
3 to 3. Mathematica determines appropriate values for the y axis automatically:
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In[29]:= Plot x2 1, x, 3, 3

Out[29]=

3 2 1 1 2 3

2

4

6

8

Here’s a more interesting example:

In[30]:= Plot x Cos
10

x
, x, 2, 2

Out[30]=
2 1 1 2

1.5

1.0

0.5

0.5

1.0

1.5

The Plot command is explored in greater depth in Section 3.2 on page 53.

Manipulate
Version 6  of  Mathematica  introduces  the  Manipulate command,  which allows  the  user  to  create  a
dynamic interface (with sliders or buttons that can be manipulated in real time). Like Plot, Manipu
late  takes  two  arguments.  The  first  is  the  expression  to  be  manipulated,  the  second is  an  iterator
which specifies the span of values that the controller variable is to assume. Here’s an example:

In[31]:= Manipulate x2 1, x, 3, 3

Out[31]=

x

8

You can now move the slider with your mouse to control the value assumed by x, and watch as the

value of  x2 1 is  displayed in real  time.  This  is  far  more interesting to play with than it  is  to read
about, so be sure to try it! Click on the  button to the right of the slider to reveal a more sophisti-

cated user control panel:

16 Getting Started



x

3

8

As you mouseover  each button on the  panel,  a  tooltip  message will  display on screen with  a  brief
explanation of that button’s  function. Go ahead and try  each button in turn to get a feel for what
you can do. You can even type a value for the variable x into the input field and hit Return (Mac) or

Enter (Windows PC) to see the value of x2 1 in the display area.

Here’s a more interesting example:

In[32]:= Manipulate Plot a x Cos
10

x
, x, 2, 2 , PlotRange 2 , a, 2, 2

Out[32]=

a

2 1 1 2

2

1

1

2

As  you  type  this  input,  be  sure  to  leave  a  space  between  the  a,  the  x,  and  Cos.  The  setting  Plot
Range 2  has  been  added  after  the  second  argument  in  the  Plot  command  to  fix  the  viewing
rectangle between 2 and 2 in both the x and y directions. This is needed so that the scaling on the

y  axis  does  not  change  as  the  slider  moves.  You  can  find  the   symbol  on  the  BasicMathInput

palette. Manipulate is explored in greater depth in Section 3.4 on page 76.

Square Root Function
Here you have two choices. You can use the square root button on the BasicMathInput palette:
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In[33]:= 144

Out[33]= 12

Or you can forgo the palette approach and type Sqrt[x] to get the square root of x:

In[34]:= Sqrt 144

Out[34]= 12

It is a fact that every palette button with a placeholder (such as the square root button) has an
equivalent  syntax that may be typed entirely from the keyboard. In most  cases you will  find
the palette  version  of  the  command easier  to  use.  However,  if  you  are  a  good typist  and use
Mathematica  frequently  you  may  find  it  easier  to  work  from  the  keyboard  more  rather  than
less.  If  you  ever want to  know the name of  the InputForm  of  a  palette  command, follow this
procedure:  First  use  the  palette  version  of  the  command to  create  an  input  cell.  Then  use  a

single click of your mouse to highlight the cell bracket for the cell. Go to the Cell  menu and

select  Convert  to InputForm  from  the  pop-up  menu.  You  will  see  the  two-dimensional
formatted  command replaced  by  its  InputForm  alternative.  In  the  future,  you  can  just  type
the InputForm of the command directly instead of using the palette.

Real and Imaginary Parts of Complex Numbers
Every complex number is of the form a b , where  represents the square root of 1. The real part
of  the  number  is  a,  and  the  imaginary  part  is  b.  You  can  extract  the  real  and  imaginary  parts  of
complex numbers with the commands Re and Im.

In[35]:= Re 2 3

Out[35]= 2

In[36]:= Im 2 3

Out[36]= 3

In[37]:= Re 2 3 6

Out[37]= 2035

Extracting Digits from a Number
The command IntegerDigits will produce a list of the digits appearing in an integer.

In[38]:= IntegerDigits 2010

Out[38]= 2, 0, 1, 0
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The  output  is  a  list;  it  is  comprised  of  items  (digits  in  this  case)  enclosed  in  curly  brackets  and
separated  by  commas.  Lists  such  as  this  are  a  fundamental  data  structure  in  Mathematica.  Many
commands will  produce lists  as  output  and accept lists  as  input.  Lists  are  so ubiquitous  that many
operations that  work  on  numbers  will  automatically  be  distributed  over  lists.  For  instance,  we  can
add 1 to every member of a list like this:

In[39]:= 1 2, 0, 1, 0

Out[39]= 3, 1, 2, 1

FromDigits will take a list of digits and assemble them back into a number.

In[40]:= FromDigits 2, 0, 1, 0

Out[40]= 2010

Programming
The real utility of commands such as these lies in the ability to take the output of one and use it as
the input to another. Putting commands together in a way that does something useful is known as
programming. Mathematica  is, among other things, a rich programming environment. Here we take a
number and form a new number by adding 1 to each of the original number’s digits:

In[41]:= FromDigits 1 IntegerDigits 2010

Out[41]= 3121

Think about how little  code is  required to do that,  and then think how you might accomplish the
same task in some other programming language, or in Excel.

The  following  input  illustrates  this  embedding  of  commands,  one  within  another,  but  taken  to
another level:

In[42]:= ArrayPlot NestList Function x, IntegerDigits Floor
3

2
FromDigits x, 2 , 2 ,

1, 0 , 200 , Background Gray
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Out[42]=

While what’s happening here is far beyond what one needs to know at this early stage, it is possible,
with  a  bit  of  perseverance,  to  see  what  is  going on.  We  read  from the  inside  out:  starting  with  x,
which represents the base–2 digit sequence of a number, it multiplies the number (FromDigits[x, 2])

by 3

2
, rounds down if the result is not a whole number, then displays its IntegerDigits  base–2. This

is invoked successively,  starting on the number 2 (i.e.,  the number whose IntegerDigits  are 1, 0 ),
and then on the result, and then on the result of that, a total of 200 times. So beginning with 2, one

next gets 3

2
 of 2, i.e., 3, then 3

2
 of 3 (rounded down), or 4, then 3

2
 of 4, i.e., 6, and so on. The num-

bers  are  displayed  in  base–2,  one above the  other  as  successive  rows  in  an array,  with  zeros  repre-
sented by  white  squares  and ones  represented by  black squares.  Chapter  8 presents  the basic com-
mands used here in more detail.

Naming Things
It  is  easy  to  assign  names  to  quantities  in  Mathematica,  and  then  use  those  names  to  refer  to  the
quantities later. This is useful in many situations. For instance, you may want to assign a name to a
complicated expression to avoid having to type it again and again. To make an assignment, type the
name  (perhaps  a  lowercase  letter,  or  a  Greek  character,  or  even  an  entire  word),  followed  by  =,
followed  by  the  quantity  to  which  the  name  should  be  attached.  For  example  (look  for   in  the
BasicMathInput palette):
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In[43]:=
6

Out[43]=
6

Now whenever you place  in an input cell, Mathematica will replace it with 
6
:

In[44]:=

Out[44]=
6

In[45]:= Sin

Out[45]=
1

2

In[46]:= Sin 2

Out[46]=
3

2

In[47]:= Tan 4

Out[47]= 3

You can (and should) clear an assignment when you are done. This is accomplished with the Clear
command:

In[48]:= Clear

No output  will  be  produced when you enter  the  Clear  command.  You can check that  no value  is
attached to the symbol  by typing it into an input cell:

In[49]:=

Out[49]=

For  a  second example,  we  can assign  to  p  the  value  of   rounded to  39  decimal places  (the  3  fol-
lowed by 39 decimal places makes a total of 40 significant digits):

In[50]:= p N , 40

Out[50]= 3.141592653589793238462643383279502884197

Using this approximation of , we can approximate the area of a circle of radius 2:
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In[51]:= p 22

Out[51]= 12.56637061435917295385057353311801153679

Note how Mathematica, in performing a calculation involving an approximate number p and an exact

number 22, returns an approximate number with the same number of significant digits as p.

In[52]:= Clear p

For a final example, we’ll assign values to words. Each word is treated as a separate entity. The terms
miles  and  hour  are  not  given  values,  but  distance  is  assigned  the  value  540  miles,  and  time  is
assigned the value 6 hour:

In[53]:= distance 540 miles

Out[53]= 540 miles

In[54]:= time 6 hour

Out[54]= 6 hour

In[55]:= rate
distance

time

Out[55]=
90 miles

hour

We  can  clear  all  of  these  assignments  in  one  shot  with  the  Clear  command—just  put  a  comma
between each successive pair of names:

In[56]:= Clear distance, time, rate

Since all built-in Mathematica  objects begin with capital letters, it’s a good practice to make all your
names  lowercase  letters,  or  words  that  begin  with  lowercase  letters.  This  practice  assures  that  you
will  never  accidentally  assign  a  name  that  Mathematica  has  reserved  for  something  else.  The  only
Greek  character  that  has  a  built-in  value  is  .  All  others  make  perfectly  good  names.  You’ll  find
these characters in the Special Characters palette.

It is also permissible to use numbers in your names, provided that a number is not the first charac-
ter. For instance, you might use the names x1 and x2. It is not alright to use the name 2x, for that
means 2 x.
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1.11 Saving Your Work and Quitting Mathematica
Say you want to save a notebook that you created. Let’s suppose that it is a freshly created notebook
that has not  been saved previously.  Go to the File  menu and select Save.  You will  be prompted by
the  computer  and  asked  two  things:  What  name  do  you  want  to  give  the  notebook,  and  where
would you  like  the  computer  to  put  it?  Give  it  any  name you like  (it  is  good form to  append the
suffix “.nb” which stands for “notebook”), and save it to an appropriate location. The details of this
procedure vary somewhat from one platform to the next (Mac OS, Windows, etc.), so ask a friendly
soul for  assistance if  you are unfamiliar with  the computer  in front of  you.  Keep in mind that the
saving  and  naming  routine  isn’t  a  Mathematica  thing;  it’s  a  process  that  will  be  similar  for  every
program on the computer  you are using.  Anyone who is  familiar with the platform will  be able to
help.

The file size of a Mathematica  notebook tends to be quite small unless the notebook contains
lots  of  graphics.  Notebook  files  are  also  portable  across  computer  platforms,  as  the  files
themselves  are  plain  text  (ascii)  files.  The  Mathematica  front  end  interprets  and  displays
notebook files in much the same way that a Web browser interprets and displays HTML files.

For  information  on  the  structure  of  the  underlying  notebook  file,  select  Documentation
Center  from  the  Help  menu,  type  “notebooks  as  Mathematica  expressions”  in  the  text  field,

then read the tutorial Notebooks as Mathematica Expressions.

If you have created a large notebook file, and want to shrink its file size (for instance to make
it  small  enough  to  attach  to  an  email)  do  this:  Open  the  notebook  and  delete  the  graphics

cells. To do this, click once on a graphic’s cell bracket to select it, then choose Cut in the Edit
menu.  Do  not  cut  out  the  input  cells  that  generated  the  graphics.  Now  save  the  notebook.
When  you  open  the  notebook  next  time,  you  can  regenerate  any  graphic  by  entering  the

input  cell that created it. An even simpler approach is to select Cell Delete all  Output, and

then save your  notebook.  When you  open  the file  later,  select  Evaluation   Evaluate  Note–
book to re-evaluate every input cell in the notebook.

After  a  notebook has  been saved  once,  the  title  bar  will  bear  the  name you have  assigned.  As  you
continue to  work  and modify  the  notebook,  you  can and should  save  it  often.  This  is  easy  to  do:
choose Save  from the  File  menu.  This  will  write  the  latest  version  of  the  notebook to  the  location
where the file was last saved. Should the power fail during a session, or should your computer crash
for some reason, it is the last saved version of your notebook that will survive. Many hardened souls
will save every few minutes.

To end a  Mathematica  session,  select  Quit  from the  application’s  main menu.  If  you have modified
your  notebook  since  it  was  last  saved,  you  will  be  prompted  and  asked  if  you  care  to  save  the
changes you have made since it was last saved. Answer Save or Don't Save as appropriate.
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1.12 Frequently Asked Questions About Mathematica’s Syntax

Why Do All Mathematica Command Names Begin with Capital Letters?

Mathematica  is  case-sensitive,  and  every  one  of  the  thousands  of  built-in  Mathematica  commands
begins with a capital letter. So do all built-in constants, built-in option settings, and so on. In fact,
every built-in Mathematica symbol of any kind that has a name begins with a capital letter (or the $
or \ characters). Taken together, there are over 3000 such objects.

In[1]:= Length Names " "

Out[1]= 3043

Why capital  letters?  The  main  reason  is  that  you  will  find  yourself  assigning  names  to  quantities,
such as x 3 or pi 3.14. Since you don’t know the name of every built-in object, there is a danger

that  you  may  choose  a  name  that  coincides  with  the  name  of  a  built-in  command  or  constant.
Without getting into the technicalities, that would be bad. But it can be avoided if you simply stick
to the convention of beginning all your assignment names with lowercase letters. By doing this you
guarantee that you will never choose a name that conflicts with any existing Mathematica symbol.

Why Does My Input Appear in Color as I Type?
Mathematica  is  ruthless  in  its  demand  for  precise  typing.  Syntax  coloring  is  an  aid  to  help  you
navigate these  perilous  waters.  Symbols that  are  not in the  system’s  memory appear  in blue.  So as
you type a command such as Factor, it will be blue until the final r is added, at which point it turns
black. If it doesn’t turn black—oops, you mistyped it. When you use = to define your own symbols,
they  too  will  turn  black  upon  being  entered.  Brackets  need  to  come  in  pairs,  with  each  opening
bracket  having a  matching closing bracket  somewhere  down the  line.  An  opening bracket  appears
brightly  colored,  and turns  black only  when its  mate  has  been  appropriately  placed.  If  your  input
has any brightly colored brackets it’s  not ready for entry.  If  you close a bracket too early,  you may
see a disturbing red caret. For instance:

In[2]:= Plot x

Plot::argr : Plot called with 1 argument; 2 arguments are expected.

Out[2]= Plot x

The caret indicates that you forgot something; Plot needs two arguments (a function and iterator),
and here we did not add the iterator. The caret points to where you need to type something.
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Why Are the Arguments of Commands Enclosed in Square Brackets?
The numerical approximation command N is an example of what a mathematician calls a function;
that  is,  it  converts  an  argument  x  to  an  output  N[x].  In  Mathematica,  all  functions  enclose  their
arguments in square brackets [ ], always.

You may recall that in our usual mathematical notation, we often write f x  to denote the value of

the function f  with argument x.  This  won’t  do in Mathematica,  for  parentheses  (  )  are reserved  for

grouping terms. When you write f 12 , for instance, it is not clear whether you intend for a function

named f  to be evaluated at 12, or whether you want the product of a variable named f  with 12. Since

parentheses  are  routinely  used  for  these  two  very  different  purposes,  the  traditional  notation  is
ambiguous. You and I can usually flesh out the meaning of the notation f 12  from its context, but

a  computer  needs  unambiguous  instructions.  Hence  in  Mathematica,  square  brackets  are  used  to
enclose function arguments, while parentheses are used to group terms.

When  working  with  Mathematica,  never  use  round  parentheses  for  anything  other  than  grouping
terms, and never use square brackets for anything other than enclosing the arguments to functions.

What Happens If I Use Incorrect Syntax?
If you want  to find the natural  log of  7.3,  you must  type Log[7.3],  not log(7.3),  not Log(7.3),  not
log[7.3], not ln[7.3], and not anything else.

What happens if you slip and muff the syntax? First of all, don’t worry. This will happen to you. The
computer won’t explode. For example, behold:

In[3]:= Log 7.3

Here our input is close enough to the correct syntax that Mathematica  suspects  that we goofed, and
tells  us  so.  Upon  entering  an  incomplete  or  erroneous  input,  version  6  and  higher  will  show  a
warning  flag  in  the  expression’s  cell  bracket,  and  will  often  highlight  the  offending  part  of  the
input. Click once on the warning flag and any relevant warning messages will be displayed.

In[3]:= Log 7.3

Syntax::bktmcp : Expression "Log 7.3" has no closing " ".

Syntax::sntxi : Incomplete expression; more input is needed.

You will  certainly  generate  messages  like  this  at  some point,  so  its  good to  acquaint  yourself  with
some. Error messages are somewhat cryptic to the new user,  and are rarely a welcome sight. But do
read the text of these messages, for you will often be able to make enough sense out of them to find
the source of the problem. In this case we left off the closing square bracket. Note that as you type
your  input,  each  opening  bracket  will  appear  brightly  colored  until  the  corresponding  closing
bracket is added, at which time both brackets will turn black. This makes mistakes of this type easy
to spot.  If an expression has one or more brightly colored brackets, it is incomplete and should not
be entered. 
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But  worse  than getting an  error  message or  input  flag  is  getting neither.  It  is  not  difficult  to enter
syntactically correct, but meaningless input. For example, consider this:

In[4]:= ln 7.3

Out[4]= 7.3 ln

No warning is given (other than the command name ln appearing in blue before the cell is entered),
but  the  output  is  not  the  natural  logarithm  of  7.3.  Mathematica  has  instead  multiplied  the
meaningless symbol ln by the number 7.3 (remember round brackets are for grouping only). Always
look carefully and critically at your output. There will certainly be times when you need to go back
and edit and re-enter your input before you get the answer you desire.
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2
Working with Mathematica

2.1 Opening Saved Notebooks
You can open any Mathematica notebook file by double-clicking on its icon with your mouse. It will
appear on your screen exactly as it was when it was saved. You can open two or more notebooks at
the same time if you wish.

2.2 Adding Text to Notebooks

Text Cells
Mathematica  has  an integrated word processor  that  is  simple  to  use  once you are  familiar with  the

cell  structure  of  a  Mathematica  notebook  (see  Section  1.5,  “Input  and  Output,”  on  page  3  for  a

discussion of input and output cells). To add text to a notebook, you need to create a text cell. To do
this,  first  go to the Window menu and select  Show Toolbar.  A  toolbar  will  appear  across  the top of
your notebook window. Now position your mouse between any two cells in your notebook (or below
the  last  cell  in  the  notebook,  or  above  the  first  cell)  where  you  want  to  add  text.  The  cursor  will
change from a vertical bar to a horizontal bar. Now click. You should notice a horizontal black line
that  runs  completely  across  your  notebook window.  Next,  use  your  mouse  to  select  Text  from the
pull-down menu on the toolbar, and start typing. As soon as you do, a new text cell will be inserted
in your notebook at the position of the horizontal black line, and it will contain the text you type. It
is  common  practice  to  use  a  new  text  cell  for  each  paragraph  of  text.  Note  that  using  the  key
combination  at the end of a paragraph will create a new text cell under the current one, so
it’s easy to write paragraph after paragraph as if you were using a dedicated word processor.

Mathematica’s text environment is a joy to use. It wraps lines for you within each text cell. You can
use any palette to paste  a mathematical symbol or expression into your text,  just as you paste into
an input  cell.  There  is  a  full-featured  spell  checker—just  place  the  cursor  where  you  want  to  start
spell checking and choose Check Spelling… in the Edit menu. We’ll soon see that it is highly adept at
formatting  complex  mathematical  expressions.  For  these  reasons,  you  may  find  yourself  using
Mathematica  as your  word processor  of choice for technical papers.  You can also highlight portions
of text with your mouse and cut, copy, or paste (look in the Edit menu for these and other features).
You can change the size, face, font, and color of highlighted text by choosing the appropriate item



in  the  Format menu. There  are  buttons  on the toolbar  to  control  the  centering and  justification of
your text. Use these features to make your notebook a masterpiece.

A Notebook with the Toolbar Displayed

You can cut, copy, paste, and format entire cells or groups of cells. You select a cell or group of cells
by positioning the tip of the cursor arrow on a cell bracket or grouping bracket along the right side
of the notebook window. The bracket becomes highlighted. Now choose Cut  or Copy  from the Edit
menu, position the mouse where you wish to paste the selection (in the current notebook or in any
other  notebook that  is  open),  click  once,  and select  Paste  from the  Edit  menu.  Similarly,  the  com-
mands in the Format  menu will be applied to the text in any cell or group of cells whose bracket is
selected.

Mathematica’s  cell  structure  makes  it  easy  to  organize  your  notebook into collapsible  sections.  You
simply add preformatted title or section headings. To do this, click between existing cells (or below
the  last  cell  in  the  notebook,  or  above  the  first  cell),  and  then  go  to  the  pull-down  menu  in  the
toolbar and select Title, or Section, or Subsection, or the like, and start typing. Upon adding a title to
a notebook, you will  notice a  gigantic grouping bracket on the far  right of  your  notebook window
that  spans  the  entire  notebook.  Place  the  cursor  anywhere  along  this  bracket  and  double-click  to
close  the  group.  You  will  see  the  title,  but  the  rest  of  the  notebook will  disappear.  Don’t  worry,  it’s
still there;  double-click again on the bracket to open the group.  When you create sections or subsec-
tions, grouping brackets will appear to show their  respective  domains,  and these  too  can be  toggled
open or closed with a double-click on the appropriate grouping bracket. These features allow you to
keep  your  work  organized,  and  minimize  the  amount  of  scrolling  needed  to  navigate  a  large
document.

If you click between cells in a notebook and then start typing, you will by default create a new input
cell. This makes it easy to enter input during a Mathematica session; as soon as you get output from
one computation,  you can just  start  typing to generate a  new input  cell.  You only have to specify
cell type  (Text,  Title,  Section,  etc.)  when you want  to  create some type  of  cell  other than input.  By
the way,  you can forgo the  toolbar  if  you want,  and select  your  cell  types  from the pop-up menu
that appears when you select Style in the Format menu.

28 Working with Mathematica



If you accidently start typing text in an input cell, don’t despair. The fix is simple: click once on the
cell’s bracket to select it, then use the toolbar (or go to the Format menu) to change the cell to a text
cell.

Adding Mathematical Expressions to Text
If you wish to place a mathematical expression (such as f x x2) within a sentence of text, there is a

simple  means  for  doing so.  However,  be  aware  that  typesetting  mathematics  is  inherently a  tricky
business  whose  subtleties  can  only  be  appreciated  by  those  who  have  attempted  it.  That  said,
Mathematica  is an excellent environment for producing beautifully typeset mathematics. Its prowess
in this regard far exceeds that of standard word processing programs such as Word, and rivals that of
specialty  programs such  as  LATEX,  while  being much easier  to  use.  We advise  you to  read carefully

the procedure outlined below, as the method for adding mathematical expressions to text, while not
difficult, is not obvious.

Suppose that you wish to place a mathematical expression in the middle of a sentence of text. Begin
by creating a text cell (as outlined in the previous section) and typing the text that will precede the
mathematical  expression.  When  you  are  ready  to  insert  the  math,  from  the  menus  select  Insert
Typesetting Start  Inline Cell.  Or from the keyboard hit  9  (for both Mac OS and Windows). The
state  of  the  cursor  will  change  to  a  placeholder  within  a  lightly  colored  box.  This  colored  box
delimits  what  is  called  an  inline  cell.  Now type  your  mathematics,  using  palettes  if  you like,  being
careful not to exit  the inline cell  as you add the mathematics  (if you exit the colored box,  use the
backarrow to get  back into it).  When you are finished typing the mathematical expression,  hit the
forward arrow to  exit  the  inline cell.  You can also  exit  the  inline cell  by hitting 0 .  It’s  easy  to
remember these keyboard shortcuts as (  to start a mathematical formula and )  to end it.

When you  are  typing  your  mathematics  within  an  inline  cell,  you’ll  notice  that  what  you  type  is
displayed differently  than  ordinary  text.  For  instance:  any single  letter  will  be  italicized,  a  hyphen
will change subtly to a  minus sign,  and spacing will be different. For example, here is an equation
typeset  without  using an inline cell:  f(x)-x=0.  And here is  what is  produced by the same keystrokes
when typeset  within an inline cell:  f x x 0.  The difference is  striking,  and clearly illustrates  the

advantage of using inline cells to display mathematics.

Modifying the Stylesheet
You  can  change  the  look  of  an  entire  notebook  by  changing  the  stylesheet.  A  stylesheet  contains
different formatting parameters  for  each cell  type.  One stylesheet  might render all  input cells  with
purple backgrounds; another might render all titles, sections, and subsections in Helvetica font with
a  gray  background,  and  12-point  Times  Roman  as  the  default  text  font.  By  choosing  a  new
stylesheet  your  notebook will  take  on  a  completely  new look.  Go to  Format StyleSheet  to  select  a
new stylesheet for your notebook; there are several from which to choose.

2.2   Adding Text to Notebooks           29



Note  that  whenever  you  switch  stylesheets,  the  items  in  the  Format Style  menu  will  change  to
reflect  the  cell  styles  available  in  that  stylesheet.  Note  also  that  stylesheets  can  be  used  to  control
both the on-screen and print versions of notebooks, and even to make each look different from the
other if you wish. Stylesheets may also be used to change what the default cell style is in a particular
notebook  (the  type  of  cell  that  will  be  created  if  you  just  start  typing).  In  order  to  see  just  how
powerful  these  concepts  are,  try  this:  Open  a  new  blank  notebook,  and  switch  to  the  Format
Stylesheet Utility Correspondence  stylesheet.  Now  pay  attention:  you  are  going  to  write  a  formal
letter.  First  type  your  name and address,  using  carriage returns  to  create  new lines.  It  appears  in  a
special “Sender” cell, complete with a gray label to remind you of that fact. Now hit the down-arrow
on the keyboard to jump to the insertion point for the next cell. Immediately start typing. This time
a  “Date”  cell  will  be  created,  so  type  today’s  date.  Again,  when  you’re  done  hit  the  down-arrow.
Now type the recipient’s name and address. Down-arrow. Type a salutation, such as “Dear Stephen.”
Down-arrow. Now type the body of your letter,  using the carriage return to create new paragraphs.
Down-arrow. Type your closing, such as “Sincerely” or “Cheers.” Down-arrow. And finally, add your
signature. Now print it.  All the gray cell labels do not appear in the printed version; the formatting
is  just  right.  If  you  have  to  write  a  lot  of  letters,  this  stylesheet  streamlines  your  workflow.  That’s
exactly  what  a  stylesheet  should  do.  Creating  a  sophisticated  stylesheet  like  this  one  takes  a  bit  of
work, but using it takes almost none. And if you just wish to modify an existing stylesheet to better
suit your purposes, well that’s a breeze. Read on…

Suppose you wish to modify an existing cell style,  for instance, to change the look of the “Section”
headings. Or suppose you wish to create an entirely new cell style, say a custom text cell that puts a
light-gray background color behind your text. To do this you add a local modification to an existing
stylesheet (the principle is that of a cascading stylesheet, which is common in web design). This is the
best way  to ensure that  you produce a document with consistent style  parameters;  it  prevents  you
from having to apply the desired style features one by one onto each relevant cell in your notebook.
Here’s how to set it up: create a notebook using one of the included stylesheets. Choose Format Edit
Stylesheet…,  and  a  stylesheet  notebook  will  appear.  At  the  top  of  this  notebook  you  may  either
choose an existing style to modify (if, for instance, you just want to change the default text font), or
type the name of a new style you would like to create (if, for instance, you want to keep the default
text style,  and add a second text style  for some other purpose).  In either case,  a cell will  appear in
this  new notebook, and its  cell bracket will  be selected.  Go directly to the Format  menu and apply
the formatting changes you desire  to this  selected cell.  You can change the font, the font size,  the
font  slant,  the  font  color,  the  background color,  the  alignment,  etc.  When you  are  finished,  close
the stylesheet window, and return to your notebook. If you created a new style, its name will appear
at the bottom of the Format Style  menu, so you may easily apply it to any cell in your notebook at
any time. If  you modified an existing style,  all cells of that style in your notebook will now reflect
that change.
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2.3 Printing
As long as your computer is properly hooked up to a printer, and the printer is turned on, you can
print  your  current  notebook  by  going  to  the  File  menu  and  choosing  Print….  If  your  notebook
contains graphics or two-dimensional input using special math fonts, it may take a moment to start
printing, so be patient.

You can also select one or more cells to print, rather than printing an entire notebook. This can save
vast quantities of paper, so we repeat: You don’t have to print the entire notebook. To print a single
cell or any group of cells delimited by a grouping bracket, position the tip of the cursor arrow on the
cell or grouping bracket and click once. This selects  the cell or group. Now go to the File  menu and
choose Print Selection….

To select several adjacent cells when there is no grouping bracket, hold down the  key and click
on their cell brackets one by one. They will all become selected. To select several nonadjacent cells,
hold down the  key (Mac OS),  or the  key (Windows), while clicking on cell brackets.  You can
then print your selection as above: Go to the File menu and choose Print Selection….

Printing a notebook that has graphics can sometimes lead to less-than-optimal page breaks. It is easy
to add more page breaks, but it can be tricky to force pages not to break. To add a page break, simply
click between the cells where the break should occur and select Insert PageBreak. To remove a break
above  or  below  a  graphic,  try  resizing  the  graphic.  It  is  often  the  case  that  when  printed,  smaller
graphics  look  better,  so  this  may  be  a  good  idea  in  any  event.  If  this  does  not  help,  or  if  the
unwanted page break is  not adjacent to a graphic, select the bracket of the first cell to appear after
the  unwanted  break,  then  summon  the  Option  Inspector  by  visiting  Format Option  Inspector....
Make  sure  that  the  first  pull-down  menu  reads  Selection  (which  it  should  by  default).  Now  type
“PageBreak” into the  text  field.  Change the  PageBreakAbove  setting  for  the  selected cell  to  False.
Repeat as necessary for nearby cells. If you are working on a Mac, be sure to make use of the Preview
button in the Print dialog before committing your notebook to paper.

It  is  possible  to  control  what  is  printed  in  the  header  and  footer  areas  on  each  page  of  a  printed
notebook. By  default,  the header is  comprised of the filename of the notebook and the page num-
ber.  To  change  this,  go  to  the  File  menu  and  select  Printing  Settings Headers  and  Footers….  The
resulting dialog box gives  you the  option  of  not  displaying any header  on the  first  page,  which is
handy if  you  have  a  nicely typeset  title  page.  There  are  also  text  fields  for  the  content of  the  left,
right, and center portion of each header and footer. What appears by default in some of these fields
will look complex, but don’t worry. You may replace the content of any of these fields with any text
you  like  enclosed  in  double  quotation  marks,  and  you’ll  be  good  to  go.  The  complex  structures
appearing by default are needed only if you wish to place page numbers or other such non-constant
values  into  your  headers.  Look  up  any  of  the  command  names  appearing  in  these  fields  in  the
Documentation Center for further information.

2.3   Printing           31



Each  text  field  for  the  left,  right,  and  center  portions  of  a  header  or  footer  will  accept  a
complete  Cell  expression.  This  ensures  total  control  over  the style  of  the header,  and allows
you  to  include  CounterBoxes  (for  page  numbers),  and  other  such  objects.  To  create  a  styled
text heading in any one of these locations, type Cell " your header text ", " Header "  in the text

field. The first argument of the Cell  command is your header text wrapped in double quotes.
The second argument is a cell  style name, also in double quotes. Other common style names
for  headers  include  "PageNumber",  "Footer",  or  any  other  style  name  that  appears  in  the

Format Style  menu.  You  can  modify  styles  with  a  third  argument,  such  as:
Cell "your header text", "Text", FontSlant "Italic" .  If  you  don’t  like  the  look  of  the  page

numbers  that  appear  in  the  default  headers,  the  most  simple  means  of  manually  putting  a
page number into one of the text fields is to type

Cell TextData CounterBox "Page" , "Header"  

where you may change the second argument from "Header" to "PageNumber" or to any other

style name that appears in the Format Style menu.

2.4 Creating Slide Shows
Most  people  are  familiar  with  PowerPoint presentations. A Slide Show in Mathematica  is  a  similar
type of presentation environment. Making a Slide Show is easy. While the transition effects are not
as  polished  as  those  in  a  dedicated  presentation  program  such  as  PowerPoint  or  Keynote,  a
Mathematica  Slide  Show  has  the  added  feature  of  allowing  live  computations  during  your
presentation.  You  can  wow  your  audience  with  a  Manipulate  or  take  a  surface  for  a  spin  in  real
time.  This  is  possible  because  a  Slide  Show  is  really  just  a  live  Mathematica  notebook  with  some
special display features. 

To  get  started  simply  grab  the  SlideShow  palette  from  the  Palettes  menu.  The  top  button,  New
Template,  will  open a new notebook with three pre-formatted generic slides.  You are not bound to
this format, it is just to give you an idea of what a very simple Slide Show looks like. You can delete
everything in these slides  and fill them with any Mathematica  content, but before you do that let’s
take the generic one for a quick drive.

At the bottom of the palette there are two buttons labeled Normal and Slide Show. You can edit your
slides  in  either  environment.  The  Normal  environment  shows  all  your  slides  at  once  with  cell
brackets  grouping  the  content  of  each  slide.  This  is  handy  for  cutting  and  pasting  content  into
several slides. The Slide Show environment shows one slide at a time. You can toggle back and forth
between the two environments as often as you wish. 

In the Slide Show environment you can advance your slides by pushing the buttons in the toolbar at
the  top  of  the  window  or  the  small  gray  arrows  at  the  bottom  right.  If  you  don’t  want  the  gray
arrows at the  bottom of a  slide you can delete that  cell when you are in the Normal  environment.
The  leftmost  arrow  button  among the  four  in  the  toolbar  takes  you  to  the  beginning of  the  Slide
Show while the one on the right takes you to the end. Hit the button in the far top left corner of the
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toolbar  in  order  to  toggle  into  full-screen  presentation  mode.  Push  it  again  to  toggle  out  of  full-
screen mode.

Now you are ready to create your own Slide Show. You can use any format to add content to a slide.
You can even change the Stylesheet. If you want to add another slide go to the Normal environment,
position  your  cursor  between  the  slides  where  you  want  to  add  a  slide  and  click  once  to  make  a
horizontal bar appear, then click the New Slide button in the palette. 

Push the Table of Contents  button and you get a window listing all your slides. Finally, the Convert
Notebook button will convert any notebook into a Slide Show. 

You can cut and paste content from other programs, such as photos from the web or sketches from
Geometer’s Sketchpad, into your Mathematica  Slide Show. Once you get started you’ll find it is very
simple and intuitive to work in the Slide Show environment.

2.5 Creating Web Pages
If  you  would  like  to  save  a  Mathematica  notebook  as  an  HTML  (Hypertext  Markup  Language)
document so that it  can be posted as  a web page,  simply go to the File  menu and select Save As…,
then choose Web Page (*.html)  in the Format  pop-up menu near the bottom of the resulting dialog
box. Your notebook will be converted, and any graphics or mathematical expressions  will be saved
as separate files (in the gif format).

We know of a student who was getting nowhere trying to explain a mathematics problem over the
phone to a fellow student. He then typed the equations he was thinking of into Mathematica, saved
the notebook as HTML, posted it to his website, and had the fellow student go to the freshly minted
page.  This  seems  a  bit  extreme,  but  if  you  maintain  a  web  site  and  are  handy  with  posting  web
pages, it’s nice to know that it’s a simple matter to compose in Mathematica.

2.6 Converting a Notebook to Another Format
Mathematica  notebooks are highly structured documents, and as such it is possible to convert them
into a variety of other formats (such as HTML, as outlined in the previous section). By choosing Save
As…  in  the  File  menu  and  inspecting  the  Format  options  in  the  resulting  dialog  box,  you  can  see
exactly which formats are supported. For example, if you save your notebook as a PDF file, you’ll be
able to read it and print it out from a computer that does not have Mathematica installed.
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2.7 Mathematica’s Kernel
When  you  enter  a  command  in  Mathematica,  it  is  processed  by  a  separate  program  called  the
MathKernel, or kernel for short. This program is launched automatically when the first command is
entered. It takes a moment to launch this program, and that is why there is a perceptible lag during
the first  computation.  The  kernel  usually  runs  on the  same  computer  that  you  are  using,  but  this
need not  be  the  case.  It  can  be  located on  another,  perhaps  more  powerful,  computer.  Many  web
sites  take  user  input  and forward  it  to  a  Mathematica  kernel,  and  then  display  the  result  as  a  web
page (see, for example, the Integrator at http://integrals.wolfram.com). If you are running the kernel
on your  local  computer,  when  you  quit  Mathematica  the  kernel  quits  as  well.  Each time  you  start
Mathematica and enter your first command a new kernel is launched.

When you launch Mathematica  by opening an existing notebook, the kernel is not needed. You can
scroll  through  the  notebook  and  view  and  even  edit  the  contents.  It  is  only  when  you  place  the
cursor on an input cell and enter the cell, or type a new command line and enter it, that the kernel
will be launched.

Numbering Input and Output
The  command  lines  entered  to  the  kernel  and  the  outputs  delivered  by  the  kernel  are  numbered.
They are numbered in the order that they are received by the kernel. After the Mathematica program
is  launched,  the  first  command entered will  be  labeled In[1]:=,  and its  output  will  be  labeled Out[1]=.
The next input will be labeled In[2]:=, and so on.

Be mindful that  the numbering is  determined by the sequential  order in which the commands are
received  by  the  kernel,  and  not  necessarily  by  the  order  in  which  commands  appear  in  the  note-
book. For instance, if you were to start a Mathematica session by opening an existing notebook, then
scroll  through to some input cell  in the middle of that notebook, click on that cell and enter it,  it
would be labeled In[1]:=.

Reevaluating Previously Saved Notebooks
When  you  first  open  a  previously  saved  notebook,  you  will  notice  that  none  of  the  inputs  or
outputs  will  be  numbered  any  more.  That’s  because  the  numbering  refers  to  the  order  in  which
input cells were sent to the kernel and in which output cells were delivered from the kernel. When
you save a notebook, this information is lost. You are now free to click on any input cell and enter
it. That cell will acquire the label In[1]:=, and its output will be called Out[1]=.

It  is  important  to  realize  that  when you  start  a  new Mathematica  session  by  opening  an  old  note-
book,  you  should  not  enter  any  input  cell  that  makes  reference  to  another  cell  (or  variable,  or
anything you created) that has not been entered in this session. For instance, suppose you opened a
notebook that  contained the  following input  and output  cells  (they are  not  numbered,  since  they
have not been entered in this session):
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a 90

90

a2

8100

What would happen if you were to click on the second input cell (containing the text a2) and enter
it? Mathematica would be unaware of  the cell containing the assignment a 90  since that cell has
not been entered in the current session. The resulting notebook would look like this:

a 90

90

In[1]:= a2

Out[1]= a2

In practice this means that when reopening an old notebook to continue work that you started in a
previous  session,  you  should  reenter,  one  by  one,  all  the  cells  to  which you  will  refer  later  in  the
session.

You can automate this procedure if  you like.  After opening a previously  saved notebook, go to the
Evaluation  menu and select Evaluate Notebook.  This will  instruct the kernel to evaluate every cell in
the notebook, in order, from top to bottom. It’s  a handy way to pick up your work where you left
off. Alternately, you may –click on the cell bracket of any cell (Mac OS), or –click (Windows),
to  select  all  cells  of  that  type  the  notebook.  Do  this  to  an  input  cell,  and  all  input  cells  will  be
selected. Now go to the Evaluation menu and choose Evaluate Cells.

Many notebooks  contain certain input  cells that will  be evaluated each time the notebook is
used;  this  is  often  the  case  with  notebooks  created for  students  by  teachers.  Such  notebooks
utilize special types of input cells called initialization cells. When a cell is an initialization cell,
it  will  be  automatically  evaluated  before  any  other  input  cells  in  the  notebook.  Typical
initialization cells will define a special command to be used throughout the notebook, or load
a  Mathematica  package  (more  on  packages  later  in  this  chapter).  When  you  send  your  first
input  to  the  kernel  from a  notebook containing  one  or  more  initialization  cells,  you  will  be
prompted  and  asked  if  you  want  to  automatically  evaluate  all  initialization  cells  in  the
notebook.  If  you  ever  see  such  a  prompt,  answer  “Yes.”  Moreover,  if  you  want  to  make  an
input cell in one of your own notebooks an initialization cell, select the cell by clicking once

on its cell bracket (or –click on several cell brackets), then go to the Cell menu and choose

Cell Properties Initialization Cell. 
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You will notice that the cell bracket gets a little vertical tick mark at the top. Now when you
reopen  this  notebook  in  the  future,  the  cell  (or  cells)  that  are  initialization  cells  can  be
automatically  processed  by  the  kernel.  When  you  first  save  a  notebook  containing  one  or
more initialization cells, you will be prompted, “Do you want to create an Auto Save Package?”
Answer “No.” This feature is for programmers who are creating Mathematica packages.

2.8 Tips for Working Effectively

Referring to Previous Output
In a typical Mathematica  session you will enter a cell, examine the output, enter a cell, examine the
output,  enter  a  cell,  examine  the  output,  and  so  on.  There  are  numerous  little  tricks  that  make  it
easier  to  deal  efficiently  with  Mathematica’s  input-output  structure.  Perhaps  the  most  important  is
the percentage sign. When you need to use the output of the previous cell as part of your input to
the current cell, just type %. Mathematica interprets % as the output of the last cell processed by the
kernel (i.e., % represents the contents of the output cell with the highest label number):

In[1]:=
2120

2021

Out[1]=
278218429446951548637196401

2097152000000000000000000000

In[2]:= N

Out[2]= 0.132665

If you want to keep the old input and output cells, click below the old output cell and select Insert
Output from Above  from the menu. It  will  paste  the contents of the output cell that resides directly
above the position of the cursor into a new input cell, regardless of when that cell was processed by
the kernel. You can then edit the new input cell and enter it.

Referring to Previous Input
You will often enter a cell and later want to enter something very similar. The simplest way to deal
with this is to click on the former input cell and edit it, then reenter it. The cursor can be anywhere
in the input cell when you enter it; it need not be at the far right. Once the cell is entered, its label
number will  be updated (for example from In[5]:=  to In[6]:= ).  The old output will be replaced with the
output from the edited input cell.

If  you  want  to  keep  (rather  than  overwrite)  the  old  input  and  output  cells,  click  below  the  old
output cell,  go to the menu, and select Insert  Input from Above.  The old input cell will be copied
into a new input cell, which you can then edit and enter.

Another option is to use your mouse to copy and paste text from one cell (input or output) to a new
input  cell.  You  can  highlight  text  with  your  mouse  to  select  it,  then  choose  Copy  from  the  Edit
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menu, click to position the cursor where you want the text to appear, and finally choose Paste from
the Edit menu.

Postfix Command Structure
The typical structure for Mathematica commands is:

Command argument or Command argument1, argument2

We’ve seen examples  such as  Sin
4

 and Log[10, 243].  When a  command has only one argument,

another way to apply it is in postfix form. The postfix form for a command is:

argument //Command

This form is useful when the command is applied to an existing expression as an afterthought. For
instance, if  you copy the contents of an earlier input or output cell into a new input cell,  you can
easily apply a command in postfix form to the entire copied expression. Here are some examples:

In[3]:= Sin
12

N

Out[3]= 0.258819

This is equivalent to entering N Sin
12

.

In[4]:= x 1 2 3 x 6 x Expand

Out[4]= 12 4 x 19 x2 3 x3

This is equivalent to entering Expand[(x - 1)(2 + 3 x)(6 - x)].

Prefix Command Structure
When a command accepts a single argument, it can also be given in prefix form. The prefix form for
a command is:

Command@argument

Like the postfix form, this form can useful when the command is applied to an existing expression
as an afterthought. It allows you to apply the command without worrying about adding the closing
square bracket. Here are some examples:

In[5]:= First 2, 4, 6, 8

Out[5]= 2

This is equivalent to entering First[{2, 4, 6, 8}].
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In[6]:= TraditionalForm Sin x 2

Out[6]//TraditionalForm=

sin2 x

This is equivalent to entering TraditionalForm Sin x 2 .

Undoing Mistakes
If you make a bad mistake in typing or editing, the kind that makes you say, “I  wish I could undo
that  and return  my  notebook to  its  former  state,”  chances  are  you  can.  Look for  Undo  in  the  Edit
menu. It will reverse the previous action. The catch is that it will only undo the most recent action,
so use it immediately after making your mistake.

Another  option  is  to  close  your  notebook  (choose  Close  in  the  File  menu),  and  answer  Don’t  Save
when  you  are  prompted.  You  can  then  reopen  your  notebook  (choose  Open  Recent  in  the  File
menu). You will find your notebook in the state that it was in when it was last saved. Of course you
should only do this if you have saved the notebook recently.

A  more  frightening  scenario  is  entering  an  input  cell  and  finding  that  Mathematica  appears  to  be
stuck.  For  a  long  time  you  see  the  text  “Running…”  in  the  notebook’s  title  bar,  but  no  output  is
being generated. You may have inadvertently asked Mathematica  to perform a very difficult calcula-
tion, and after  a  few minutes  you may get  tired of  waiting.  How can you make it  stop?  Go to the
Evaluation menu and select Abort Evaluation. Depending on the situation, it may halt immediately or
you may have to wait a minute or two before it  stops.  Be patient. If more than a few minutes pass

with  no  response,  refer  to  Section  2.11,  “Troubleshooting”  on page 47.

Keyboard Shortcuts
If you have quick fingers you may find it  easier to type characters than make repeated trips  to the
menus  with  your  mouse.  Next  to  many  menu  items  you  will  find  keyboard  shortcuts  for
accomplishing the same task. We summarize some of the most common in Table 2.1.

Typesetting Input—More Shortcuts
We have seen that a typical input cell contains symbols and structures both from the keyboard and
from palettes  (such as  the  BasicInput  palette).  As  you get  more  familiar  with  Mathematica,  you  will
want to find the easiest  way to typeset  your input.  It  is  helpful to know that there are ways to get
many symbols and structures directly from the keyboard without invoking the use of a palette at all.
Table 2.2 shows some of the most often used. You can find others by opening the SpecialCharacters
palette.  If  a  character has  a  keyboard entry sequence,  it  will  be displayed on the palette  when you
select it.
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Task Mac OS Windows PC

Save your notebook s s

Cut x x

Copy c c

Paste v v

Undo an editing or typing mistake Z z

Copy input from above l l

Copy output from above l l

Complete a command k k

Make a command template k k

Abort an evaluation . .

Quit q F4

Table 2.1 Keyboard Shortcuts. When reading this table, q  means hitting the command key and the q key at the same 
time. On a Mac, the command key is marked .

Type to get

p the symbol

ee the symbol

ii the symbol

inf the symbol

deg the symbol for entering angles in degrees

th the symbol no buil meaning, but often used

the symbol for multiplication

^ or 6 to the exponent position

into a fraction

2 into a square root

out of an exponent, denominator, or square root

from one placeholder to the next

Table 2.2 Keyboard Shortcuts for Typesetting. When reading this table, 2  means hitting the control key and the 2 key 
at the same time, while  2 means hitting the control key followed by the 2 key.

For instance, you can produce the input

2
x

y

by typing the following key sequence:

 p  6 2  + /  x  y
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And you can produce the input

2 x

y

by typing the following key sequence:

/    p  6 2  + x  y

Of course if you consider yourself a poor typist, you may want to use palettes more rather than less.
Check  out  the  BasicMathInput  palette  (in  the  Palettes  menu).  It  contains  buttons  that  will  paste
templates of commonly used commands into your notebook. This keeps your typing to a minimum,
and  helps  you  remember  the  correct  syntax  for  commands.  Whichever  approach  you  take,  you’ll
eventually find the way to typeset Mathematica input that works best for you.

Suppressing Output and Entering Sequences of Commands
There will be times when you don’t want Mathematica to produce output. For instance, suppose you
need  to  carry  out  several  calculations  involving  the  quantity  

12
.  Rather  than  type  this  expression

each time  it  is  needed,  you  can  assign  its  value  to  a  letter  and type  this  letter  instead.  When you
make this assignment and enter it, Mathematica will display the value as its output:

In[7]:= x
12

Out[7]=
12

Here the output is not necessary. If you would like to suppress the output of any input cell, simply
type a semicolon ; after typing the contents of the cell:

In[8]:= x
12

;

You can enter a sequence of several commands in a single input cell by putting semicolons after all
but  the  final  command.  Only  the  output  of  the  final  command  will  be  displayed.  When  you  are
typing, you can use the character return key (  on a Mac or  on a PC) to move to a new line in
the same input cell, or you can keep it all on one line if it will fit:

In[9]:= x 3;

Expand x y
8

Out[10]= 6561 17 496 y 20 412 y2 13 608 y3 5670 y4 1512 y5 252 y6 24 y7 y8

In[11]:= Clear x ; Expand x y 8

Out[11]= x8 8 x7 y 28 x6 y2 56 x5 y3 70 x4 y4 56 x3 y5 28 x2 y6 8 x y7 y8
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A  different  means  for  suppressing  output  is  the  Short  command.  This  command  is  useful  if  you
generate  output  that  is  just  plain  too  long.  If  you  enter  a  cell  and  produce  screen  upon  screen  of
output, append the text //Short to the input and reenter it. You will get the very beginning and end
of the total output,  with a marker indicating how much was chopped out of the middle. Here’s  an
example  that  makes  use  of  factorials.  The  factorial  of  a  positive  integer  n  is  the  product  of  n  with
every  other  positive  integer  less  than  n.  So  the  factorial  of  5  is  equal  to  5 4 3 2 1 120.  The
common mathematical notation for the factorial of n and the Mathematica notation agree: type n :

In[12]:= 1000 Short

Out[12]//Short=

402387260077 2544 000000000000

Here Mathematica tells us that there are over 2500 digits missing from the output.

If you want to find out whose computer is faster, or if you want to know how long it takes Mathemat-
ica to arrive at an answer, use the Timing command. Wrap any input with this command, and the
output will be a list containing two items (they will be separated by a comma). The first item in the
list  is  the  number of  seconds that  it  took the kernel to process  your  answer (it  doesn’t include the
time it takes to format and display the answer), and the second item is the answer itself. If the input
to the  Timing  command is  followed by  a  semicolon,  the  second item in the  list  will  be  the  word
Null rather than the answer. This is useful when the output is large:

In[13]:= 20 Timing

Out[13]= 0., 2432902008176640000

In[14]:= 1 000000 ; Timing

Out[14]= 0.985, Null

2.9 Getting Help from Mathematica

Getting Information on a Command whose Name You Know
Type  ?  followed  by  a  Mathematica  command name,  and then  enter  the  cell  to  get  information on
that command. This  is  useful  for  remembering the syntax for  a  command whose name you know,
and for seeing the various ways in which a command can be used. For example:

In[1]:= ? N

N expr gives the numerical value of expr.

N expr, n attempts to give a result with n-digit precision.
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You can click on  the   symbol  at  the  end of  this  output  to  get  more  detailed information in the
Documentation Center.

Command Completion
Mathematica can finish typing a command for you if you provide the first few letters. This is useful if
the command has a long name; it saves time and guarantees that you won’t make a typing mistake.
Here’s how it works: After typing a few letters choose Complete Selection from the Edit menu. If more
than one completion is  possible,  you  will  be  presented  with  a  pop-up  menu containing all  of  the
options.  Just  click  on  the  appropriate  choice.  Try  it—type  Cos  in  an  input  cell  and  attempt  the
completion.  You  will  find  that  there  are  four  Mathematica  commands that  start  with  these  letters:
Cos, Cosh, CosIntegral, and CoshIntegral.

Command Templates
If  you  know  the  name  of  a  command,  but  have  forgotten  the  syntax  for  its  arguments,  type  the
command name in an input cell, then choose Make Template from the Edit menu. Mathematica  will
paste a template into the input cell showing the syntax for the simplest form of the command. For
example,  if  you were  to  type  Plot,  and then choose Make  Template,  the  input  cell  would look like

this:

Plot f , x, xmin, xmax

You can now edit the cell (replacing f  with the function you want to plot, xmin  with the lower bound

for your domain, etc.).

Command templates  and  command completions  work  well  together.  Type  a  few  letters,  complete
the  command,  then  make  the  template.  It’s  an  easy  way  to  avoid  syntax  errors.  See  Table  2.1  for
keyboard shortcuts.

The Documentation Center
The Documentation Center is the most useful feature imaginable; learn to use it and use it often. Go
to the Help  menu and choose Documentation Center. In a moment a window will appear displaying
the  documentation home  page.  The  documentation window  is  modeled  after  a  web  browser.  You
may either type  a keyword in the  text  field,  or  follow links from the home page.  Every  one of the
more than 3000 built-in symbols has its own individual help page.  For example,  if you type “Plot”
into  the  text  field  (with  a  capital  P),  the  help  page  for  the  Plot  function  will  appear.  In  the  large
yellow box the  basic syntax  for  the command is  explained.  In  the far  upper  right  corner there  are
links  to  related  tutorials,  a  very  useful  feature.  Under  the  main  yellow box  showing  a  command’s
syntax  structure  there  is  a  button  labeled  “More  Information.”  Push  it  and  all  the  dirty  details  of
your command will be revealed. Below all this are usage examples.

One could spend the rest of his or her natural life wading through the documentation center; it’s a
big place.
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2.10 Loading Packages
Mathematica  comes  with  over  3000  built-in  commands  and  symbols.  Nevertheless,  there  will
inevitably  come a  time  when you  will  seek  a  command that  is  not  built  into  the  system.  In  such
cases  it  is  possible  to  create  or  simply  use  a  suite  of  custom-designed  Mathematica  commands
designed  for  a  particular  application.  A  Mathematica  package,  or  add-on,  is  a  file  that  activates
additional commands that are not ordinarily available. When you load a package,  the commands in
that  package  become  available  for  you  to  use.  Mathematica  comes  with  a  few  dozen  “standard”
packages, and there are many more in use around the world. 

If  so  many  packages  are  “standard”  and  ship  with  the  software,  why  does  one  have  to  load
them separately?  Why  are  they  not  just  built-in?  The  reason is  two-fold.  On the  one  hand,
keeping these packages on the shelf, so to  speak, until  needed makes Mathematica  leaner and
more nimble.  If  a  user will  not need these commands in most  sessions, keeping them out  of
the  system  means  that  there  will  be  more  resources  available  for  everything  else.  The  user
simply loads packages as they are needed. On the other hand, the design of packages allows for
the possibility that the same command name could have one meaning in one package, and an
entirely  different  meaning  in  another.  Common  mathematical  terms  such  as  “tensor,”  for
instance,  have  different  meanings  in  different  mathematical  contexts,  and  indeed  there  are
different packages available that define the command Tensor  differently. Thus packages allow
the user flexibility to customize Mathematica to suit the purpose at hand.

To understand in a very basic way how packages work, it  is necessary to understand that the
built-in commands have a “full name” and a short name. So far we have only mentioned the
short  name.  The  full  name  of  a  built-in  command can  be  had  by  attaching  System`  to  the
front of it. For instance, the full name of Plot is System`Plot. We say that the Plot command
lives  in  the  System  context.  The  commands found  in  a  package,  by  contrast,  have  a  context
other  than  System.  For  instance,  below  we  give  examples  from  the  Units`  package.  The
command whose short name is Convert is defined in this package; its full name is Units`Con
vert. One can always call a command by typing its full name, but this is almost never done. It is
only necessary if two commands have the same short  name, a situation that we generally try
to avoid. When a package is loaded, its context is recognized, so that calls can be made to the
short name of any command defined in the package.

Hundreds  of  additional  packages  are  available  to  download  (for  free)  from  the  web  site
http://library.wolfram.com. At this site, type a topic of your choosing in the search field, and search
within “MathSource.” A listing of hits is displayed, each with a brief summary,  a link, and the date
on which it was posted (recent dates are generally better than old). It is a simple matter to follow a
link, then download and install the relevant package. Package files are identical regardless of which
operating system your computer uses. To install a package, simply place the package file (ending in
.m)  into  the  ~/Library/Mathematica/Applications  folder  in  your  home  directory  (Mac  OS),  or  the
Documents and Settings\username\Application Data\Mathematica\Applications folder (Windows).

The following input can be used to get a listing of the standard packages included in your installa-
tion of Mathematica.  It  looks rather  complicated, but it  simply instructs  Mathematica  to look in the
appropriate directory on your computer and report the names of the files that are stored there. Note
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that  it  is  possible  to  do  this  with  slightly  shorter  input,  but  the  following (redundant  but  simple)
input will work on all platforms (Mac, PC, etc.):

In[1]:= SetDirectory $InstallationDirectory ;

SetDirectory "AddOns" ;

SetDirectory "Packages" ;

FileNames

Out[4]= ANOVA, Audio, BarCharts, Benchmarking, BlackBodyRadiation, Calendar,

Combinatorica, Compatibility, ComputationalGeometry , ComputerArithmetic ,

Developer, EquationTrekker, ErrorBarPlots, Experimental, FiniteFields,

FourierSeries, FunctionApproximations , Geodesy, GraphUtilities, GUIKit,

HierarchicalClustering, Histograms, HypothesisTesting, LinearRegression,

MultivariateStatistics, Music, NonlinearRegression, Notation, NumericalCalculus,

NumericalDifferentialEquationAnalysis , PhysicalConstants, PieCharts, PlotLegends,

PolyhedronOperations, Polytopes, PrimalityProving, Quaternions, RegressionCommon,

ResonanceAbsorptionLines , Splines, StandardAtmosphere, StatisticalPlots,

Units, VariationalMethods, VectorAnalysis, VectorFieldPlots, WorldPlot, XML

It is highly likely that you will at some point need to load a package into Mathematica. To do so, the
Needs command is used. Suppose that you wish to use a package, and either it is a standard package
or you have already downloaded it and placed it in the Applications directory. For example, there is
a standard package called Units  that allows you to easily convert units of measurement. To load it,
enter a cell containing the text:

In[5]:= Needs "Units`"

This must be typed with perfect precision. The argument to Needs is a String, that is, it is enclosed
in  double  quotation  marks.  And  the  package  name  will  invariably  contain  one  or  more  backquote
characters ` (look in the upper left portion of your keyboard for the backquote character. Do not use

an apostrophe ’). If the cell is entered properly, there will be no output. If you get an error message,

chances are good that you didn’t type the input exactly right; fix it, then reenter the cell. Under no
circumstances  should you attempt  to  use  the  commands in the  package until  it  has  been properly
loaded. You can check that the package loaded properly by typing and entering

In[6]:= $Packages

Out[6]= Units`, ResourceLocator`, DocumentationSearch`,

JLink`, PacletManager`, WebServices`, System`, Global`

The  output  shows  all  currently  loaded  packages;  your  output  may  be  slightly  different.  What  you
need to look for is the name of the package you tried to load. Since Units` appears in the output, all
is well. If your package does not appear in the list, try using the Needs command again until it does.

Once the  package  has  loaded  you  can use  the  commands  it  contains  just  as  if  they  were  ordinary
Mathematica  commands.  The  Units  package  contains  the  command  Convert,  which  allows  the
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conversion of just about any imaginable pair of measurement units. The syntax is:

Convert from, to

For example, how many miles are there in a light year? How many teaspoons in a 16 gallon tank of
gas? Bartenders take note: How many jiggers in a 1.75 liter bottle?

In[7]:= Convert LightYear, Mile

Out[7]= 5.87863 1012 Mile

In[8]:= Convert 16 Gallon, Teaspoon

Out[8]= 12 288. Teaspoon

In[9]:= Convert 1.75 Liter, Jigger

Out[9]= 39.4497 Jigger

Note that  all  units  of  measurement  are given in the  singular,  so you should type  Foot  rather  than
Feet  and  Mile  rather  than  Miles.  Note  also  that  you  may  arithmetically  combine  basic  units  of
measurement; for instance, you can convert miles per hour to feet per second like so:

In[10]:= Convert 90 Mile Hour, Foot Second

Out[10]=
132 Foot

Second

You can deal in thousands with the prefix Kilo, which is simply equal to 1000. For instance there is
no unit named Kilometer. Rather, you should use the product (note the space) Kilo Meter.

This  brings  a  natural  question  to  mind:  How  do  you  find  out  what  commands  are  available  in  a
given package? For instance, what units of measurement are available in the Units  package? To find

out, use the Names command (do this after loading the package). The syntax for Names is just like
that of  the Needs  command, except  that  you need to place an asterisk  between the last  backquote
and double  quote  (the asterisk  is  the  “wild-card” symbol  common in many computer  applications
and  operating  systems).  You  can  save  yourself  some  typing  by  clicking  once  under  the  input  cell
containing the Needs command, and from the menus choosing Insert Input From Above. Then edit
the new cell, adding the asterisk and changing Needs to Names. To save space below, we Take only
the 40th through 70th names from over 250 names in the package.

In[11]:= Names "Units` " Short

Out[11]//Short=

Abampere, 274 , Zetta
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In[12]:= Take Names "Units` " , 40 ;; 70

Out[12]= BTU, Bucket, Bushel, Butt, Cable, Caliber, Calorie, Candela,

Candle, Carat, Celsius, Cental, Centi, Centigrade, Centimeter, Century,

CGS, Chain, ChevalVapeur, Cicero, Convert, ConvertTemperature,

Cord, Coulomb, Cubit, Curie, Dalton, Day, Deca, Decade, Deci

Here we see that there are a host of objects defined in the package. Most of them are units of mea-
surement,  but two of them, Convert  and ConvertTemperature,  are  commands. You can now find
out about any of these names in the usual way:

In[13]:= ? Butt

Butt is a unit of volume.

In[14]:= ? ConvertTemperature

ConvertTemperature temp, oldscale, newscale converts

temperature temp from temperature scale oldscale to scale newscale.

In[15]:= ConvertTemperature 212, Fahrenheit, Celsius

Out[15]= 100

There is an important thing you need to know about packages. If you accidentally attempt to use a
command defined in a package before  the package has been loaded (you’ll know if you’ve done this
because the command won’t work; the output will simply match the input), you’ll create a bit of a
challenge  for  both  yourself  and  for  Mathematica.  Suppose,  for  instance,  that  you  tried  to  use  the
Convert command before loading the Units` package. By calling the Convert command prematurely,
you  have  inadvertently  created  a  symbol  of  that  name.  Mathematica  notes  that  Convert  is  now  a
recognized symbol,  albeit a  symbol that has no meaning. The next logical step is  for you to realize
that you forgot to load the package, and proceed to load it. Now here’s the rub: As Mathematica goes
about  loading  all  the  new  symbols  in  the  package  it  will  encounter  two  symbols  with  the  name
Convert, the one in the package and the meaningless one you (inadvertently) created. This will lead
to a warning message as the package loads. It will  also lead to the symbol Convert  being displayed
in red when it is typed, to flag it as a symbol with conflicting meanings. However beyond this rather
disturbing red display, nothing bad will happen. The package definition takes precedence over your
meaningless one, and everything will work as it should. 

You can avoid these issues by simply loading the package before calling any commands in it. And if
you  do  inadvertently  call  a  command  prematurely  (this  is  known  as  premature  evaluation),  and
would  rather  not  see  the  command  displayed  in  red,  simply  type  Remove[Convert]  (or  whatever
command you accidentally called) before loading the package. This will purge the offending symbol
from the system registry so that there will be no conflict upon loading the package.
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Exercises 2.10
1. How many gallons are in a butt? Load the Units package and investigate. Make a joke out of the 

answer.

2.11 Troubleshooting
The most common problem with learning Mathematica is adapting to a system in which spelling and
syntax must be perfect. What happens if  your syntax is wrong (say you typed a period instead of a
comma,  or  forgot  to  capitalize  a  command  name)?  Usually  you  will  get  an  error  message.  Don’t
panic. Most error messages can be traced to a simple typing mistake. Just go back to your last input
cell, edit it,  and reenter it.  If  you can’t find your mistake,  ask a friend or your instructor.  You may
also want to try the online help features discussed earlier.

In  any  event,  if  your input  is  either  generating error messages or not generating  the  output  you
want, look first for spelling or syntax problems. If you are reasonably certain that the command has
been entered correctly, there are a few other things you might try. If Mathematica  beeped when you
attempted to enter  your input  cell,  you can go to the Help  menu and select Why the Beep?….  This
will provide you with an explanation that may be quite helpful. Another tactic that cures a common
source of problems is to clear the names of any variables appearing in your input, then try reenter-
ing the cell. For instance, if your current input involves a variable called x, and somewhere long ago
you  typed  x 3,  then  Mathematica  will  substitute  3  for  x  every  chance  it  gets  for  as  long  as  the
current  kernel  is  running.  You  may  have  forgotten  that  you  made  such  an  assignment,  and  no
longer want it. Type and enter Clear[x]  to remove any previous assignment to x, then reenter your
input cell (you will need to clear the values of all expressions that have been assigned values in your
current session; such expressions may or may not be called x in your notebook). Get in the habit of
clearing variable names as soon as you are done with them.

Another reality that you may encounter at some point is that your computer can crash. This occurs
only very  rarely  under  ordinary  usage  on  a  computer  of  recent  vintage,  but  it’s  good to  be  able  to
recognize one should it occur.

Recognizing a Crash

When  you  enter  a  command  to  Mathematica’s  kernel,  the  title  bar  to  the  notebook  window  will
display  the  text  “Running….”  This  label  will  vanish  when  the  output  appears.  It  is  Mathematica’s
way of telling you that it is working on a calculation. Some calculations are fast, but some are slow,
and some are very slow (hours, days, even weeks). How much time a calculation will require depends
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on the  complexity  of  the  calculation and the  type  of  computer  being  used.  If  you  have  entered  a
command and nothing seems to be happening, don’t despair. It is likely that you have simply asked
a difficult question (intentionally or not) and it will take Mathematica a bit of time to answer.

If you don’t have time to wait and just want Mathematica to stop, read on.

Or if (heaven forbid) the cursor does not respond when you move the mouse, and the keyboard does
not seem to work, it is likely that a crash has occurred. Don’t panic, and don’t pull the plug just yet.
Read on…

Aborting Calculations and/or Recovering from a Crash
Under ordinary circumstances (the computer hasn’t crashed), simply select Abort Evaluation from the
Evaluation  menu.  This  will  usually  work,  but  not  always.  Wait  a  minute  or  two  and  take  a  deep
breath.  Relax.  If  all  goes  well  you  should  eventually  see  the  message  $Aborted  in  your  notebook
window where the output would ordinarily appear. Mission accomplished.

If nothing happens when you attempt to abort, you will have to take slightly more decisive action:
You will  have  to  quit  the  kernel.  To  do this,  go again to the  Evaluation  menu,  but  this  time select
Quit Kernel (you then have to select the kernel that is running, usually the local kernel), then hit the
Quit  button when it asks if you really  want to quit the kernel. The only consequence here is that if
you wish to continue working, you will have to start a  new kernel. This will  happen automatically
when you enter  your  next input.  Remember  that  the  new kernel will  not  be aware  of  any of  your
previous calculations, so you may have to reenter some old cells to bring the new kernel up to date
(if your new commands make reference to any of your previous work).

Now for those of you who have lost control of the mouse and keyboard due to a crash, none of the
above is possible.  Ideally, you would like to be able to quit Mathematica  without losing any of your
unsaved work. It’s not always possible; this is why it’s a good idea to save your work often.

The action that you should take depends to some extent on what type of computer you are using.
Let’s proceed by platform:

Mac OS Procedure
First, try simultaneously hitting  and . (that’s the period key). This is just the keyboard equivalent
of  selecting Abort  Evaluation  from the Evaluation  menu as  described  above.  It  probably won’t  work,
but give it a try. We’ve seen instances in which the mouse failed in the middle of a long calculation.
No crash, just a worn mouse that died at an inopportune time.

If that doesn’t work, try simultaneously hitting Q. If this works you will be presented with a dialog
box asking if you wish to save your work. Answer “Yes.” In this case, the result will be quitting the
entire Mathematica program (front end and kernel).

If that doesn’t work, simultaneously hit the  keys. A dialog will appear asking which applica-
tion you wish to Force Quit. Choose Mathematica. This is almost always effective. The front end and
kernel will quit, but you will not have an opportunity to save your work.
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As a last resort, you will have to turn off your computer manually. Any unsaved changes will be lost.
If the computer has a reset button, use it. Otherwise find the “off” button (often on the back of your
computer) and use it. Wait a few seconds and restart the computer in the usual way.

Windows Procedure
First, try simultaneously hitting  and . (that’s the period key). This is just the keyboard equivalent
of  selecting Abort  Evaluation  from the Evaluation  menu as  described  above.  It  probably won’t  work,
but give it a try. We’ve seen instances in which the mouse failed in the middle of a long calculation.
No crash, just a worn mouse that died at an inopportune time.

If  that  doesn’t  work,  simultaneously  hit  the   keys.  This  is  usually  effective.  You  should be
presented with a dialog box. Hit the Task Manager button, then look under the Applications Tab for
Mathematica. Select it,  and hit the End Task button to quit Mathematica  altogether. It may be possi-
ble  to  save  your  notebook  before  quitting.  You  should  restart  your  computer  before  launching
Mathematica again. This will decrease the likelihood of another crash.

As a last resort, you will have to restart your computer. Again, any unsaved changes will be lost.

Running Efficiently: Preventing Crashes
Mathematica  can make heavy demands on your computer’s  resources. In particular, it  benefits from
large amounts of random access memory, or RAM. You should be aware of this so that you can help
it along. Here are some tips to consider if you find yourself pushing your system’s resources:

First, quit other programs (such as your web browser) when using Mathematica. Other programs also
require  RAM,  so  running  them  at  the  same  time  steals  valuable  memory  from  Mathematica.  Also,
even though it  is  possible  to  have  multiple  notebooks open at  one time,  avoid having more note-
books open than necessary.  Each open notebook will consume memory. You should also save your
notebooks often. Doing so will allow Mathematica  to store part of it on your computer’s hard drive,
rather than storing all of it in RAM. Finally, if you work on your own computer and are in the habit
of  leaving  Mathematica  running  for  days  or  weeks  at  a  time,  quit  the  kernel  from time  to  time  to
flush out any symbols that are not being used.
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3
Functions and Their Graphs

3.1 Defining a Function
A  function  is  a  rule  that  assigns  to  each  input  exactly  one  output.  Many  functions,  such  as  the
natural logarithm function Log, are built in to Mathematica. You provide an input, or argument, and
Mathematica produces the output:

In[1]:= Log 1

Out[1]= 0

You can define your  own function in Mathematica  like  this  (use  the  BasicMathInput  palette  to  type

x2; see Section 1.6, page 4):

In[2]:= f x : x2 2 x 4

This function will take an input x, and output x2 2 x 4. For instance:

In[3]:= f 1

Out[3]= 1

In[4]:= f

Out[4]= 4 2 2

As a  second example,  here  is  a  function that  will  return the  multiplicative  inverse  of  its  argument
(again, use the BasicMathInput palette to type the fraction):

In[5]:= inv x :
1

x
Let’s try it:

In[6]:= inv 45

Out[6]=
1

45

You can also create functions by combining existing functions:



In[7]:= g x : N inv x

In[8]:= g 45

Out[8]= 0.0222222

Defining a Function
Follow these rules when defining a function:

The name of the function (such as f or inv) should be a lowercase letter, or a word that 
begins with a lowercase letter. This is because all built-in functions (such as Log and N) 
begin with capital letters. If your function begins with a lowercase letter, you will never 
accidentally give it a name that already belongs to some built-in function.
The function argument (in these examples x) must be followed by an underscore _ on 
the left side of the definition.
Use square brackets [ ] to enclose the function argument.

Use the colon-equal combination := to separate the left side of the definition from the 
right.

After typing the definition, enter the cell containing it. Your function is now ready for action.

The := operator (called the SetDelayed  operator) used in defining functions differs in a subtle
way from the = operator (called the Set operator) used for making assignments (the = operator

was  discussed  in  Section  1.10—see  page  20).  Essentially,  when  you  use  :=  the  expression

appearing to its right is evaluated anew by the kernel each time that the expression appearing
to its left is called. The = operator, by contrast, evaluates the expression on its right only once,
at  the  time  the  assignment is  made.  In  many settings  =  and :=  can be used interchangeably;
however, there are cases when one is appropriate  and the other is not.  Using SetDelayed  for
function definitions will work in virtually every setting, and we will use it consistently for that
purpose throughout this book. 

An  illustrative  example  is  the  following:  Type  and  enter  x RandomInteger 100 ; x, x, x .

Then change = to := and do it again. In the first case, x is set to be a single (randomly chosen)
integer, so the output is a list in which that same number appears three times. In the second
case,  each  x  causes  a  new  random  integer  to  be  chosen,  so  the  output  is  a  list  of  three
(probably) distinct numbers.

For more information, go to the Documentation Center and type SetDelayed in the text field,
then follow the link to the tutorial titled “Immediate and Delayed Definitions.”
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Clearing a Function
A word to the wise: Once you are finished working with a function, get rid of it. Why? One reason is
that you may forget about the function and later in the session try to use the name for something
else.  But  Mathematica  won’t  forget,  and all  sorts  of  confusion can result.  Another is  that  in getting
rid of a function you will clear out a little bit of memory, leaving more room for you to work. To see
if a letter or word has been defined as a function, use the ? command just as you would for a built-
in Mathematica command:

In[9]:= ? f

Global`f

f x : x2 2 x 4

This indicates that f  is still retained in memory. You can use the Clear command to erase it, just as

you would to erase the value of a constant:

In[10]:= Clear f

Now if you use the ? command you will find no such definition:

In[11]:= ? f

Global`f

To  clear  out  every  user-defined  symbol  from  the  current  session,  try  Clear["Global`*"].  The
asterisk  is  a wild-card  symbol; this  essentially says, “Clear  all  symbols defined in the Global
context” (the Global context is the default location where user-defined symbols are stored). 

3.2 Plotting a Function
We begin with a simple example:

In[1]:= Clear f ;

f x : x2 2 x 4
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In[3]:= Plot f x , x, 1, 3

Out[3]=

1 1 2 3

4

5

6

7

The Plot  command takes  two arguments,  separated  (as  always)  by a  comma. The first  (in this  case
f[x])  is  the  function  to  be  graphed,  and  the  second  (in  this  case  {x, -1, 3})  is  called  an  iterator.  It
describes  the  span  of  values  that  the  variable  x  is  to  assume;  that  is,  it  specifies  the  domain  over
which  the  plot  will  be  constructed.  The  curly  brackets  are  essential  in  describing  this  domain.  In
fact, Mathematica  uses  this iterator structure in numerous commands, so it warrants a bit of discus-
sion. The first item (x) names the variable, and the next two items give the span of values that this
variable will assume ( 1 through 3). Values in this domain are displayed along the horizontal axis,
while the values that the function assumes are displayed along the vertical axis.

Note that the axes in this plot do not intersect at the origin, but rather at the point 0, 3 . Every time
you  use  the  Plot  command Mathematica  decides  where  to  place  the  axes,  and  they  do  not  always
cross  at  the  origin.  There  is  a  good reason for  this.  As  often as  not  you  will  find  yourself  plotting
functions over domains in which the graph is relatively far from the origin. Rather than omit one or
both  axes  from  the  plot,  or  include  the  axes  together  with  acres  of  white  space,  Mathematica  will
simply move the axes into view, giving your plot a frame of reference. If you really want to produce
a plot with the axes intersecting at the origin, you can. The details are provided in the next section
of this chapter, “Using Mathematica’s Plot Options.”

You  can  zoom in  on  a  particular  portion  of  a  plot  simply  by  editing  the  domain  specified  in  the
iterator,  then  reentering  the  cell.  Let’s  take  a  close  look,  so  to  speak,  at  the  function  in  the  last
example, this time with x values near 2. Notice how “flat” the graph becomes:

In[4]:= Plot f x , x, 1.9, 2.1

Out[4]=

1.95 2.00 2.05 2.10

3.9

4.0

4.1

4.2

You could zoom in even more (say with a domain from 1.99 to 2.01) and get a more detailed view of
the function’s behavior near the point x 2. In the plot below we show an extreme zoom (and make
use  of  the  lowercase  Greek  letter  ,  which  mathematicians  often  use  to  denote  small  quantities).
Here we also  employ the With  command,  a  device  that  allows you to make local  assignments;  the
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assignment 10 10  will  only be  utilized within the  Plot  expression,  and will  not  be remembered
by Mathematica later. 

In[5]:= With 10 10 , Plot f x , x, 2 , 2

Out[5]=

2 2 2 2

4

4

4

4

Note  that  the  numerical  values  on  each  axis  display  identically;  this  is  simply  because  so  many
decimal  places  (ten  in  this  case)  are  needed  to  distinguish  them  that  there  isn’t  room  for  their
display.  In  principle  you  could  keep  zooming  in  forever,  but  in  practice  this  is  not  possible.  See

Exercise 3 for a discussion on the limits of zooming.

Another  little  trick  that’s  good  to  know  about  is  how  to  resize  a  graphic.  This  technique  is  best
learned by trying it, so get yourself in front of the computer and produce a plot. Position the cursor
anywhere  on  the  graph  and click  once.  A  rectangular  border  with  eight  “handles”  appears  around
the graph.  Position the  cursor  on a  handle and drag (hold down the  mouse  button and move the
mouse) to shrink or enlarge the graphic. It’s easy; try it.

A plot often demands careful investigation:

In[6]:= Clear f ;

f x :
x5 4 x2 1

x 1

2

In[8]:= Plot f x , x, 3, 3

Out[8]=

3 2 1 1 2 3
20

20

40

60

80

Something strange seems to be happening when x 1 2 (see that vertical blip?). What’s happening
is this: the function is not defined when x 1 2, since the denominator of f  is equal to zero at this

value of x. Think of there being an imaginary vertical line, an asymptote, at x 1 2 through which
the  graph  of  f  cannot  pass.  In  order  to  understand  Mathematica’s  output  it  is  important  to

understand how the Plot command works. Plot samples several values of x in the specified domain
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and numerically evaluates f x  for each of them. After refining its selection of sample points via an

adaptive  algorithm,  it  then  plots  these  points  and  “connects  the  dots”  with  little  line  segments.
There are so many that the graph appears  in most places like a smooth curve.  The important issue
here  is  that  Mathematica’s  plots  are  not  exact  in  a  mathematical  sense;  they  are  only
approximations.  For  instance,  the  vertical-looking  segment  that  crosses  the  x  axis  near  1 2  is  not
part of the true graph of f . As Mathematica  plotted successively larger values of x, just to the left of

x 1 2, the function values got smaller and smaller. The last point that was plotted to the left of the
true asymptote took a large negative value. The very next point plotted, just to the right of the true
asymptote,  took  a  large  positive  value.  Mathematica  then  connected  these  two  points  with  a  line
segment (so in fact that vertical-looking segment tilts ever so slightly from lower left to upper right).
Mathematica  had  no  way  of  knowing  that  in  fact  the  true  graph  of  f  never  crosses  the  vertical

asymptote.  Although  technically  inaccurate,  this  isn’t  a  bad  state  of  affairs.  You  can  interpret  the
plot as the graph of f  with the asymptote roughly drawn in. And an important lesson can be learned

here: Never trust the output of the computer as gospel; it always demands scrutiny.

Beware also that vertical  asymptotes  (and other “narrow” features) in a plot will change in appear-
ance as  the specified domain changes.  Asymptotes  may disappear or  become barely noticeable. For
instance, here is another view of the function f , this time zoomed out to accommodate the domain

from 10 to 10. The asymptote appears to have vanished:

In[9]:= Plot f x , x, 10, 10

Out[9]=

10 5 5 10

2000

4000

6000

8000

10 000

The asymptote is almost invisible because Mathematica (by chance) skipped over those values of x so
close to the asymptote that f x  would return very large or very small values. The “true” graph of f

still spikes up toward infinity just to the right of the asymptote and down to negative infinity just to
the left of it. The point of all this is to make clear that the plots Mathematica produces are approxima-
tions.  They  may  hide  important  features  of  a  function  if  those  features  are  sufficiently  narrow
relative  to  the  domain over  which  the  function  is  plotted.  When  it  comes  to  finding a  function’s
asymptotes,  for  instance,  looking  for  them  on  a  plot  is  not  necessarily  the  best  approach.  We’ll
discuss better methods for finding vertical asymptotes (by finding explicit values of x  for which the
denominator is equal to zero) in the next chapter. 

We note  that  if  you  do  know  the  precise  numerical  position  of  a  function’s  vertical  asymptote(s),
you  can  add  these  values  between  the  lower  and  upper  numbers  in  the  iterator.  Mathematica  will
omit such points from the resulting plot,  and will hence produce a more accurate plot. In the next
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section, the Exclusions  option will be introduced; this provides a sophisticated means of excluding
points from a domain.

In[10]:= Plot f x , x, 1,
1

2
, 2

Out[10]= 1.0 0.5 0.5 1.0 1.5 2.0

10

5

5

A more subtle issue may arise from the manner in which Mathematica  utilizes the complex number
system.  There  are  cases  in  which  there  are  two  potential  definitions  for  a  function:  one  which
disallows  complex  numbers,  and  another  which  embraces  them.  Mathematica  will  always  embrace
them, and this can lead to some unexpected results. In particular, students in precalculus or calculus
often work  in a  setting  that  opts  to  disallow non-real  numbers.  A  classic  example  is  the  cube  root

function, f x x1 3. Here is a plot of this function on the domain 8 x 8:

In[11]:= Plot x1 3, x, 8, 8

Out[11]=

5 5

0.5

1.0

1.5

2.0

The  left  side  of  the  plot  is  empty.  That  seems  odd;  don’t  negative  numbers  have  cube  roots?  We

know that 2 3 8, so the cube root of 8 should be 2, shouldn’t it? The issue is a subtle one. In
the complex number system there are three  numbers whose cube is 8, (they happen to be 2 and

the  two  complex  numbers  1 3 ).  Mathematica,  savvy  as  it  is  regarding  the  complex  numbers,

takes one of the complex numbers to be the cube root of 8. In a similar manner, it regards the cube
root of every negative number to be complex. It can’t plot a complex number, and so the left half of
the plot  is  empty.  A  thorough discussion  of  why Mathematica  chooses  complex values  as  the  cube

roots of negative numbers can be found in Section 4.4 on page 162. Suffice it  to say that there are
very good reasons for  doing so,  but that  it  can be an annoyance to those who would like to study
the real-valued cube root function (and remain blissfully ignorant of the complex number system).

If  you  would like  to  see  the  plot  of  the  real-valued cube  root  function found in  many precalculus
and calculus texts (where the cube root of 8 is taken to be 2), one can define an alternative Power
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command, as follows:

In[12]:= realPower x , p : If x 0 && Element p, Rationals ,

If OddQ Denominator p , If OddQ Numerator p ,

Power x, p , Power x, p , Power x, p , Power x, p

A discussion of  the  If  command can be  found in Section 8.5.  At  this  point  it’s  okay to  ignore  the
details of  this  definition, and to use  it  freely.  It  will  modify the powers  of  negative numbers  when
those powers are rational numbers with odd denominator (powers such as 1 3). Here is how to use
this alternate Power command to produce a plot of the real-valued cube root function:

In[13]:= Plot realPower x, 1 3 , x, 8, 8

Out[13]=
5 5

2

1

1

2

realPower  will  differ  from  the  built-in  Power  command  only  if  the  power  (1 3  in  the  example
above) is a rational number. This will suffice for the types of power functions typically encountered
in  precalculus  and  calculus  courses.  Just  be  sure  to  enter  an  exact  rational  number  (no  decimal
points) as the second argument to realPower.

Exercises 3.2
1. Plot the following functions on the domain 10 x 10.

a. sin 1 cos x

b. sin 1.4 cos x

c. sin
2

cos x

d. sin 2 cos x

2. One can zoom in toward a particular point in the domain of a function and see how the graph 

appears at different zoom levels. For instance, consider the square root function f x x  when 

x is near 2.

a. Enter the input below to see the graph of f  as x goes from 1 to 3.

With 100 , Plot x , x, 2 , 2

b. Now zoom; change the value of  to be 10 1 and re-enter the input above to see the graph of f  

as x goes from 1.9 to 2.1. Do this again for 10 2, 10 3, 10 4, and 10 5.
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c. Use the last plot to approximate 2  to six significant digits. Check your answer using N.

d. When making a Plot, the lower and upper bounds on the iterator must be distinct when 

rounded to machine precision. Enter the previous Plot command with 10 20. An error 
message results. Read the error message and speculate as to what is happening. The bottom 
line is that zooming has its limits.

3. Use the realPower command to plot the real-valued function f x x4 5 on the domain 

32 x 32. What is the value of f 32 ?

3.3 Using Mathematica’s Plot Options
Many of  Mathematica’s  commands  accept  option settings;  you  can type  additional arguments  into a
command to modify the behavior of that command. In this section we’ll see how to tweak the Plot
command so that you get the most out of your graphs. For example, here is the plot of the function

100 cos x x2
:

In[1]:= Plot 100 Cos x x2
, x, 3, 3

Out[1]=

3 2 1 1 2 3

200

400

600

800

Notice  how Mathematica  only  showed  us  a  portion  of  what  we  asked  for  (the  graph  is  not  shown
when x  exceeds  2.5  or  so).  This  is  because  beyond the  portion  shown Mathematica  observed  no
interesting behavior; the graph just kept going up on the left and on the right. The (boring) informa-
tion near the edges was clipped off to give a better view of the middle portion of the plot. Mathemat-
ica will do this clipping by default.

The  option  PlotRange  is  set  by  default  to  an  automated  setting  which will  sometimes  result  in  a
graph with a truncated vertical scale.  But suppose  you really want to see the function over the full
domain from 3 to 3. You can indicate this by adding PlotRange Full  as an additional argument
to the Plot command. It must be placed after the two required arguments. The arrow  is found on
the  BasicMathInput  palette;  alternatively,  it  can  be  typed  from  the  keyboard  as  a  “minus”  sign
followed by a “greater than” sign: ->.  After typing these two symbols one after the other, they will
turn into the arrow on their own at the next keystroke. 
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In[2]:= Plot 100 Cos x x2
, x, 3, 3 , PlotRange Full

Out[2]=

3 2 1 1 2 3

2000

4000

6000

8000

Look at the output. The left and right sides of the plot now climb almost ten times higher, and as a
result the detail in the middle is harder to surmise. It’s a very different picture.

After  exploring  this  function  in  the  previous  two  graphs  it  is  clear  that  the  interesting  behavior
occurs  above  the  x-axis  and below y 250.  You  can specify  the  exact  range  of  values  you  wish  to

display using PlotRange ymin, ymax . If your desired range is n to n, PlotRange n will suffice.

In[3]:= Plot 100 Cos x x2
, x, 3, 3 , PlotRange 0, 250

Out[3]=

3 2 1 0 1 2 3

50

100

150

200

250

In general, you type the name of the option, followed by , followed by the desired setting for the
option. The philosophy of allowing commands such as  Plot  to accept options is  simple:  very  little
typing is required to allow the command to be used in its default form. But when the default output
is not entirely to your liking you have the ability to tweak the default settings to your heart’s  con-
tent.  There  are  over  50  options  for  the  Plot  command,  several  of  which are  discussed  below.  You
may add several option settings to a command, and in any order you wish (provided each optional
argument is listed after the required arguments); just use commas to separate them.

How to Get the Same Scaling on Both Axes
In order to get both sets of axes on the same scale use the option AspectRatio Automatic:
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In[4]:= Plot 2 x 4 2 1, x, 3, 5 , AspectRatio Automatic

Out[4]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

Be  mindful  that  in  many  cases  you  definitely  do  not  want  your  axes  to  have  the  same  scale.  You
could,  for  instance,  very  easily  ask  for  a  plot  that  was  a  few  inches  wide  and  a  few  miles  high.
Imagine the plot at the beginning of this section if you are skeptical. That is why the default aspect
ratio (the ratio of height to width) is  set  to a fixed value.  In other words,  by default Plot  will scale
the axes  in such a  way  that  the  graph will  fit  into a  rectangle of  standard proportions.  It’s  best  to
add the AspectRatio Automatic  option only after you have viewed the plot and determined that

its use won’t result in a plot that’s too long and skinny.

Note that you can also set AspectRatio  to any positive numerical value you like. The plot will have
the height  to  width  ratio  that  you specify.  For  instance,  the  setting  AspectRatio 3  will  produce a

plot  that  is  three  times  as  high as  it  is  wide.  Widescreen televisions  are  advertised  to  have a  16 : 9
aspect ratio. In Mathematica, we can obtain these dimensions with the setting AspectRatio 9 16.

How to Get the Axes to Intersect at the Origin
Use the option AxesOrigin 0, 0 :

In[5]:= Plot 2 x 4 2 1, x, 3, 5 , AxesOrigin 0, 0

Out[5]=

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0
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Note that the domain specified is 3 x 5, yet the option setting extends the graphic beyond these
values. You may need to adjust the AspectRatio  as well if you end up with something too long and
thin.

How to Display Mesh Points
To show the points delineating all the line segments generated in a Plot, use the option Mesh All:

In[6]:= Plot Sin x 2, x, 0, 2 , Mesh All

Out[6]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Note that more points are generated in regions where the function bends sharply. The graph itself is
comprised of line segments joining these points. 

To show points whose x  coordinates are regularly spaced, use the option Mesh Full  or Mesh n
where n is the desired number of points (not counting endpoints).

In[7]:= Plot Sin x 2, x, 0, 2 , Mesh Full

Out[7]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

In[8]:= Plot Sin x 2, x, 0, 2 , Mesh 10

Out[8]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

One can display any finite collection of mesh points by setting Mesh to a list of x coordinates,
such  as  Mesh 1, 2, 3 .  One  can  programmatically  generate  this  list  of  x  coordinates  using
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Range  (for  equally  spaced  x  coordinates),  or  Table  (see  Section  3.5  for  a  discussion  of  the

Table  command). Even more control  can be garnered by setting the MeshFunctions  option,
which specifies which function or functions are to be set to the list of Mesh  values. Typically

such  functions  are  given  as  pure  functions  (see  Section  8.4  for  a  discussion  of  the  Function

command). By default, MeshFunctions is set to 1 & , meaning that the list of Mesh values is
a  list  of  x  coordinates.  With  the  setting  MeshFunctions 2 & ,  the  list  of  Mesh  values

becomes a list of y coordinates. See Exercise 5 for examples.

How to Add Color and Other Style Changes: Graphics Directives
It’s  not  hard  to  make  a  plot  any  color  you  like  using  the  PlotStyle  option.  The  output  below  is
shown in grayscale. It will appear red on your monitor:

In[9]:= Plot 2 x 4 2 1, x, 3, 5 , PlotStyle Red

Out[9]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

You may use any standard color name; for a list of all colors go to the Documentation Center, type
“Colors” in the search field, and navigate to the guide page of that name. You may also use a lighter
or darker version of any color; just replace Red, for instance, with Lighter Red , or Lighter Red, .7

or Darker Red, .2 .  The  second numerical  argument  may  be  omitted.  If  present,  it  determines  the
extent  of  the  lightening  or  darkening,  and  should  be  set  to  a  value  between  0  (no  effect)  and  1
(maximal effect).

In[10]:= Plot 2 x 4 2 1, x, 3, 5 , PlotStyle Lighter Blue, .8

Out[10]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

You  can  also  blend  two  or  more  colors.  Setting  PlotStyle  to  Blend Blue, Red , .3  will  produce  a

blend of 70% blue and 30% red. And one could nest these settings to create a custom color such as
Lighter Blend Blue, Red , .3 , .4 . Other color settings are discussed in Exercise 3.
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These color settings are examples of graphics directives. The PlotStyle option may be set to any single
graphics  directive  (such  as  the  color  directives  outlined  above),  or  simultaneously  to  several  such
directives. Multiple directives should be wrapped in the Directive  command. For instance, one can
apply the directives Thick, Gray, and Dashed as follows:

In[11]:= Plot 2 x 4 2 1, x, 3, 5 , PlotStyle Directive Thick, Gray, Dashed

Out[11]=

3.5 4.0 4.5 5.0

1.5

2.0

2.5

3.0

Dashes  may  be  fine-tuned  by  replacing  Dashed  with  the  directive  Dashing Small ,

Dashing Large ,  or  Dashing .02, .01 .  This  last  setting  has  the  effect  of  breaking  the  plot  into

dashed  segments  each  of  which  is  2%  of  the  width  of  the  entire  graphic,  and  where  the  space
between  consecutive  dashes  is  1%  of  the  width  of  the  graphic.  To  fine-tune  the  thickness,  try
Thickness .01 . This will adjust the plot’s thickness to 1% of the width of the entire graphic.

Other  common  Plot  options  that  accept  graphics  directive  settings  are  AxesStyle,  Background,
FillingStyle, FrameStyle, and MeshStyle. 

How to Remove the Axes or Add a Frame
To remove axes simply add the option Axes False:

In[12]:= Plot 2 x 4 2 1, x, 3, 5 , Axes False

Out[12]=

To replace the axes with a frame around the entire graph, add the option Frame True:
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In[13]:= Plot 2 x 4 2 1, x, 3, 5 , Frame True

Out[13]=

3.0 3.5 4.0 4.5 5.0
1.0

1.5

2.0

2.5

3.0

How to Place Arrowheads on the Axes
Add  the  option  AxesStyle Arrowheads 0.05  to  put  arrowheads  on  the  top  and  right  only,  or

AxesStyle Arrowheads 0.05, 0.05  to put arrowheads on both ends of each axis. The value .05

means that the arrowheads will be scaled to be 5% of the width of the entire plot.

In[14]:= Plot 2 x 4 2 1, x, 3, 5 , AxesStyle Arrowheads .05 , AxesOrigin 2, 0

Out[14]=

2.5 3.0 3.5 4.0 4.5

0.5

1.0

1.5

2.0

2.5

In[15]:= Plot x2 1, x, 2, 2 , AxesStyle Arrowheads .05, .05

Out[15]=

1 1

1

2

When adding arrowheads, it may be desirable to manually increase the PlotRange  for both axes to
place the arrowheads farther from the center of your plot. This will allow room to display more tick
marks on the axes.
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In[16]:= Plot x2 1, x, 2, 2 , AxesStyle Arrowheads .05, .05 ,

PlotRange 3, 3 , 2, 4

Out[16]=

2 1 1 2
1

1

2

3

How to Add Grid Lines and Adjust Ticks on the Axes
To  add  a  grid  to  your  plot,  as  if  it  were  plotted  on  graph  paper,  add  the  option
GridLines Automatic.

In[17]:= Plot Sin x 2, x, 0, 2 , GridLines Automatic

Out[17]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

The appearance of the grid lines is controlled by the GridLinesStyle option, which can be set to any
graphics directive.

In[18]:= Plot Sin x 2, x, 0, 2 , GridLines Automatic,

GridLinesStyle Directive Thin, Gray, Dotted

Out[18]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

To adjust  the placement of  the grid  lines,  set  GridLines  to a  list  of  two lists:  the  first  consists  of x
values  indicating the  positions  of  the  vertical  lines,  and the  second consists  of  y  values  indicating

the positions of the horizontal lines:
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In[19]:= Plot Sin x 2, x, 0, 2 , GridLines
2

, ,
3

2
, 2 , .2, .4, .6, .8, 1

Out[19]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

For  fine grids,  use  Range  to  generate  each of  the  x  and y  lists.  Range  is  used  to  generate  a  list  of

evenly spaced numerical values. For example, Range 0, 1, .1  generates a list of numbers from 0 to 1

in increments of one tenth:

In[20]:= Range 0, 1, .1

Out[20]= 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

In[21]:= Plot Sin x 2, x, 0, 2 , GridLinesStyle Lighter Gray ,

GridLines Range 0, 2 ,
8

, Range 0, 1, .1

Out[21]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Numerical  tick  marks  on  the  axes  are  controlled  via  the  Ticks  option,  which  works  in  a  manner
similar to GridLines. If you are happy with the default list of tick marks on one of the axes, just use
Automatic instead of a specific list of values.
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In[22]:= Plot Sin x 2, x, 0, 2 , GridLinesStyle Lighter Gray ,

GridLines Range 0, 2 ,
8

, Range 0, 1, .1 ,

Ticks Range 0, 2 ,
2

, Automatic

Out[22]=

0
2

3

2
2

0.2

0.4

0.6

0.8

1.0

How to Add Labels
Labels can be added to the axes via the option AxesLabel. By default, it will apply TraditionalForm

to your  label  expressions.  So,  for  instance,  Sin x 2  will  be displayed using the  traditional notation,

sin2 x .

In[23]:= Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 , AxesLabel x, Sin x 2

Out[23]=

2
x

0.5

1

sin2 x

You can put a label on the entire plot with the option PlotLabel.
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In[24]:= Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 ,

AxesLabel x, y , PlotLabel Sin x 2

Out[24]=

2
x

0.5

1

y
sin2 x

Labels that  include operators  (such as  =),  or  that  are  comprised of  more than one word,  should be
entered as a String, i.e., put in double quotation marks. In this case, the text between the quotation
marks will be reproduced exactly as you write it. Below, for instance, we italicized the x and the y as

we typed the label text.

In[25]:= Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 ,

AxesLabel x, y , PlotLabel "y sin2 x "

Out[25]=

2
x

0.5

1

y

y sin2 x

If one had not used double quotation marks, Mathematica would have actually made the nonsensical

assignment  y sin2 x,  possibly  causing  confusion  later  in  the  session.  When  in  doubt,  wrap  your

plot labels in double quotes.

An alternate means of labeling will work not only for plots, but for labeling any Mathematica expres-
sion.  Simply  wrap  the  expression  to  be  labeled  in  the  Labeled  command,  and add  a  second argu-
ment that specifies the text for the label. The label appears at the bottom by default, but if present a
third argument may be given to specify the position of the label. Look up Labeled in the Documenta-
tion Center for information about micro-positioning the label text.
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In[26]:= p Plot Sin x 2, x, 0, 2 , Ticks 0, , 2 , 0, .5, 1 , AxesLabel x, y ;

Labeled p, Text "y sin2 x " , Right

Out[27]=

2
x

0.5

1

y

y sin2 x

Exclusions and Vertical Asymptotes
As mentioned in the previous section, a single x value can be excluded from the domain of a plot by
listing that  value  (or  a  few such  values)  within the  iterator  for  the independent variable.  Here,  for
instance, we let x span all values from 0 to 7, but in the second input we exclude the values 2 and 5
(where the function is undefined).

In[28]:= Plot
x 3 x 4

x 2 x 5
, x, 0, 7

Out[28]=

1 2 3 4 5 6 7

4

2

2

4

In[29]:= Plot
x 3 x 4

x 2 x 5
, x, 0, 2, 5, 7

Out[29]=

1 2 3 4 5 6 7

2

2

4

Even more  control can be garnered using  the options Exclusions  and ExclusionsStyle.  Exclusions
can be set to a list containing an equation or equations whose solution(s) you wish to exclude. Use
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two equal signs back to back  when typing an equation. ExclusionsStyle  specifies the directive(s)
applied  to  the  vertical  line(s)  through  the  points  to  be  excluded,  enabling  you  to  include  vertical
asymptotes  in your plot.  Multiple directives should be wrapped in the Directive  command, as was
done earlier with PlotStyle.

In[30]:= Plot
x 3 x 4

x 2 x 5
, x, 0, 7 , Exclusions x 2, x 5 , ExclusionsStyle Dashed

Out[30]=

1 2 3 4 5 6 7

4

2

2

4

The  benefit  of  expressing  exclusions  as  equations  is  illustrated  in  the  following  example,  where  a
single equation has many solutions in the specified domain:

In[31]:= Plot Tan x , x, 0, 4 , Exclusions Cos x 0 ,

ExclusionsStyle Directive Gray, Dashed , Ticks Range 0, 4 ,
2

, Automatic

Out[31]=

2

3

2
2

5

2
3

7

2
4

6

4

2

2

4

6

Note  that  Exclusions  has  little  visible  effect  at  a  point  unless  there  is  an  essential  discontinuity

there. See Exercise 4.

Putting a Logarithmic Scale on One or Both Axes
While Plot may use different scales on the horizontal and vertical axes, it will always put a uniform
scale  on  each  (in  which  there  are  equal  distances  between  successive  numbers).  The  commands
LogPlot, LogLinearPlot, and LogLogPlot may be used to put a logarithmic scale (in which there are
equal distances between successive powers of 10) on one or both axes. Each of these commands has
the same syntactical structure as Plot, and will accept the Plot options discussed above.

To put a logarithmic scale on the vertical axis, use the command LogPlot:
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In[32]:= Plot 10x, x, 0, 3

Out[32]=

0.5 1.0 1.5 2.0 2.5 3.0

100

200

300

400

500

600

The LogPlot of any exponential function will be linear since log bx x log b .

In[33]:= LogPlot 10x, x, 0, 3

Out[33]=

0.5 1.0 1.5 2.0 2.5 3.0

5
10

50
100

500
1000

To put a logarithmic scale on the horizontal axis, use the command LogLinearPlot:

In[34]:= Plot Log 10, x , x, 1, 1000

Out[34]=

200 400 600 800 1000

2.0

2.5

3.0

LogLinearPlot will make logarithmic functions appear linear.

In[35]:= LogLinearPlot Log 10, x , x, 1, 1000

Out[35]=

5 10 50 100 5001000

0.5

1.0

1.5

2.0

2.5

3.0

To put a logarithmic scale on both axes, use the command LogLogPlot:
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In[36]:= Plot x3 2, x, 1, 100

Out[36]=

20 40 60 80 100

200

400

600

800

1000

In[37]:= LogLogPlot x3 2, x, 1, 100

Out[37]=

2 5 10 20 50 100

5

10

50

100

500

1000

Exercises 3.3
1. Use the GridLines and Ticks options, as well as the setting GridLinesStyle Lighter Gray , to 

produce the following Plot of the sine function:

2 2

1.0

0.5

0.5

1.0

2. Use the Axes, Frame, Filling, FrameStyle, PlotRange, and AspectRatio options to produce the 

following plot of the function y cos 15 x

1 x2 :
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3. Color values such as Red, Blue, and Orange are easy to type and to remember, but they present 
you with a very limited color palette. Standard color spaces used in graphic design, such as RGB 
(for Red-Green-Blue) and HSB (for Hue-Saturation-Brightness), are supported. The command 
RGBColor take three arguments, each a number between 0 and 1. They represent the relative 
amounts of red, green, and blue, respectively, in the final color. Hue takes either one argument 
(the color setting), or three, where the second and third are saturation and brightness levels. Each 
is a number between 0 and 1. You may type in values yourself (such as RGBColor .2, .8, .8  or 
Hue .6, .5, .5 ), or you may do this: type an option setting such as PlotStyle , and with the 
cursor still at the tip of the arrow go to the Insert menu and select Color…. A dialog box appears, 
and you can use it any way you like to choose the color you’re after. When you have it, hit the 
OK button. You’ll find the appropriate RGBColor setting pasted in your notebook at the position 
of the cursor. Experiment with both methods, direct typing and using the menu, to custom-color 
the Plot of a function of your choosing.

4. Plot the function f x x2 on the domain 2 x 2, and set Exclusions to x 1 . Note that f  

has no vertical asymptote at x 1. What happens?

5. In order to place mesh points on the graph so that their y coordinates are equally spaced, one 

may set the MeshFunctions option to {#2&}. This notation is explained in depth in Section 8.4 

on page 403, but for our purposes it will suffice to understand that #1 refers to x and #2 refers to 

y, and that the ampersand character & is needed to make it a function. The mesh points will be 

displayed at the specified values for this function. For example, a numerical Mesh setting of 9 
indicates that there should be 9 equally spaced values. A list of Mesh values indicates that the 
specific values in the list should be used as values for the function. For instance, consider the 
input and output:
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In[38]:= Plot x2, x, 0, 10 , Mesh 9, MeshFunctions 2 & ,

GridLines None, Range 0, 100, 10

Out[38]=

2 4 6 8 10

20

40

60

80

100

a. Replace the None in the input above with the appropriate of list of x values to add vertical 
GridLines that pass through these same mesh points.

b. Add a GridLines setting to the input below so that the output includes (equally spaced) 
vertical grid lines that pass precisely through the mesh points, and (unequally spaced) horizon-
tal grid lines that pass through the same mesh points.

In[39]:= Plot x2, x, 0, 10 , Mesh 9

Out[39]=

2 4 6 8 10

20

40

60

80

100

6. Add Mesh and MeshFunctions options to the input below so that the mesh points are precisely 
the points where the graphs of the two functions intersect.

In[40]:= Plot Sin 2 x ,
1

2
Cos 5 x , x, 0, 2

Out[40]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0
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3.4 Investigating Functions with Manipulate
The  Manipulate  command is  used  to  manipulate  an  expression  in  real  time  using  the  mouse  (or

even a gamepad controller; see Exercise 7). One of the most basic uses of Manipulate is to evaluate a

function defined over an interval, say 1 x 10. In such a case, the syntax is identical to that of the
Plot command:

In[1]:= Manipulate x2, x, 1, 10

Out[1]=

x

1

The controller, aptly called a manipulator,  initially displays as a slider. Clicking on the  button to
the right of the slider, however, will reveal additional controls beneath:

x

2.6

6.76

Now operate the slider. It ranges over the values from 1 to 10 in this example, and the current value

is  displayed  in  the  input  field  directly  under  the  slider.  The  function  value  f x x2  is  displayed

below.  Try  it.  As  you  position  your  mouse  over  any  control  button,  a  tooltip  will  appear  that

describes that button’s function. For instance, the Play/Pause button  is used to start and stop an

animation, while the buttons on either side of it will advance it forward or backward one frame at a
time. The double up and down arrow buttons are used to adjust the speed of the animation, and the
direction  button  on  the  far  right  is  used  to  determine  whether  the  animation  will  play  forward,
backward,  or  oscillate  (forward  to  the  end,  then  backward to  the  beginning, and so  on).  You  may
also type a specific numerical value directly into the input field, followed by the  key. Note that if
you hit   (or  on a Mac) after typing in the input field,  you will generate a  second output
cell.

The Manipulate command in its most basic form takes two arguments, separated by a comma. The

first (in this case x2) describes the expression to be manipulated. The second (in this case {x,1,10}) is
an  iterator.  If  you  wish  to  have  your  variable  increase  in  unit  steps  only,  you  can  add  a  fourth
element to the iterator that will specify the amount by which the variable will skip from one value
to  the  next.  For  example,  here  we  increment  the  variable  x  in  steps  of  size  5.  When  the  slider  is
moved, x jumps from 0 to 5 to 10, etc.
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In[2]:= Manipulate x2, x, 0, 50, 5

Out[2]=

x

0

In the next example, we make a plot of the function f x x sin 1 x , the right endpoint of which is

controlled with a slider,  while the left  endpoint is  fixed at 0.  When the controller is  moved to the
left, the plot’s domain narrows, and the user is afforded a zoomed-in view of the function’s behav-
ior near x 0.

In[3]:= Manipulate Plot x Sin 1 x , x, 0, r ,

r, .1, 2

Out[3]=

r

0.02 0.04 0.06 0.08 0.10

0.05

0.05

In  cases  such  as  this  it  would  be  nice  to  put  a  more  descriptive  label  on  the  slider.  This  can  be
accomplished either by giving the  controller variable a  more descriptive  name (e.g.,  one might use
xmax  or rightEndpoint),  or  by replacing the controller variable r  in the iterator above by a list of
the form {var , init , label}. Here var is the variable name, init is the initial value to be assumed by the
variable  upon  evaluation,  and  label  is  the  label  you  want  to  be  displayed  on  the  interface.  For
instance, below we generate the same output as above, except that we create a slider with the label
right endpoint, and whose initial value upon evaluation will be 0.2.
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In[4]:= Manipulate Plot x Sin 1 x , x, 0, r ,

r, 0.2, "right endpoint" , 10 10, 2

Out[4]=

right endpoint

0.05 0.10 0.15 0.20

0.15

0.10

0.05

0.05

0.10

It is possible to place several controller variables in a single Manipulate. It is also possible to simulta-
neously  animate  all  of  them  using  their  individual  controls.  Below  we  explore  three  directive  set-
tings for PlotStyle.

In[5]:= Manipulate Plot x Sin x , x, 10, 10 ,

PlotStyle Directive Thickness t , Dashing d , Blend Red, Blue , b ,

t, .01, "Thickness" , .001, .02 , d, .02, "Dash Size" , 0, .04 ,

b, .5, "Percent Blue" , 0, 1

Out[5]=

Thickness

Dash Size

Percent Blue

10 5 5 10

4

2

2

4

6

8
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When manipulating a Plot,  it  is  often desirable to include a PlotRange  setting to maintain a fixed
viewing  rectangle  as  the  controllers  are  moved.  Here  we  use  three  controls  to  adjust  some  coeffi-
cients on a parabola: 

In[6]:= Manipulate

Plot a x b 2 c, x, 5, 5 , PlotRange 5, PlotLabel "y a x b 2 c" ,

a, 1, 1 , b, 1 , 3, 3 , c, 2 , 3, 3

Out[6]=

a

b

c

4 2 2 4

4

2

2

4

y a x b 2 c

There are numerous control types available other than sliders. Below we force Manipulate  to use a
SetterBar  (a  row of  buttons,  only one of  which can be selected at  a  time) simply  by changing the
syntax of  the iterator.  The values  to be assumed by the controller variable are given explicitly as a
list.  This  example  is  useful  for  exploring  the  roles  of  the  PlotPoints,  MaxRecursion,  and  Mesh
options in producing a Plot. Note that the default setting for PlotPoints is 50, so most of the settings
for this option below force Mathematica to produce a poor image.

In[7]:= Manipulate

Plot Sin 4 x , x, 2 , 2 , PlotPoints pp, MaxRecursion mr, Mesh m ,

pp, 64, "PlotPoints" , 4, 8, 16, 32, 64 ,

mr, 4, "MaxRecursion" , 0, 1, 2, 3, 4 , m, Full, "Mesh" , Full, All, None
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Out[7]=

PlotPoints 4 8 16 32 64

MaxRecursion 0 1 2 3 4

Mesh Full All None

6 4 2 2 4 6

1.0

0.5

0.5

1.0

The control type  adapts to the syntax used in the iterator for  that control.  For instance, if  a list  of
values  associated  with  a  controller  variable  contains  six  or  more  items,  the  controller  will  change
from a SetterBar (as in the previous example) to a PopupMenu. While a PopupMenu is desirable if
there is a very long list of choices, we prefer a simple SetterBar as long as there is room for it. In the
next example we override the default behavior with an explicit ControlType option setting.

In[8]:= Manipulate

Plot f x , x, 0, 4 , Ticks Range 0, 4 , 2 , Automatic , PlotLabel f x ,

f, Tan, "function" , Sin, Cos, Sec, Csc, Tan, Cot , ControlType SetterBar

Out[8]=

function Sin Cos Sec Csc Tan Cot

2

3

2

2 5

2

3 7

2

4

6

4

2

2

4

6

0.

There are many other useful controller types. For instance, you can produce the controller known as
Slider2D by creating a Manipulate variable whose value is set to an ordered pair of the form {x,y} (i.e.

80 Functions and Their Graphs



a point in the plane), and specifying its bounds as {xmin,ymin} and {xmax,ymax}. Below we illustrate
this by letting the user manipulate the AxesOrigin setting with a two-dimensional slider:

In[9]:= Manipulate Plot x Sin x , x, 20, 20 , AxesOrigin pt, PlotRange 20 ,

pt, 0, 0 , "Move the axes: " , 20, 20 , 20, 20 , ControlPlacement Left

Out[9]=

Move the axes:

20 10 10 20

20

10

10

20

Another means of manipulating a point in a graphic is to use an iterator of the form {var,Locator},
as  shown  below.  Drag  the  Locator  icon  with  your  mouse  to  move  it  directly  across  the  graph,  or
simply  click  on  the  graphic  to  move  the  Locator  to  that  location.  The  {0,0}  in  the  input  below
specifies the initial position of the locator when the cell is first evaluated.

In[10]:= Manipulate Plot x Sin x , x, 20, 20 , AxesOrigin pt, PlotRange 20 ,

pt, 0, 0 , Locator

Out[10]=
20 10 10 20

20

10

10

20

The simple iterator structure {var , colorSetting} will produce a color slider. You can drag over the color
field with the mouse to adjust the color continuously in real time.
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In[11]:= Manipulate Plot
Sin x

x
, x, 0, 20 , PlotStyle color , color, Blue

Out[11]=

color

5 10 15 20

0.2

0.1

0.1

0.2

0.3

0.4

A complete listing of permissible iterator syntax structures  and their corresponding default control-
ler types  can be  had in the  More Information section of the documentation page  for  Manipulate.
We summarize this information in Table 3.1.

Iterator Form Default ControlType

u, umin, Animator

u, umin, umax Manipulator

u, umin, umax, du discrete Manipulator with step du

u, xmin, ymin , xmax, ymax Slider2D

u, xmin, ymin , xmax, ymax , dx, dy discrete Slider2D with horizontal step dx, vertical step dy

u, Locator Locator

u, True, False Checkbox

u, value1, value2, … , PopupMenu or SetterBar if fewer than 6 items

u, color ColorSlider

u InputField

Table 3.1 Iterator structures for Manipulate variables and the default control types they produce.

When making a Manipulate  object it is important to put the right controllers in place for the task
at  hand.  Options  may  be  added  to  any  of  the  iterator  forms  so  that  one  may  specify  a  controller
other  than  the  default.  For  example  one  might  replace  the  Manipulate  iterator  u, 0, 10  by
u, 0, 10, ControlType VerticalSlider, ControlPlacement Left .  We  summarize  some  valid

ControlType settings for each iterator form in the Table 3.2 (with the default setting in bold).
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Iterator Form Valid ControlType Settings

u, umin, umax
Animator, InputField, Manipulator,

Slider, Slider2D, VerticalSlider, None

u, umin, umax, du
Animator, InputField, Manipulator,

PopupMenu, RadioButtonBar, SetterBar,

Slider, Slider2D, VerticalSlider, None

u, xmin, ymin , xmax, ymax
InputField, Locator, Slider2D, None

u, xmin, ymin , xmax, ymax , dx, dy InputField, Locator, Slider2D, None

u, Locator Locator, None

u, True, False
Animator, Checkbox, CheckboxBar, InputField,

Manipulator, Opener, PopupMenu, RadioButtonBar,

SetterBar, Slider, VerticalSlider, None

u, value1, value2, …
Animator, Checkbox, CheckboxBar, InputField,

Manipulator, PopupMenu, RadioButtonBar,

SetterBar, Slider, TogglerBar, VerticalSlider, None

u, color ColorSetter, ColorSlider, InputField, None

u InputField, None

Table 3.2 Valid control type settings for the various iterator structures used in Manipulate.

Other Dynamic Display Commands
While  Manipulate  is  the  single  most  flexible  and  powerful  command  for  creating  dynamic  user
environments,  there  are  a  number  of  other  commands  which  produce  dynamic  output  of  some
kind.  For  instance,  one  may  use  the  command  Animate  to  produce  an  animation.  The  syntax  is
identical to that of Manipulate.

Each of the commands ListAnimate, FlipView, PopupView, OpenerView, and SlideView  accepts a
list of expressions, and creates an environment in which the user can dynamically interact with the
individual expressions. OpenerView accepts a list containing only two expressions: a header, and an
expression to display when it is in the “open” state.

In[12]:= OpenerView Style "click the triangle", "Text" , Style "Hah, you did it ", "Section"

Out[12]= click the triangle

The  commands  MenuView  and  TabView  accept  lists  of  the  form  {label1 expression1, label2

expression2,…}, and return a menu of labels or a collection of tabs, respectively, associated with their

corresponding expressions.
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In[13]:= TabView "sine" Plot Sin x , x, 0, 2 , "cosine" Plot Cos x , x, 0, 2 ,

ImageSize Automatic

Out[13]=

1 2 3 4 5 6

1.0

0.5

0.5

1.0

sine cosine

Exercises 3.4
1. The following simple Manipulate has two sliders: one for x and one for y. Make a Manipulate 

that also has output {x,y}, but that has a single Slider2D controller.

In[14]:= Manipulate x, y , x, 0, 1 , y, 0, 1

Out[14]=

x

y

0, 0

2. Make a Manipulate of a Plot where the user can adjust the AspectRatio in real time, from a 
starting value of 1 5 (five times as wide as it is tall) to an ending value of 5 (five times as tall as it 
is wide). Set ImageSize to Automatic, 128  so the height remains constant as the slider is 
moved.

3. Make a Manipulate of a Plot where the user can adjust the Background in real time.

a. Use the setting Background RGBColor r, g, b , where r, g, and b are Manipulate variables 

that range from 0 to 1. They will control the relative amounts of red, green, and blue in the 
background, respectively. This allows you to interactively explore the RGB color space.

b. Use the setting Background Hue h, s, b , where h, s, and b are Manipulate variables that 

range from 0 to 1. They will control the values of hue, saturation, and brightness in the 
background, respectively. This allows you to interactively explore the HSBcolor space.

4. It is often the case that one wants to create a Manipulate that includes some sort of explanatory 
text that can be manipulated. A robust means of accomplishing this is to (1) transform any 

84 Functions and Their Graphs



variable quantity in the text to a String using ToString, and (2) join together the static and 
variable text strings with StringExpression.

a. You can type ~~ between two text strings to sew them together into a single string. Techni-
cally, you are invoking the StringExpression command when you do this. Try it; type and 
enter the following. We use FullForm so that the double quotes will display.

"This is a string" " and so is this." FullForm

b. Now explain what’s going on here:

In[15]:= Manipulate Style "The square root of " ToString x

" is " ToString N x ".", "Subsubsection" ,

x, 2 , 1, 10

Out[15]=

x

The square root of 2 is 1.41421.

c. Create a Manipulate showing a Plot of the sine function, with a PlotLabel that indicates the 
value of the function for any value of x between  and . The user can control x with a slider.

5. The following input will create a useful interactive interface in which every available option for 
the Plot command appears in a popup menu. Select an option in this menu, and the usage 
message for that option is displayed. Try it (Courtesy of Lou D’Andria, Wolfram Research).

Manipulate

ToExpression SymbolName option "::usage" ,

option, Map First, Options Plot

a. Modify the input above to create an option explorer for the Grid command, and use it to get 
information on the ItemSize option.

b. See if you can figure out how this Manipulate works. This will entail finding information in 
the Documentation Center on the commands Map, First, Options, SymbolName, ToExpres
sion, and StringExpression (~~). Note that by replacing Plot (in the last line) by any other 
command that accepts options, an option explorer for that command can be generated.

6. Use TabView with two tabs to produce the output below. You’ll have to find the answer to the 
riddle on your own, or look at the solution. (Riddle by Alexandra Torrence, age 10.)

I'm a wave that does not move, and to you I want to prove, that

if you knock I'm hard as rock and if you kick me I'll stick to your sock.

Riddle Answer
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7. This exercise discusses the use of gamepad controllers to operate a Manipulate output. If you 
have a gamepad for your computer the first thing to do is to plug it in, select the cell bracket for 
a Manipulate and try it. In most cases it’s plug and play. To bind a particular Manipulate local 
variable to a given controller axis, replace the iterator {var, spec} for that variable with axisName  
{var,spec}, where axisName is the string name of the given controller axis. Typical axis names are 
given below. Create a Manipulate where you bind a specific local variable to a specific controller 
axis.

one-dimensional: "X1", "Y1", "Z1", "X2", "Y2"
two-dimensional: "XY1", "XY2"
buttons: "Button 1", "Button 2"

3.5 Producing a Table of Values
It  is  often  handy  to  produce  a  table  of  function  values  for  various  inputs.  Here  is  a  table  of  the
squares of the first ten positive whole numbers:

In[1]:= f x : x2

In[2]:= Table f x , x, 1, 10

Out[2]= 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

Like Plot  and Manipulate,  the Table  command takes  two arguments,  separated by a comma. The
first describes the contents of each table entry, while the second (in this case x, 1, 10 ) is an itera-

tor.  Unlike  Plot  and  Manipulate,  however,  the  values  of  the  variable  will  increment  by  1  (by
default) in a Table. As with Manipulate, a fourth number can be added to the iterator to specify the
step size.

In[3]:= Table f x , x, 0, 50, 5

Out[3]= 0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500

You can also shorten the iterator  to contain only two items—the name of the variable and a stop-
ping number.  When you do this,  Mathematica  starts  at 1  and increments  the variable in steps  of  1
until the stopping number is reached. So for instance, using the iterator x, 10  is the same as using

the iterator x, 1, 10 :

In[4]:= Table f x , x, 10

Out[4]= 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

The  output  of  the  Table  command  is  a  basic  data  structure  in  Mathematica  called  a  list.  A  list  is
comprised  of  an  opening  curly  bracket,  individual  items  (such  as  numbers)  separated  by  commas,
and a closing curly bracket.

Table  will also accept a special iterator structure of the form {var,{value1,value2,…}}. In this case the
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variable will assume the explicit values in the given list. 

In[5]:= Table f x , x, 1, 7, 12, 20

Out[5]= 1, 49, 144, 400

One  of  the  most  useful  applications  of  the  Table  command is  producing  something  that  actually
looks like  a  table.  We  accomplish this  by  constructing a  Table  where  the  first  argument  is  itself  a
list. The result is a list of lists. We then apply Grid to the result in order to create a two-dimensional
display in which each inner list becomes a row. Here’s an example where both the input value x and
the output value f x  for a function are given in each row:

In[6]:= data Table x, f x , x, 5

Out[6]= 1, 1 , 2, 4 , 3, 9 , 4, 16 , 5, 25

In[7]:= Grid data

Out[7]=

1 1

2 4

3 9

4 16

5 25

Grid  will  display  any  list  of  lists  in  a  two-dimensional  format  like  this;  each  sublist  appears  as  a
separate row. Numerous options are available that allow all manner of presentation possibilities. But
perhaps  the  most  simple  formatting  tip  is  to  apply  Text  to  an  entire  grid.  This  will  apply  textual
formatting  to  the  individual  items  (numbers  in  this  case)  that  occupy  each  grid  cell.  Here  we  use

prefix  form  (@,  see  Section  2.8  on  page  37)  instead  of  square  brackets  when  applying  the  Text
command, and add the Grid option setting Alignment Right to align each column to the right.

In[8]:= Text Grid data, Alignment Right

Out[8]=

1 1
2 4
3 9
4 16
5 25

Another simple but valuable technique is to add headings to the columns of a table by prepending an
additional row containing these headings to your table data. Typically each item in the header row
is a string; this is accomplished by enclosing each item in double quotes. 

In[9]:= tableContents Prepend data, "x", "x2"

Out[9]= x, x2 , 1, 1 , 2, 4 , 3, 9 , 4, 16 , 5, 25
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In[10]:= Text Grid tableContents, Alignment Right,

Dividers Center, False, True , Spacings 2

Out[10]=

x x2

1 1
2 4
3 9
4 16
5 25

The Spacings  option  can be  used  to  add a  bit  of  space  between successive  columns.  The Dividers
option  is  used  above  to  add  dividing  lines  in  a  Grid.  The  setting  is  of  the  form  {vertical
dividers,horizontal dividers}. The Center  setting specifies that there are no vertical lines on the far left
or  far  right,  only  between  the  columns.  The  False, True  specifies  the  horizontal  dividing  lines:
there  is  no  line  above  the  first  row,  while  there  is  one  above  the  second  row,  and  none  for  any
subsequent rows. The following syntax may also be used for Dividers. It can be handy in cases like
this where few dividers are required.  It  simply  specifies  that  only the second  vertical  divider and the
second horizontal divider will be rendered, and no others.

In[11]:= Text Grid tableContents, Alignment Right,

Dividers 2 True, 2 True , Spacings 2

Out[11]=

x x2

1 1
2 4
3 9
4 16
5 25

With these tools in hand, you can create tables to your heart’s content. Here we use powers of ten as
the values of the function variable, and the simple Dividers All  setting to put in all possible row
and column dividers:

In[12]:= Clear data ;

data Table 10n, f 10n , n, 0, 5

Out[13]= 1, 1 , 10, 100 , 100, 10000 , 1000, 1 000000 ,

10 000, 100000000 , 100000, 10 000000000
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In[14]:= Text Grid Prepend data, "x", "x2" ,

Alignment Right, Dividers All, Spacings 2

Out[14]=

x x2

1 1
10 100
100 10000
1000 1000000
10000 100000000
100000 10000000000

As a last example, here is how you can make a table that displays the values for multiple functions,

in this case f x x2 and g x 2x:

In[15]:= Clear data ;

data Table x, x2, 2x , x, 10

Out[16]= 1, 1, 2 , 2, 4, 4 , 3, 9, 8 , 4, 16, 16 , 5, 25, 32 ,

6, 36, 64 , 7, 49, 128 , 8, 64, 256 , 9, 81, 512 , 10, 100, 1024

In[17]:= Text Grid Prepend data, "x", "x2", "2x" ,

Alignment Right, Dividers Center, False, True , Spacings 2

Out[17]=

x x2 2x

1 1 2
2 4 4
3 9 8
4 16 16
5 25 32
6 36 64
7 49 128
8 64 256
9 81 512
10 100 1024

The three most common types of brackets
Now is a good time to review the three most commonly used brackets in Mathematica. 
Parentheses ( ) are used to group terms in algebraic expressions. Square brackets [ ] are 
used to enclose the arguments of functions. And curly brackets { } are used to enclose lists.
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Manipulating a Grid
Here is a grid with a header row, and a second row of content. The values in this second row can be
manipulated. This gives a compact table that allows one to display the row of his or her choosing:

In[18]:= Manipulate

Text Grid "x", "x2" , x, x2 , Dividers All, ItemSize 5 , x, 5.3 , 1, 10, .1

Out[18]=

x

x x2

5.3 28.09

The following shows a simple Celsius to Fahrenheit conversion tool:

In[19]:= Manipulate Text Grid "C", "F" , c, 1.8 c 32 , Dividers All, ItemSize 5 ,

c, 0 , 40, 100, 1

Out[19]=

c

C F
0 32

The  two  examples  above  make  use  of  the  ItemSize  option  to  the  Grid  command.  When  set  to  a
single  numerical  value  (as  we  did  here)  it  specifies  the  width  of  each  cell  in  the  grid  in  ems  (the
width of the letter  m).  Other common settings  for  this  option include All  (which specifies  that  all
cells have identical width and height values, determined by the content of the largest cells), or a list
of two numerical values such as {5, 2} (which specifies the width of each cell in ems  and the height
of each cell in line heights, respectively). When manipulating a grid, it is a good idea to set ItemSize
to a specific numerical value (or to a list of two such values) in order to keep the table dimensions
steady as the controller is adjusted.

Exercises 3.5
1. The Partition command is used to break a single list into sublists of equal length. It is useful for 

breaking up a list into rows for display within a Grid. 

a. Enter the following inputs and discuss the outputs.

Range 100
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Partition Range 100 , 10

b. Format a table of the first 100 integers, with twenty digits per row. The first two rows, for 
example, should look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

c. Make the same table as above, but use only the Table and Range commands. Do not use 
Partition.

d. Make the same table as above, but use only the Table command (twice). Do not use Partition 
or Range.

2. The Style command is used to apply a particular style to an expression.

a. Enter the following inputs and discuss the outputs.

Style 4, Red

Style 4, 72

Style 4, "Section"

Style 4, FontFamily "Helvetica", FontWeight "Bold"

b. One can apply a particular style to every item in a Grid by using the entire Grid as the first 
argument to Style. Create an output that matches that below. The font is Comic Sans MS, and 
the text should be blue.

1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625

c. Alternately, one can apply style elements to an entire grid by selecting the cell bracket of the 
cell containing the grid, and visiting the Format menu. For instance, Format Text Color Blue 
will make all the text blue. Reproduce the Grid above, this time using the menu items to 
change the style.

3. A statement that is either true or false is called a predicate; in Mathematica a predicate is any 
expression that evaluates to True or False. In this exercise you will learn how to use predicates to 
apply Styles selectively.

a. There are many built-in predicate commands. Most end in the letter Q (for “Query”). Enter 
the following inputs and discuss the outputs.

? PrimeQ

? Q

b. The If command is used to generate one output if a specified condition (i.e., a predicate) is 
true, and another if that condition is false. The predicate is the first argument to If. The next 
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argument is what is returned if the predicate is true (If is discussed in Section 8.5). A third 
argument specifies the expression to be returned if the predicate is false. Enter the following 
input and discuss the output.

Table If PrimeQ n , Style n, Red , n , n, 100

c. Format a table of the first 100 integers, with ten digits per row. In this table, make all prime 
numbers red.

d. Format a table of the first 100 integers, with ten digits per row. In this table, make all square-
free numbers blue and underlined. Note: An integer is squarefree if none of its divisors (other 
than 1) are perfect squares.

e. Format a table of the first 100 integers, with ten digits per row. In this table, make all prime 
powers orange and italicized. Note: An integer is a prime power if it is equal to pn, where p is 
prime and n is a positive integer.

4. The Sum command has a syntax similar to that of Table. 

a. Use the Sum command to evaluate the following expression:

13 23 33 43 53 63 73 83 93 103 113 123 133 143 153 163 173 183 193 203

b. Make a table of values for x 1, 2, … ,10 for the function

 f x

1 2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

c. Plot f x  on the domain 1 x 10.

5. Comments can be inserted directly into your input code. Any text placed between the (* and *) 
tokens will be ignored by the kernel when an input is entered. Comments do not affect the 
manner in which your code is executed, but they can be helpful to you or someone else who has 
to read and understand the code later. Look at the solution to the next exercise to see an example 
in which comments are used to help a reader find each of four items in a somewhat complex two-
by-two Grid.

6. Use a two-by-two Grid within Manipulate to create the interface below for zooming in on a 
graph of the sine function. The “Center” controller corresponds to a variable named x0, and the 
“Zoom Level” controller corresponds to a variable named . The iterator for the lower Plot is of 
the form {x0- ,x0+ }.
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Center

Zoom Level

2 21

1

Full View

0.6 0.7 0.8 0.9 1.0

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Zoom View

7. In this exercise you will explore the syntax for applying options to a Grid. Mastery of this syntax
will allow you to construct stunningly beautiful tables. There are two common syntax forms that 
work for several options. To illustrate the possibilities we use the Dividers option, which speci-
fies the placement and style of vertical and horizontal dividing lines in a Grid. First enter the 
input below to generate a 10 10 table of invisible data (each entry is simply a string comprised 

of a single space character). Note: The Partition command is discussed in Exercise 1.

emptyTable Partition Table " ", 100 , 10 ;

a. The simple setting Dividers All will insert every possible line. But other single word settings 
such as Gray are permissible. Enter the inputs below, and discuss the outputs.

Grid emptyTable, Dividers Gray

Grid emptyTable, Dividers Dotted

Grid emptyTable, Dividers Thick

Grid emptyTable, Dividers Directive Thin, Orange

b. More control may be obtained with the syntax Dividers x setting , y setting . Typically the x 

setting is a list of values relating to positions within a row, and is used to specify the style and 
placement of vertical items. Enter the input below. Here the x setting is 

Black, Gray , Black , and the y setting is None. What effect does this have?

Grid emptyTable, Dividers Black, Gray , Black , None

c. How would you produce the output below?
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d. Take your last input and add the following option setting, then explain the output.

Background None, Lighter Gray, .7 , Lighter Blue, .9 , Lighter Yellow, .9

e. Other options that utilize these syntactical conventions are Alignment, Spacings, ItemSize, 
and ItemStyle. Some simple but useful Alignment settings to try are Alignment Right or 

Alignment "." (to align numbers at the decimal point). Produce the following Grid using the 
options mentioned. The Helvetica font is used for the entries in the first column, while the 
default text font is used in the second. Once you can do this, you will be equipped to produce 
a rich assortment of useful tables.

10 5 0.00001

10 4 0.0001

10 3 0.001

10 2 0.01

10 1 0.1

100 1

101 10.

102 100.

103 1000.

104 10000.

105 100000.

3.6 Working with Piecewise Defined Functions
Certain  functions  are  defined  by  different  rules  over  various  disjoint  pieces  of  their  domain,  so-
called piecewise defined functions. For instance a function may be defined by the rule f x x when x

is between zero and one, inclusive; by the rule f x x when x is strictly between negative one and

zero; and by f x 1 for all other values of x. In standard mathematical notation we write:
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f x

x 0 x 1

x 1 x 0

1 otherwise

Here “otherwise” means that either x 1 or x 1. How can this be conveyed to Mathematica? It is a
simple matter to enter a piecewise function directly from the keyboard in standard notation. To do
so, first type f[x_]:=, then create the single bracket by typing pw , and finally produce a grid to
the right of the bracket by typing  , . If more than two rows are needed, type   . Each time
you hit    you will add one additional row. Now move the cursor to the first placeholder and
type in a function expression,  then use the  key to move to the adjacent placeholder and type a
logical expression.  This  is  typically  an inequality such as 0 x 1, but  in all  cases is  an expression
that evaluates to either True or False when x is a specific real number. Fill in the remaining pairs of
placeholders; the first in each pair holds a function expression, the second a logical expression. The
following example shows how one would enter the function above. Note that the logical expression
in the final row can simply contain the expression True, which conveys the meaning that this rule
is  applied  to  all  values  of  x  for  which  the  logical  expressions  in  earlier  rows  are  False;  that  is,  it
behaves like the word “otherwise” in the example above. When you’re finished typing, enter the cell.

In[1]:= f x :

x 0 x 1

x 1 x 0

1 True

Once entered, this function behaves like any other. You may Plot it, Manipulate it, apply to it any
transformations  that  you  might  apply  to  any  other  function.  In  short,  it  behaves  exactly  as  it
should. For instance:

In[2]:= Plot f x , x, 2, 2

Out[2]=

2 1 1 2

0.2

0.4

0.6

0.8

1.0

The underlying Mathematica  command that  is  being utilized  to  create  the  function above is  called
Piecewise.  In  most  cases  it  is  easiest  to  use  the  syntax  above,  which  has  the  effect  of  calling  the
Piecewise  command.  Equivalently,  one  can  use  Piecewise  directly;  the  following  example  shows
how to enter the function above using this syntax:

In[3]:= f x : Piecewise x, 0 x 1 , x, 1 x 0 , 1

This syntax can be useful when you are working with a function that has many “pieces,” for you can

then use the Table command to generate the first argument programmatically. See Exercise 3.
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Regardless  of  how  a  piecewise  function  is  entered,  it  is  important  to  understand  some  syntactical
conventions regarding the logical expressions  (such as  0 x 1) that specify when a function rule is
applied. In particular, the logical connective &&  can be used to mean “and,” and || can be used to
mean “or.” The connectives allow complex conditions to be specified. Here’s an example:

In[4]:= g x :
x2 2 x 1 1 x 2
1 1 x 1

4 True

Here is an equivalent formulation, using the absolute value function:

In[5]:= g x :
x2 1 Abs x 2
1 Abs x 1

4 True

In[6]:= Plot g x , x, 3, 3 , PlotRange 0, 5

Out[6]=

3 2 1 0 1 2 3

1

2

3

4

5

Piecewise functions provide a rich setting in which to explore discontinuous  functions. Plot is aware
of discontinuities appearing at the boundary between regions, and excludes such points. This leads
to accurate plotting of such discontinuous functions.

In[7]:= Plot
1 x 1

1 x 1
, x, 3, 3

Out[7]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

The ExclusionsStyle option works as it should in such cases:
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In[8]:= Plot
1 x 1

1 x 1
, x, 3, 3 , ExclusionsStyle Dashed

Out[8]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

Exercises 3.6
1. Show the second condition in the last example above could just as well be True.

2. Make a plot of the piecewise function below, and comment on its shape.

f x

0 x 0
x2

2
0 x 1

x2 3 x 3

2
1 x 2

1

2
3 x 2 2 x 3

0 3 x

3. A step function assumes a constant value between consecutive integers n and n 1. Make a plot of 

the step function f x  whose value is n2 when n x n 1. Use the domain 0 x 20.

3.7 Plotting Implicitly Defined Functions
An implicitly defined function is given as an equation relating two variables, such as x2 y2 1 (which

describes  a  circle  of  radius  one).  Here  the  y  variable  is  not  given  explicitly  as  a  function  of  the  x

variable,  but  rather  the  x  and y  terms  are wrapped  up  in an equation;  hence the term “implicitly”

defined function.  In  order  to  plot  an  implicitly  defined function,  use  the  ContourPlot  command.
Use the implicit equation for the first  argument (with a double equal sign  either typed from the
keyboard or inserted via the  BasicMathInput  palette),  and include two iterators:  one for  x,  a  second
for y.
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In[1]:= ContourPlot x2 y2 1, x, 1, 1 , y, 1, 1

Out[1]=

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

By default, a ContourPlot will display with a frame and no coordinate axes, but it is a simple matter
to change this behavior.

In[2]:= ContourPlot x2 y2 1, x, 1, 1 , y, 1, 1 , Frame False, Axes True

Out[2]=
1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Note that by default the AspectRatio of a ContourPlot will be set to 1, meaning that the coordinate
axes will be scaled as necessary to produce a perfectly square plot. Such a plot can be misleading; for
instance, the ellipse below looks like a circle!
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In[3]:= ContourPlot x2 4 y2 1, x, 1, 1 , y, .5, .5

Out[3]=

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4

Set the AspectRatio  to Automatic to give your axes a uniform scale. We do not recommend this as
a default setting, however, as it is all too easy to ask for a plot that is thousands of times higher than
it is  wide.  But in cases  such as  the ellipse above where a common scaling of axes is called for,  this
setting is important.

In[4]:= ContourPlot x2 4 y2 1, x, 1, 1 , y, .5, .5 , AspectRatio Automatic

Out[4]=

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4

ContourPlot  works in a fundamentally different way than Plot does,  as there is  no explicit expres-
sion to  evaluate  for  each numerical  value  of  x.  Rather,  it  samples  points  in  the  rectangular  region
specified by the two iterators, and recursively applies an adaptive algorithm in an attempt to find a
smooth curve (or curves) satisfying the given equation. It is possible that in some cases the default
parameters governing the algorithm are insufficient to produce an accurate plot. For example, note
the jagged appearance in some parts of the output below:
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In[5]:= ContourPlot Sin x2 y2 Cos x y , x, 10, 10 , y, 1, 1

Out[5]=

10 5 0 5 10
1.0

0.5

0.0

0.5

1.0

To cure a case of the “jaggies,” try setting the PlotPoints  option to a large value such as 25, 50, or
100. PlotPoints controls how many points are initially sampled in the domain. Larger values tend to
produce more accurate plots but may lead to significantly slower evaluation time, so use the lowest
setting that produces a satisfactory plot.

In[6]:= ContourPlot Sin x2 y2 Cos x y , x, 10, 10 , y, 1, 1 , PlotPoints 100

Out[6]=

10 5 0 5 10
1.0

0.5

0.0

0.5

1.0

Several implicitly defined functions can be simultaneously displayed by providing a list of equations
as the first  argument to ContourPlot.  Mousing over  a curve on the plot  yields a  tooltip displaying
the equation corresponding to that curve, so it is easy to interpret the output when multiple equa-
tions are plotted.
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In[7]:= ContourPlot 2 x2 y2 1, 2 x2 y2 1 , x, 1, 1 , y, 1, 1

Out[7]=

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

As  with  the  Plot  command,  the  option  setting  Mesh Full  will  reveal  which  points  are  sampled
initially, while the setting Mesh All  will reveal the final points used to construct the curves after
the algorithm has run. The following Manipulate is a useful aid for understanding how the options
PlotPoints  and MaxRecursion  work in a  ContourPlot.  When MaxRecursion  is  set  to 0,  no itera-
tions take place and the initial and final meshes are the same. We saw a similar example for Plot in
Section 3.4 on page 79.

The three types of equal signs
Now is a good time to review the three types of equal signs that are used in Mathematica. 
Each is used for a separate purpose so it is imperative that they be used appropriately. A 
single equal sign = is used to assign a name to an expression, such as a 3 or 
myPlot Plot 2 x, x, 2, 2 . A colon-equal sign := is used to make a delayed 

assignment to an expression and is useful for defining functions, such as f x : x2. A 
double equal sign  is used to express an equation, such as 2 x2 y2 1.
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In[8]:= Manipulate

ContourPlot 2 x2 y2 1, x, 2, 2 , y, 2, 2 ,

PlotPoints plotPoints, MaxRecursion maxRecursion, Mesh mesh ,

plotPoints, 4 , 2, 3, 4, 8 , maxRecursion, 2 , 0, 1, 2, 3 , mesh, Full, All

Out[8]=

plotPoints 2 3 4 8

maxRecursion 0 1 2 3

mesh Full All

Exercises 3.7
1. The option ContourStyle (not PlotStyle) is used to change the style of a ContourPlot. Plot the 

implicit function x2 sin x y 3 as a thick, blue, dotted line.

2. If you ever wish to simultaneously view contour plots of implicitly defined functions of the form 
f x, y z1, f x, y z2, f x, y z3, and so on, where z1, z2, etc... are constants, the following 

syntax will work. Suppose, for instance, f x, y x2 y2, and the z-values are 2, 1, 0, 1, and 2. 

Enter the following input to see overlaid plots of x2 y2 2, x2 y2 1, x2 y2 0, x2 y2 1, 

and x2 y2 2.

ContourPlot x2 y2, x, 2, 2 , y, 2, 2 ,

Contours 2, 1, 0, 1, 2 , ContourShading False

3. Piecewise functions may be implicitly defined. Let f x, y
x2 y2 x y

1 x2

y2 x y
. Make a ContourPlot 
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of the implicitly defined function f x, y 1

2
 for 0 x 3 and 0 y 3.

3.8 Combining Graphics
So you want to combine two or more graphics together as one? There are many possibilities here, so
we’ll address each in turn.

Superimposing Plots
It is often desirable to view two or more plots together. If you simply want to plot several functions
on  the  same  set  of  axes,  enter  a  list  containing  these  functions  as  the  first  argument  to  the  Plot
command and you’ll have it:

In[1]:= Clear f, g ;

f x : 1 x;

g x : x2;

In[4]:= Plot f x , g x , f x g x , x, 1, 1

Out[4]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

On your  monitor  the three functions are given three distinct  colors. To  better  distinguish between
them,  one  may  wrap  the  list  of  functions  with  the  Tooltip  command.  When  you  mouseover  any
curve in the resulting plot, a tooltip will pop up displaying that function’s expression. Note that the
output in printed form is indistinguishable from the prior output, so this feature is only useful in a
live session.

In[5]:= Plot Tooltip f x , g x , f x g x , x, 1, 1

Out[5]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0
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One  may  also  use  the  PlotStyle  option  to  change  the  appearance  of  the  three  functions.  This  is
sometimes useful for printed output when using a black and white printer. Just set PlotStyle to a list
of three directives. These will be applied to the functions (in the order listed).

In[6]:= Plot f x , g x , f x g x , x, 1, 1 , PlotStyle Gray, Black, Dashing .01

Out[6]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

Finally,  with  a  little  extra  work  you  can  add  a  legend  to  the  plot  that  will  explain  to  the  reader
which function is  which.  You must  first  load the PlotLegends  package.  Be sure to type the double
quotes and the backquote character.

In[7]:= Needs "PlotLegends`"

In[8]:= Plot f x , g x , f x g x , x, 1, 1 , PlotStyle Gray, Black, Dashing .01 ,

PlotLegend f x , g x , f x g x , LegendPosition 1, .5

Out[8]=

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

1 x x2

x2

1 x

The option PlotLegend is set to the list of labels to be placed in the legend box. In this case we just
used  the  functions  themselves,  but  textual  expressions  or  strings  (expressions  enclosed  in  double
quotes) are also fine. The LegendPosition option specifies where the legend box is placed relative to
the  plot.  To  be  more  precise,  it  specifies  where  the  midpoint  of  the  left  side  of  the  legend  box  is
placed. You will almost certainly want to change its default placement. To do this, set LegendPosi
tion  to a  coordinate pair where each coordinate ranges from 1 to 1. The setting {-1, -1}  places  the
legend in the lower left corner, while {1,1} places it upper right.

Alternatively,  it  is  a  simple  matter  to  build  your  own plot  legend from  scratch  using  the  drawing

tools  (discussed  in Section 3.9  on page  112);  simply  plot  your  functions,  then click on the  output
image and use the drawing tools to place on it (for instance) some text and some lines to which the
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same directives used in the plot are applied. Finally, place a rectangle with opacity and a thick black
edge on top of your text. For instance, here’s a plot:

In[9]:= Plot x2, x4, x6 , x, .5, 1.5 , PlotRange 0, 3 ,

PlotStyle Black, Directive Dashed, Black , Directive Dotted, Black

Out[9]=

0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

2.5

3.0

And here we’ve used the drawing tools to add a legend:

If you need to superimpose a large number of plots,  you can use Mathematica’s Table  command to
generate the list of functions:

In[10]:= Plot Table n x2, n, 40, 40 , x, 2, 2 , PlotRange 50

Out[10]=
2 1 1 2

40

20

20

40

In  cases  like  this  where  the  expression  appearing  as  the  first  argument  to  Plot  is  generated
programmatically, it may be beneficial to wrap the expression with Evaluate. The necessity of
the Evaluate command is a subtle business. Generally, Plot will hold the expression appearing
as  the  first  argument  unevaluated,  then  evaluate  it  multiple  times,  once  for  each  numerical
value of  x  sampled in  the domain.  Evaluate  forces  Plot  to  first  evaluate  its  initial  argument
before plugging in any values of x.  In some settings this can lead to a plot  that works versus
one that does not. In other cases, Evaluate can reduce the time it takes to produce the plot. In
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the example above, the processing time is reduced (and curves become individually colored), if
one replaces Table n x2, n, 40, 40  by Evaluate Table n x2, n, 40, 40 .

Producing Filled Plots
One can shade the region between a plot and the x axis as follows:

In[11]:= Plot 1 x2, x, 2, 2 , Filling Axis

Out[11]=

And one can shade the region between two curves like so:

In[12]:= Plot Sin x , 1 x2 , x, 2, 2 , Filling 1

Out[12]=

When there are more than two functions there are many ways to shade the various regions between
them. Below, filling is  added from the first  function to the third,  and  from the  second function to
the top of the plot.  Note that the filling is transparent,  so the two filling styles  can be layered one
over the other. Look up Filling in the Documentation Center for more information.

In[13]:= Plot x2, x4, Sin 20 x , x, 0, 1.5 , PlotRange 0, 1.5 , Filling 1 3 , 2 Top

Out[13]=
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Superimposing Graphics
To  overlay  one  graphic  on  top  of  another,  simply  feed  the  component  images  to  the  Show
command. The individual images  will  be superimposed  upon a common coordinate system.  Below
we demonstrate this by assigning names to the component images and suppressing their individual
output with semicolons.

In[14]:= p1 Plot Sin x , x, 0, 2 , AspectRatio Automatic ;

p2 ContourPlot x
2

2

y2 1, x, 0, 3 , y, 1, 1 ;

Show p1, p2

Out[16]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

The plot domain, and option settings, such as AspectRatio, Axes, and so on will be inherited from
their settings in the first image listed within Show. Changing the order of the  graphics  listed  within
Show may therefore change the appearance of the output:

In[17]:= Show p2, p1

Out[17]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

Note also that the order of the component images listed within Show is the order in which they are
rendered. The first graphic is rendered first, with the next graphic overlaid on top of it, and so on.
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In[18]:= ellipse

ContourPlot
x2

3
2 y2 1, x, 2, 2 , y, 1, 1 , ContourStyle Thickness .06 ;

squiggle Plot Sin 10 x , x, 2, 2 , PlotStyle Directive Gray, Thickness .04 ;

Show ellipse, squiggle

Out[20]=

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0

In[21]:= Show squiggle, ellipse

Out[21]=
2 1 1 2

1.0

0.5

0.5

1.0

One may also include within Show any options accepted by Graphics. Such options can be used to
override settings inherited from the component images.

In[22]:= Show squiggle, ellipse, Axes False

Out[22]=

Keep  in  mind also  that  while  Show  is  an  extremely  useful  and versatile  command,  it  is  often  not
needed. To plot two functions together, for instance, recall that one can simply provide a list of the
two functions as the first argument to Plot. One may also use the Epilog option in commands such
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as  Plot  and  ContourPlot  to  overlay  primitive  graphic  elements  on  a  plot  (the  Epilog  option  is
discussed in Section 3.9, on page 117).

Graphics Side-by-Side
A simple  but  rather  primitive  means  of  arranging graphics  side-by-side  is  to  simply  create  a  list of
graphics. Of  course,  the curly brackets  enclosing the list  will  be displayed in the output,  and there
will be commas separating the images:

In[23]:= Plot Sin x Cos x , x, , , Plot Sin x Cos x , x, ,

Out[23]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

,
3 2 1 1 2 3

1.0

0.5

0.5

1.0

A better  way  to  accomplish  a  side-by-side  display  is  to  use  GraphicsRow.  Its  argument  is  a  list  of
graphics.  It will integrate this list of individual Graphics objects into a single conglomerate graphic
that can, for instance, be moved or resized as a whole.

In[24]:= GraphicsRow

Out[24]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

3 2 1 1 2 3

1.0

0.5

0.5

1.0

The Frame,  FrameStyle,  and Dividers  options may be used to add frames around each item, or to
place divider lines between some of them. The syntax for these options works as it  does in a Grid.
The list of graphics can be generated programmatically, using Table for instance:

In[25]:= GraphicsRow Table Plot Sin m x , x, 0, 2 , m, 3 ,

Frame All, FrameStyle Dotted

Out[25]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

1 2 3 4 5 6

1.0

0.5

0.5

1.0

1 2 3 4 5 6

1.0

0.5

0.5

1.0
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Graphics in a Grid
There is also a GraphicsGrid  command to lay out graphics in a grid pattern. The syntax and many
of the options are the same as for Grid.

In[26]:= GraphicsGrid

Table Plot Csc m x , x, 0, 2 , Axes False , m, 5 ,

Table Plot Sec m x , x, 0, 2 , Axes False , m, 5 ,

Frame All, FrameStyle Gray

Out[26]=

One could also use Grid instead of GraphicsRow  or GraphicsGrid. The main difference is that the
output of these latter commands is a single graphic that may be edited as such, for instance using the
drawing  tools.  The  entire  output  can  be  resized  by  selecting  it  and  dragging  a  handle.  In  a  plain
Grid, only the individual component graphics can be edited.

Exercises 3.8
1. Name at least three strategies for determining which function is which in the graph below. You 

may alter the input and re-enter it.

In[27]:= Plot x2 , x Sin x , x, 1, 1

Out[27]=

1.0 0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

2. In this exercise you will examine the function sin .4 t sin 1.6 t

2 sin t
and the function cos .6 t .

a. Simultaneously plot both functions on the domain 0 t 8  and describe what you find.

b. Repeat for the functions sin .3 t sin 1.7 t

2 sin t
and cos .7 t . What do you find?

c. How about for the functions sin .2 t sin 1.8 t

2 sin t
and cos .8 t ?

110 Functions and Their Graphs



d. Make a conjecture as to the value of sin k t sin 2 k t

2 sin t
 for any real numbers k and t, where t is not 

an integer multiple of .

e. Enter the following, which illustrates the equivalence and allows the viewer to control k. 
Comment on the graphical implications of the fact that the third function is the sum of the 
other two. Note that in Exercise 2 in Section 4.6 we will return to this example and show why 
the equivalence holds.

In[28]:= Manipulate

Plot
Sin k t

2 Sin t
,

Sin 2 k t

2 Sin t
, Cos 1 k t , t, 0, 8 , PlotRange 2,

PlotStyle Darker Gray , Darker Pink , Directive Thick, Black ,

GridLines Range 0, 8 , , , Ticks None,

Filling 1 Axis, 2 Axis , k, .4 , 0, 2

Out[28]=

k

3. Make the following Grid showing the plots of power functions, i.e., functions of the form 
f x p xn, for real parameters p and n, with p positive and with domain 0 x 4. Include text 

next to each plot indicating the values for the parameter n that will produce plots of the same 
general shape.
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Plot of p xn looks like: When: Plot of p xn looks like: When:

n 1 n 1

n 1 n 1

0 n 1 0 n 1

n 0 n 0

3.9 Enhancing Your Graphics
The  time  will  soon  come  when  you  feel  the  irresistible  desire  to  add  some  sort  of  graphic
enhancement to a plot.  Maybe it  will  be something as minor as  an arrow and some text.  Maybe it
will be a stick figure.  Maybe it will be hundreds of circles, polygons, and lines. Whatever the need,
the time will come. And if you read this section, you will be ready.

There  are  two  basic  ways  to  add  information  to  an  existing  graphic:  Use  drawing  tools  and  your
mouse  to  interactively  add  the  elements  you  desire,  or  use  the  Graphics  command and primitive
graphics elements to proceed programmatically. Each method has its  advantages,  and we’ll  address
each in turn.

Drawing Tools
Drawing tools are found in the Graphics menu. The idea is simple and intuitive: elements are added
to a  graphic  using  the  Drawing  Tools  and  your  mouse.  This  approach  is  appropriate  when you are
making  a  single  image,  or  perhaps  just  a  few,  and  when  the  placement  of  the  elements  on  the
graphic allows some leeway. It’s great for adding labels with arrows pointing to items in a plot,  for
example.

Let’s begin with a graphic produced by the Plot command.

In[1]:= Plot Sin x , ArcSin x , x,
2

,
2

, PlotStyle Automatic, Dashed ,

AspectRatio Automatic, AxesLabel x, y
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Out[1]=

1.5 1.0 0.5 0.5 1.0 1.5
x

1.5

1.0

0.5

0.5

1.0

1.5

y

Now go to the Graphics  menu and select Drawing Tools.  Begin by clicking once on the graphic you
wish to  modify;  an  orange  border  appears  around it.  Now the  tools  on the  palette  are  bound to  a
target image. Explore the palette by mousing over its  buttons. As you do, a tooltip will give a brief
description  of  that  tool’s  function.  Generally  speaking,  click  a  tool  button  once  to  use  that  tool
once, or double click it to keep it active. If you click only once, the Selection tool will become active
immediately  afterward.  This  is  a  good  way  to  work  in  many  cases;  you  push  a  palette  button  to
activate  a  tool,  use  the  tool  to  add an  element  to  your  graphic,  then (without  another  trip  to  the
palette) you can select and move or resize the new element. For example, in the graphic above let’s
add labels for the two curves and an arrow pointing from each label to the appropriate curve. Click
on the graphic. Then push the arrow button on the palette (left column, half way down) to activate
the arrow tool (or just type the letter “a” after clicking on the graphic). Now position the cursor over
the graphic where you want the tail of the arrow to appear, and (left) click once. Holding the mouse
button  down,  drag  the  cursor  to  where  the  arrowhead should  be,  and  release.  The  arrow  appears,
with an orange bounding box around it.  The palette has now resorted back to the default Selection
tool (the cursor button in the upper right is now highlighted, not the arrow button). If you drag the
edge of the orange box surrounding the arrow, you can move it. If you drag the handle by either its
head or tail, you will move only that end of the arrow while the other end remains anchored. You
really have to try this to get a feel for it. After you have finished, click outside the graphic. Note that
you can continue to make adjustments  on your arrow at any time in the future. Click once on the
graphic  to  select  it,  then  click  again  on  any  element  to  select  that  element.  The  orange  bounding
box appears,  allowing you to move or resize it.  Alternately, if you double click on an element, you
can edit  it.  Finally,  if  you push  the  Inspector  button at  the bottom of the Drawing Tools  palette,  a
second  palette  appears. Use  this  to  fine-tune  the  appearance  of  any  graphic  element.  Select any
item, such as an arrow, and you can adjust its thickness, color, opacity (how transparent it is when
overlaid  on  another  element),  and  so  on.  With  arrows  you  can  easily  adjust  the  size,  shape,  and
position of the arrowheads.

The best way to learn about the drawing tools is simply to use them. You can create a new (empty)
graphic by pushing the button in the upper left corner of the Drawing Tools  palette, or by choosing
New Graphic in the Graphics menu. Then play to your heart’s content with the tools. Below we show
a few simple labels added to our previously generated plot:
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The  Drawing  Tools  are  a  simple  and  powerful  set  of  tools  for  creating  all  manner  of  creative  and
revealing information graphics. With no training whatever and in a matter of minutes, our 13 year
old son Robert added the archer to the plot below: 

0 50 100 150 200 250 300
0
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20
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40

50

Detailed information on each drawing tool can be had in the Documentation Center. Type “Editing
Mathematica  Graphics”  in  the  text  field  and  follow  the  link  to  the  Mathematica  overview  of  that
name.  Some  of  the  most  commonly  used  keyboard  equivalents  for  the  drawing  tools  are  given  in
Table 3.3.

Graphics Primitives
It is,  of course, possible to forgo the freehand palette approach and work programmatically instead.
This method is painstaking when you want to add a simple label with an arrow, as above, but it is
absolutely  essential  when  you  have  to  add  many  elements,  and  at  precise  locations.  We  ask  the
reader to be patient here; this section will introduce ideas that take some practice and perseverance
to master. The long term benefit, however, will be substantial.
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Type or click to Hold to

t open the Drawing Tools palette

1 create a new graphic at

the current selection point

i open the Graphics Inspector palette

o activate the Select Move Resize tool move horizontally vertically,

or resize preserving aspect ratio

l activate the Line tool make line horizontal or vertical

s activate the Line Segment tool make any segment s horizontal or vertical

a activate the Arrow tool make arrow horizontal or vertical

t activate the Text tool capitalize text

m activate the TraditionalForm Text tool capitalize text

g activate the Polygon tool make any segment s horizontal or vertical

c activate the Disk Circle tool make a circle aspect ratio 1

q activate the Rectangle tool make a square aspect ratio 1

p activate the Point tool

f activate the Freehand draw tool

Table 3.3 Tools in the DrawingTools palette

Let’s first meet the graphics primitives. These are the building blocks from which all two-dimensional
Mathematica  graphics  are  constructed.  They  are:  Point,  Line,  Rectangle,  Polygon,  Circle,  Disk,
Raster, and Text. Let’s look at a few of these on their own. Later, we’ll show how to combine them
into  a  single  graphic.  We  note  that  three-dimensional  versions  of  some  of  these  primitives  (and
some new ones) exist as well; these will be discussed in Section 6.2 on page 276.

The most common elements you will use are points and lines. We will illustrate the ideas involved
by  drawing  lines;  the  other  primitives  work  in  a  similar  manner.  Let’s  first  construct  the  line  seg-
ments joining the points 0, 0 , 1, 1 , and 2, 0 . To join any finite collection of points in the plane,
feed  a  list  of  the  Cartesian  coordinates  of  the  points  as  the  sole  argument  to  the  Line  command.
Individual points, such as 2, 0 , are input as lists of length two, like this: {2,0}.
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In[2]:= Line 0, 0 , 1, 1 , 2, 0

Out[2]= Line 0, 0 , 1, 1 , 2, 0

Not too interesting yet. To view any primitive graphics element, wrap it in the Graphics command:

In[3]:= Graphics Line 0, 0 , 1, 1 , 2, 0

Out[3]=

The  visual  appearance  of  any  primitive  object  or  objects  can  be  tweaked  using  graphics  directives
(these were  introduced in Section 3.3,  in the  subsection How to  Add Color  and Other  Style  Changes:

Graphics  Directives  on  page  63).  Some  commonly  used  directives  are  Red,  Thick,  Opacity .5 ,  and

Dashed.  The  syntax  works  like  this:  put  the  graphics  primitive(s)  in  a  list  whose  first  item  is  the
directive. If there is more than one directive, wrap them in the Directive command:

In[4]:= Graphics Directive Thick, Dashed , Line 0, 0 , 1, 1 , 2, 0

Out[4]=

Note that Graphics will accept many of the same options discussed for the Plot command:

In[5]:= Graphics Directive Thick, Dashed , Line 0, 0 , 1, 1 , 2, 0 , Axes True

Out[5]=

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

And  combining  primitive  elements  is  as  simple  as  putting  them  all  into  one  big  list  within  the
Graphics command:
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In[6]:= Graphics

Directive Thick, Gray , Line Table x, Sin x , x, 0, 6.3, .1 ,

Directive Dashed, Blue , Line 2, 0 , 2, Sin 2 , 0, Sin 2 ,

Directive PointSize .02 , Yellow , Point 2, Sin 2

, Axes True

Out[6]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

Note that the order in which the individual elements are specified matters. The first item is rendered
first,  and  each  additional  item  is  placed  “on  top”  of  earlier  items.  The  point  above,  for  instance,
would be obscured by the thick, gray sine curve had it been listed first.

Finally, it may be the case that you wish to include some primitive elements with the output of, say,
the Plot command. There are a few ways to do this. One is to take advantage of the Epilog option in
the  Plot  command.  Set  this  option  to  any  list  of  primitives  that  you  could  feed  to  the  Graphics
command. The effect is to overlay the primitives on top of the plot.

In[7]:= Plot Sin x , x, 0, 2 , AspectRatio Automatic,

Epilog Directive Dashed, Blue , Line 2, 0 , 2, Sin 2 , 0, Sin 2

Out[7]=
1 2 3 4 5 6

1.0

0.5

0.5

1.0

And now, at last,  we demonstrate the true benefit of understanding Graphics  primitives.  Below we
combine a  (static)  plot  of  the  sine  function with  a  dynamically controlled point  that  the  user  can
adjust with Manipulate:
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In[8]:= Manipulate Plot Sin t , t, 0, 2 , Ticks Range 0, 2 ,
6

, Sin Range
2

,
2

,
6

,

Epilog Dashed, Line x, 0 , x, Sin x , 0, Sin x ,

Red, PointSize .015 , Point x, Sin x , x,
2

3
, 0, 2

Out[8]=

x

6 3 2

2

3
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7

6
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3

3
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3

11

6

2

1
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2

1

2

1

2

3

2

1

One final word is in order that pertains to printing. If  you would like to produce a quality print of
that  beautiful  graphic  you  spent  hours  getting  just  right,  wouldn’t  it  be  nice  to  lose  the  cell  label
Out[117]=  that appears  to its  left?  There are two simple  means of  achieving this.  First,  you can high-
light the cell label and hit the delete key. Mission accomplished. Alternately, wrap your input with
the Print command, and the same output will appear but without the label. Note that Print will not
send your output to a printer; rather, it “prints” an unlabeled cell in your notebook. 

In[9]:= Print Plot Sin x 5 Cos x5 , x, 3, 3

3 2 1 1 2 3

2

1

1

2

The  same  comment  applies  to  that  wonderful  table  you  produced  with  Grid.  One  may  use
Print Style Grid , "Text"  to  generate  a  table  with  textual  styling  in  an  unlabeled cell,  suitable

for inclusion in the finest of publications.

118 Functions and Their Graphs



Exercises 3.9
1. Make the following figure using the commands Graphics, Rectangle, and Circle, and including 

the Graphics option setting Frame True. You will want to look up Circle in the Documenta-
tion Center to find out how to draw an ellipse. Do not use the Drawing Tools palette.

4 2 0 2 4

2

1

0

1

2

2. In this exercise you will explore various graphics directives using Manipulate.

a. The following command will produce a red disk of radius 1 centered at the origin. Type and 
enter it:

Graphics Red, Disk

b. Replace Red by Lighter[Blend[{Blue, Red}, .3], .4].

c. Finally, make this into a Manipulate, replacing .3 and .4 above by the control variables r and 
s, respectively. Investigate the effects. 

d. Make two disks of radius 1 centered at 0, 0  and 1, 0  with the commands Disk  and 
Disk[{1,0}, 1], respectively. Make the first disk blue. Place them in a Manipulate with a single 
control variable that determines the Opacity of the second disk (with values that range from 0 
to 1).

e. Repeat the previous part, but make the second disk (the one with varying opacity) orange. If 
you are not a University of Virginia fan, feel free to use other colors.

3. Make a smiley face as follows:

a. Create a Manipulate using Circle 0, 0 , 1, r , , 2  for 0.01 r 1 and note the behav-

ior. 

b. Using Graphics primitives such as Disk, create a yellow smiley face that can be manipulated.

c. Add eyebrows that can be manipulated.

4. In this exercise we explore a family of ellipses. 

a. Using Circle, construct Graphics showing the ellipse x2

4

y2

9
1 together with the coordinate 

axes.

b. Construct Graphics showing together the family of ellipses x2

k n k 1

n 2

y2

n k 1 n k 2

n 1 n 2

1 with n 20, 

and with k assuming integer values from 1 to 20. Note: A forthcoming paper by undergraduate 
Liza Lawson and Bruce Torrence shows that for any real number r, the roots of the kth deriva-
tive of f z z r n z2 1  will either be real or will lie on the kth ellipse in this family (where 

z x y in the complex plane).

c. For one of the values of k above, the ellipse appears to be an honest circle. Is it? Find the value 
of k, and investigate.
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d. For which value of k is the semimajor axis longest?

3.10 Working with Data
In situations where you have numerical data, you will want to enter the data into the computer to
study  it.  How  is  this  most  easily  accomplished  with  Mathematica?  Here  is  an  example.  These  data
specify the temperature of a cup of coffee as it cools over time. The first column shows the number
of  minutes  that  have  elapsed,  while  the  second  column  indicates  the  temperature  of  the  coffee,
measured in degrees Fahrenheit:

In[1]:= data

0 149.5

2 141.7

4 134.7

6 128.3

8 122.6

10 117.4

12 112.7

14 108.5

16 104.7

18 101.3

20 98.2

22 95.4

24 92.9

26 90.5

28 88.5

30 86.6

;

When recording data a spreadsheet-type interface is desirable. To enter these data into Mathematica,
first  type data =  (any name will do, but “data”  seems convenient), then select Table/Matrix New...
from  the  Insert  menu.  A  dialog  box  will  appear.  In  the  top  left  portion  select  Table.  To  the  right
specify the number of  rows (in this  case 16) and columns (in this case 2). It  is  possible to add and
delete  more  rows  and  columns  later,  so  these  numbers  need  not  be  exact.  Ignore  the  remaining
settings  and  hit  the  OK  button.  A  rectangular  array,  a  sort  of  mini-spreadsheet  of  the  dimensions
you specified, will appear in your notebook, and a very long, vertical, blinking cursor will appear to
its right. Type ; so that when you eventually enter this cell the output will be suppressed. Now click
on the placeholder in the upper left corner of your table (or hit the  key to jump there) and enter
the first  data  value.  When you are  finished use  the   key  to move to the  next  placeholder. Con-
tinue to enter your data in this fashion. Additional rows or columns can be added at any time; just
look  in  the  Insert Table/Matrix  menu  for  Add  Row  or  Add  Column.  When  all  the  data  have  been
typed in, enter the cell.

When you enter  data in this way,  Mathematica  stores  it  as a  list  of  ordered pairs  (one pair for each
row in the table).  Technically, it’s  a  list  of lists.  If  you don’t  put  a  semicolon after your  data table,
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you will see it displayed in this form upon entering it. Or you will see it in this form if you ask for it
by name:

In[2]:= data

Out[2]= 0, 149.5 , 2, 141.7 , 4, 134.7 , 6, 128.3 , 8, 122.6 , 10, 117.4 , 12, 112.7 , 14, 108.5 ,

16, 104.7 , 18, 101.3 , 20, 98.2 , 22, 95.4 , 24, 92.9 , 26, 90.5 , 28, 88.5 , 30, 86.6

You won’t  need to work with the data in this  form, but it’s  good to see  it  once so  you know how
Mathematica interprets it.

The command for plotting such a list of ordered pairs is ListPlot:

In[3]:= ListPlot data

Out[3]=

5 10 15 20 25 30

100

110

120

130

140

150

ListPlot  takes a single argument: a list of two-tuples. Each two-tuple is interpreted as a point in the
coordinate plane, and these points are then plotted. If your list of points is very short, you may find
it easiest to type it directly into ListPlot rather than first making a data table:

In[4]:= ListPlot 1, 1 , 2, 3 , 3, 2 , 4, 3

Out[4]=

1.5 2.0 2.5 3.0 3.5 4.0

1.5

2.0

2.5

3.0

It  is  an  annoying  fact  of  life  that  ListPlot  will  often  hide  one  or  more  of  your  points  behind  the
coordinate axes. In the plot above, the point 1, 1  is at the intersection of the two axes! One way to
alleviate this masking effect is  to “connect the dots.”  The option Joined True  accomplishes this.
Also,  one  may  specify  another  symbol  to  indicate  the  data  points  using  the  PlotMarkers  option.
Here we used the  symbol (from the Shapes and Icons portion of the SpecialCharacters palette).
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In[5]:= ListPlot 1, 1 , 2, 3 , 3, 2 , 4, 3 , Joined True,

PlotMarkers , AxesOrigin 0, 0 , PlotRange 0, 3.5

Out[5]=

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

But ListPlot also accepts most of the options that the Plot command does, so it is a simple matter to
produce as elaborate a graph as you desire. Here we assign the name scatterplot to our plot so that we
can refer to it later. The x and y values in AxesOrigin were chosen just a bit smaller than the small-

est  x  and y  values  appearing  in the  data;  this  pulls  the  axes  off  any data points.  Finally,  wrapping

Tooltip  around  the  data  itself  has  the  convenient  effect  of  producing  a  tooltip  showing  a  data
point’s exact coordinates when you mouseover that point (you’ll have to try this to experience it).

In[6]:= scatterplot ListPlot Tooltip data , AxesLabel "min", "temperature F " ,

PlotStyle Directive PointSize Small , Blue ,

Filling Axis, AxesOrigin 1, 80

Out[6]=

You can have Mathematica find the best-fitting polynomial for your data (according to the criteria of
least squares)  using the Fit  command. Here is  the best  fitting linear function for  the coffee cooling
data. We assign it the name fitLine:

In[7]:= fitLine Fit data, 1, x , x

Out[7]= 141.332 2.03257 x

Here is the best quadratic:

In[8]:= fitQuadratic Fit data, 1, x, x2 , x

Out[8]= 148.465 3.56107 x 0.0509498 x2

The Fit  command takes three arguments.  The first  is the data (a list of two-tuples). The second is a
list of the terms requiring coefficient values in the polynomial. The last is the name of the variable,
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in this case x.

Once we have named these best-fit functions, we can view them against our data. A quick and dirty
way to  display the  Plot  of  a  function together  with  data  points  is  as  follows (the Epilog  option is
discussed in Section 3.9 on page 117):

In[9]:= Plot fitQuadratic, x, 0, 30 , Epilog Point data

Out[9]=

5 10 15 20 25 30

100

110

120

130

140

A  more  nuanced  image  can  be  had  by  using  Plot  and  ListPlot  to  generate  separate  graphics,  and
then using Show to display them together:

In[10]:= Show scatterplot, Plot fitLine, fitQuadratic , x, 0, 30 , Filling True

Out[10]=

Here we display them individually:

In[11]:= Show scatterplot, Plot fitLine, x, 0, 30 , PlotLabel Style fitLine, 8

Show scatterplot, Plot fitQuadratic, x, 0, 30 , PlotLabel Style fitQuadratic, 8

Out[11]=
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Out[12]=

A more efficient means of entering the input  above, where we have a list  of nearly identical Show
items, is to use Table to generate the list:

In[13]:= GraphicsRow

Table Show scatterplot, Plot f, x, 0, 30 , PlotLabel f ,

f, fitLine, fitQuadratic

Out[13]=

The  FindFit  command may  be  used  in  place  of  Fit  when  a  more  complex  form of  approximating
function is sought than a polynomial (or sum of basis functions). For instance, while the quadratic
above seems to fit the coffee cooling data rather well, a moment’s thought tells us that this function
will fare poorly if we use it  to predict the coffee’s temperature,  say, when the time x  is equal to 60

minutes. For quadratics with a positive coefficient on the x2 term open upward, and so will eventu-
ally (for  sufficiently  large  values  of  x)  turn  from decreasing to  increasing functions.  The coffee,  on
the other hand, is not going to get warmer as time progresses. It is a well known principle of physics
that  bodies  cool exponentially  toward  the  ambient  temperature  of  the  surrounding medium.  Hence
the form of the cooling function ought to be f x a b cx, where a, b, and c  are positive constants

with 0 c 1, and where a is the ambient temperature of the room.

FindFit  requires  four  arguments.  The  first  is  the  data.  The  second  specifies  the  form  of  the  fitting
function  (in  this  case  a b cx),  the  third  is  a  list  of  the  parameters  whose  values  we  seek  in  this
expression (in this case a, b, c ), and the last is the independent variable (in this case x). Any or all
of  the  parameters  in  the  third  argument  may  be  given  as  an  ordered  pair  of  the  form  {parameter,
guess}, where guess  is a rough estimate of the correct value of that parameter. Below we use .5 as an
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initial guess for the decay parameter c, since we know that c is between 0 and 1. This helps Mathemat-
ica refine its search for optimal values of the parameters in question.

In[13]:= FindFit data, a b cx, a, b, c, .5 , x

Out[13]= a 69.348, b 80.1489, c 0.95015

The output of FindFit  is  a list of replacement rules  giving the values of the parameters.  Replacement
rules are discussed in Section 4.2 on page 153; for now we simply read off the values of the parame-
ters, and note that the fit is excellent:

In[14]:= Show scatterplot, Plot 69.348 80.148 0.95015x, x, 0, 30

Out[14]=

Moreover, this approach allows us to use the coffee data to determine that the ambient temperature
of the room is approximately a 69.35  Fahrenheit.

Exercises 3.10
1. For the data given below, find the best-fitting line (according to the criteria of least-squares), and 

plot this line together with the data.

x 1 2 3 4 5
y 1.2 2.3 3.6 4.9 5.9

2. For the same data used in the previous exercise, find the best-fitting power function. That is, find 
the best-fitting function of the form f x p xn for real parameters p and n.

3. For the functions in each of the previous two exercises, find the residuals. That is, for each x-
coordinate in the data, find the difference between the actual y value in the data and the value 

predicted by the fit function. Geometrically, these residuals indicate the vertical distance 
between a data point and the graph of the fit function. A residual is positive if and only if the 
data point lies above the graph of the fit function.

4. Enter the following input to create a command that will plot a collection of data, a fit-function, 
and the residuals for the data and the given function. Test the command on the data from the 
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first exercise and the fit-function f x 3 .25 x .125 x2. 

residualPlot data , function , x , xmin , xmax , opts Rule :

Show ListPlot data, Table x, function , x, data All, 1 , Filling 1 2 ,

FillingStyle Red, Green , PlotMarkers " ", "" , opts ,

Plot function, x, xmin, xmax

5. When a Manipulate has a Locator controller, it’s possible (and often desirable) to modify the 
Locator’s default appearance in the image pane. A simple way to do this is to display a Graphics 
object of your choosing at the position of the Locator, and add the option setting 
Appearance None to the iterator for the Locator control. Enter the following input, explore 

the output, and then change things so that the Locator appears as a Thick, Blue, Circle.

Manipulate

Graphics Directive PointSize .03 , Red , Point pt , Axes True, PlotRange 1 ,

pt, 0, 0 , Locator, Appearance None

3.11 Managing Data—An Introduction to Lists
You  will  often  need  to  modify  or  transform  the  data  with  which  you  started.  For  instance,  you
might begin with a large table of data and wish only to work with a few rows or columns of it.  Or
you  might  wish  to  transform  a  particular  row  or  column in  a  large  table  of  data  by  applying  the
natural logarithm to each item in that row or column. In this section we introduce a few techniques
to help with such tasks.

We mentioned in Section 3.5 that a list in Mathematica is a collection of items separated by commas
and enclosed in curly brackets, such as {2, 5, 9, 7, 4}. Our first task will be to master the art of extract-
ing one or more items from a list.

In[1]:= myList Table 2k, k, 10

Out[1]= 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

In[2]:= myList 5

Out[2]= 32

If you type the name of a list followed by [[5]], you will extract the fifth part of the list. You can also

use the  button on the BasicMathInput  palette (in the lower right portion of the top half of the

palette) to produce myList 5 , which has the same meaning. One may also type from the keyboard

 [[   and   ]]   to  produce  the  double  square  bracket  symbols   and ,  which also  have  the
same meaning.
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In[3]:= myList 5

Out[3]= 32

In[4]:= myList 5

Out[4]= 32

We’ll use this last notation throughout this section as it is easy to read, but remember that you may
simply use  double square  brackets  (which are easier  to  type).  A negative number inside the double
square brackets  indicates  an item’s  position relative to the end of the  list.  For instance,  here is  the
second to last item:

In[5]:= myList 2

Out[5]= 512

To extract a sequential portion of a longer list, one may indicate a Span of positions as follows:

In[6]:= myList 1 ;; 4

Out[6]= 2, 4, 8, 16

The most commonly specified items in a list are the first and last. There are, for convenience, special
commands to extract these items (although myList 1  and myList -1  work just as well):

In[7]:= First myList

Out[7]= 2

In[8]:= Last myList

Out[8]= 1024

Most  of  Mathematica’s  arithmetic  operations  have  the  Listable  attribute.  This  means  they  will  be
“mapped over  lists.” In other words, each item in the list will be operated upon individually by these
commands, and the list of results will be displayed. This is extremely handy. For example:

In[9]:= 1, 2, 3, 4 1

Out[9]= 2, 3, 4, 5

In[10]:= 2 myList

Out[10]= 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048

In[11]:= Log 2, myList

Out[11]= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

To find out if a command has the Listable attribute, type ?? followed by the command name,
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and  evaluate  the  cell.  All  the  attributes  of  the  command  will  appear  (along  with  a  brief
description of the command and a list of its default option settings).

Recall that Mathematica stores a two-dimensional data table as a list of lists. That is, the data table is
stored as one long list,  the members of which are the rows of the table. Each row of the table is in
turn stored as a list:

In[12]:= data

1 214

11 378

21 680

31 1215

41 2178

51 3907

Out[12]= 1, 214 , 11, 378 , 21, 680 , 31, 1215 , 41, 2178 , 51, 3907

In[13]:= data 3

Out[13]= 21, 680

To extract the item in row 3, column 2, do this:

In[14]:= data 3, 2

Out[14]= 680

To  extract  an  entire  column  of  a  two-dimensional  table,  use  All  in  the  first  position  within  the
double bracket:

In[15]:= data All, 2

Out[15]= 214, 378, 680, 1215, 2178, 3907

If your data happens to contain many columns, and you want to extract, say, only the second and
fourth columns, type data All, 2, 4 .

The importance of these extraction commands manifests itself in situations that call for a transforma-
tion of the data.  In most cases this will  amount to  performing some arithmetic operation on every
item in a column of your data table. For instance, one column of a table may comprise the x coordi-
nates of your data points, while another contains the corresponding y coordinates. You may want to

subtract 70 from all the x coordinates, or take the logarithm of all the y coordinates. How can this be

accomplished?

The simplest situation is one in which the same operation is to be applied to every member of a data
table. The listable attribute of most operations makes this a one-step process. For instance:
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In[16]:= Log data Grid

Out[16]=

0 Log 214

Log 11 Log 378

Log 21 Log 680

Log 31 Log 1215

Log 41 Log 2178

Log 51 Log 3907

If  you  wish  to  operate  on  just  one  of  the  columns,  things  are  almost  as  simple.  Suppose,  for
instance,  that  you  want  to  take  the  logarithm of  only  the  second  column.  One  might  proceed  as
follows (where we make a duplicate copy of the original data, then overwrite the second column in
this copy):

In[17]:= newData data;

newData All, 2 Log data All, 2 ;

newData Grid

Out[19]=

1 Log 214

11 Log 378

21 Log 680

31 Log 1215

41 Log 2178

51 Log 3907

Another  method  of  accomplishing  the  same  task  invokes  the  useful  Transpose  command,  which
switches rows and columns in a two-dimensional table.

In[20]:= Transpose data All, 1 , Log data All, 2 Grid

Out[20]=

1 Log 214

11 Log 378

21 Log 680

31 Log 1215

41 Log 2178

51 Log 3907

This latter approach suggests a useful means of extracting a few columns from a larger table of data
and applying transformations to them selectively. Here, for example, is a somewhat random collec-
tion of data:
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In[21]:= data Table x, RandomInteger 10 , RandomReal 10 , RandomComplex , x, 6 ;

Grid data, Dividers Gray

Out[22]=

1 4 1.96983 0.201769 0.55101

2 10 8.8533 0.388002 0.537243

3 7 1.79462 0.873406 0.754408

4 7 8.99804 0.338286 0.392776

5 0 5.90026 0.903198 0.78486

6 7 1.71122 0.610062 0.528001

And here  is  a  new data  table  comprised only of  the  first  column and the  natural  logarithm of the
third column:

In[23]:= newData Transpose data All, 1 , Log data All, 3 ;

Grid newData, Dividers Gray

Out[24]=

1 0.677946

2 2.18079

3 0.584791

4 2.19701

5 1.775

6 0.537204

So,  for  instance,  one may  now apply  ListPlot  or  Fit  to  the  newData,  as  discussed  in the  previous
section. 

Exercises 3.11
1. Suppose that data is input as a Table with 120 rows and 6 columns.

a. What command could you use to extract only columns 2 and 6?

b. What command could you issue to extract only the last 119 rows of columns 2 and 6 (for 
instance, imagine that the first row contains headings for the columns and not actual data)?

c. What command could you issue to extract only the last 119 rows of columns 2 and 6, and 
then replace column 6 with the natural logarithm of its values?
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3.12 Importing Data
The  simplest  means  of  bringing  external  data  into  Mathematica  is  by  utilizing  the  “paclet”
technology  introduced  in  version  6.  Many  collections  of  data  are  curated  regularly  and  stored  on
servers at Wolfram Research. Mathematica  has built-in access to these data (provided your computer
has internet access).  That  is,  many built-in commands will  simply call  up these servers  and deliver
hot, fresh data paclets to your current Mathematica session.

An example is  in order. The command CountryData is used to access data about countries,  conti-
nents,  and so forth.  Like the other data commands, CountryData  may be called with empty argu-
ment to produce a list of basic data objects. You will notice a slight delay before the output appears,
but this will  only happen the first time a data command is evaluated in a session; this is when the
data is transferred from the central server to your computer.

In[1]:= Short CountryData , 3

Out[1]//Short= Afghanistan, Albania, 233 , Zambia, Zimbabwe

In[2]:= CountryData Length

Out[2]= 237

Many of the  data commands allow the single argument "Properties", which will list  the properties

available  for  each  of  the  countries  (or  for  the  primary  data  objects  of  the  data  command you  are
using). At the time of this writing, there are 225 properties available for the country data:

In[3]:= Short CountryData "Properties" , 3

Out[3]//Short= AdultPopulation, AgriculturalProducts, 222 , WaterwayLength

The typical  usage of  CountryData  takes  the  form CountryData "tag", "property" ,  where "tag"  is  a

string (i.e.,  it  is  enclosed in  double  quotation  marks)  representing  a  country  or  group of  countries
(such as "UnitedStates"  or "G8"), and "property" is a string representing the desired property for that
country. A similar syntax applies to the other data commands. For instance:

In[4]:= CountryData "UnitedStates", "Population"

Out[4]= 2.98213 108

One may specify a date or a range of dates for the property as follows. In the latter case the output is
suitable for inclusion in the DateListPlot command:

In[5]:= CountryData "UnitedStates", "Population", 1970

Out[5]= 2.10111 108
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In[6]:= DateListPlot CountryData "Kuwait", "Population", 1970, 2006

Out[6]=

1970 1980 1990 2000

1. 106

1.5 106

2. 106

2.5 106

Here is the gross domestic product of Germany, in US dollars, at the official exchange rate in place
at the time of this writing:

In[7]:= CountryData "Germany", "GDP"

Out[7]= 2.79486 1012

Here is Greenland’s oil consumption in barrels per day:

In[8]:= CountryData "Greenland", "OilConsumption"

Out[8]= 3850.

And here we generate a list giving the name, gross domestic product, and oil consumption for every
country. To accomplish this we use Table,  where c  ranges over the list  of all possible countries. To
save space, we use 1;;6  to take only the first six rows of data:

In[9]:= Table c, CountryData c, "GDP" , CountryData c, "OilConsumption" ,

c, CountryData 1 ;; 6 Grid

Out[9]=

Afghanistan 6.50383 109 5000.

Albania 8.53753 109 25200.

Algeria 1.02257 1011 246000.

AmericanSamoa 3.338 108 4000.

Andorra 3.0909 109 Missing NotAvailable

Angola 2.88526 1010 46000.

Note the syntax used for missing data. With a bit of effort one can tweak the input above to produce
a nicely formatted table. To save space, we again use 1 ;; 6  to take only the first six rows of data:
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In[10]:= Text Grid

Prepend

Table c, CountryData c, "GDP" , CountryData c, "OilConsumption" ,

c, CountryData 1 ;; 6 ,

Table Style x, FontWeight "Bold" ,

x, "Country", "Gross Domestic Product US dollars ",

"Oil Consumption Barrels per day "

,

Dividers Center, False, True , Spacings 2, Alignment Left, Center

Out[10]=

Country Gross Domestic Product US dollars Oil Consumption Barrels per day

Afghanistan 6.50383 109 5000.

Albania 8.53753 109 25 200.

Algeria 1.02257 1011 246 000.

AmericanSamoa 3.338 108 4000.

Andorra 3.0909 109 Missing NotAvailable

Angola 2.88526 1010 46 000.

In the exercises we illustrate how to Sort the rows of such a table, for instance by oil consumption,
how to throw out rows containing missing data, and how to Select only rows, for instance, in which
gross domestic product exceeds a certain value. In short, the commands Sort and Select  are needed
for such manipulations.

Here we make a ListPlot of the full data table above, showing each country’s annual gross domestic
product in U.S. dollars in the x coordinate, and that country’s oil consumption in barrels per day in
the y coordinate. A logarithmic scale is used on each axis. Missing data are simply not shown.

In[11]:= ListLogLogPlot Table CountryData c, "GDP" ,

CountryData c, "OilConsumption" , c, CountryData

Out[11]=

108 109 1010 1011 1012 1013

100

1000

104

105

106

107

A  slight  modification allows  us  to  add  a  Tooltip  showing  the  name  of  each country  as  you  mou-
seover its dot on the graphic. You’ll have to experience this in a live session to appreciate it. Essen-
tially, a tooltip such as this adds another dimension of content to your information graphic.
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In[12]:= ListLogLogPlot

Table Tooltip CountryData c, "GDP" , CountryData c, "OilConsumption" ,

CountryData c, "Name" , c, CountryData

Out[12]=

Many of the data commands can produce graphical content. One can easily produce a map of each
country, for example:

In[13]:= CountryData "Greece", "Shape"

Out[13]=

In[14]:= GraphicsGrid Partition Table CountryData c, "Shape" , c, CountryData "G8" , 4 ,

Dividers All, ImageSize 320

Out[14]=

Many  of  the  data  commands  load  gigantic  collections  of  data.  AstronomicalData,  for  instance,
which has information on over 100,000 celestial bodies, is astronomical in size. ChemicalData  has
information on over 18,000 chemicals. FinancialData  has up-to-date information on over 186,000
securities.  Each  data  command  has  its  own  unique  syntax  conventions,  so  the  Documentation
Center  page  for  each  such  command is  a  must  read.  But  there  are  also  many  similarities  between
commands;  if  you  become familiar  with  one  command,  others  will  be  easy  to  learn.  For  instance,
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after reading this section the input and output below should be self-explanatory, with only the units
in need of explanation (in this case the units are seconds):

In[15]:= AstronomicalData "Earth", "OrbitPeriod"

Out[15]= 3.1558149 107

Here  we  illustrate  a  pattern  first  deduced  by  Kepler—there  is  a  mathematical  relation  between  a
planet’s orbital period and its distance to the sun:

In[16]:= data Table AstronomicalData p, "OrbitPeriod" ,

AstronomicalData p, "SemimajorAxis" , p, AstronomicalData "Planet" ;

In[17]:= ListLogLogPlot data, AspectRatio .3, ImageSize 244

Out[17]=

5 107 1 108 5 108 1 109 5 109

1 1011
2 1011

5 1011
1 1012
2 1012

5 1012

In[18]:= FindFit data, a xb, a, b , x

Out[18]= a 1.496467 106, b 0.6667315

In[19]:= Show Plot 1 496476 x2 3, x, 0, 1010 , ListPlot data

Out[19]=

2. 109 4. 109 6. 109 8. 109 1. 1010

1. 1012

2. 1012

3. 1012

4. 1012

5. 1012

6. 1012

7. 1012

Hence orbital “radius” is proportional to orbital period
2 3

,  or as Kepler put  it,  radius3 period2.  The

point is simply that facility with one data command makes the other data commands a quick study,
and that facility with lists and data fitting makes the work of finding meaningful relations in data a
snap.

In  addition  to  built-in  data  commands,  it  is  common  practice  to  import  data  from  other  sources,
such  as  a  spreadsheet  or  text  file,  or  directly  from  a  web  page.  Suppose,  for  instance,  you  find  a
collection  of  raw  data  on  a  web  page.  For  example,  if  you  were  to  visit  the  URL
http://www.census.gov/genealogy/names/dist.male.first  you would find a  collection of  curated data
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from the  1990  United  States  census  in  which  male  first  names  are  ranked  by  frequency.  The  web
page is simply a plain text file containing four columns of data, with one or more spaces separating
data values on each row, and with a return character at the end of each row. Use the Import com-
mand with  a single  argument,  a  string containing the URL for  the web site,  to bring the data into
Mathematica.

In[20]:= data Import "http: www.census.gov genealogy names dist.male.first" ;

There are  over  1200 rows  of  data  here.  To  save space  we  display only the  top-ten list  of  male  first
names:

In[21]:= Text

Grid Join "Most Popular Male First Names from the 1990 Census", SpanFromLeft ,

"Name", "Frequency ", "Cumulative Frequency ", "Rank" ,

data 1 ;; 10 , Dividers Gray

Out[21]=

Most Popular Male First Names from the 1990 Census
Name Frequency Cumulative Frequency Rank
JAMES 3.318 3.318 1
JOHN 3.271 6.589 2
ROBERT 3.143 9.732 3
MICHAEL 2.629 12.361 4
WILLIAM 2.451 14.812 5
DAVID 2.363 17.176 6
RICHARD 1.703 18.878 7
CHARLES 1.523 20.401 8
JOSEPH 1.404 21.805 9
THOMAS 1.38 23.185 10

The  ListPlot  below  shows  the  cumulative  frequency  distribution  for  the  entire  data  set.  Note  that
when a single  list  of  numerical  values  is  given as  the argument to ListPlot,  the x-coordinate values
1, 2, 3, … are used. This allows us to easily see that there are slightly more than 1200 data points. It
also reveals that the 200 most popular male names account for over 70% of all males in the U.S.

In[22]:= ListPlot data All, 3 , Joined True

Out[22]=

0 200 400 600 800 1000 1200

60

70

80

90
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This same import technique works for  many types  of raw files  that are  found online, even graphic
files:

In[23]:= pic Import

"http: faculty.rmc.edu btorrenc bt bikeclub images PoorFarm ConesBW10 99.

JPG", ImageSize 180

Out[23]=

The InputForm  of  this  image reveals  it  to be a  Raster  of  a  matrix of  pixel  values.  Once imported,
one could apply a transformation to the matrix of numerical values to alter the image.

In[24]:= Short InputForm pic , 3

Out[24]//Short=

Graphics Raster 255, 679 , 519 , 3 , 3

When  the  data  you’re  after  is  found  in  a  formatted  table  on  a  web  page,  add  "Data"  as  a  second
argument to  Import,  like  this:  Import "URLstring" , " Data " .  For  instance,  here  we  import  a  web

page showing U.S. News and World Report’s list of top liberal arts colleges.

Import

"http: colleges.usnews.rankingsandreviews.com usnews edu college rankings

brief t1libartco brief .php", "Data"

The output is rather large, so we don’t show it here. One simply copies and pastes (and if necessary,
edits) the list of data values from what is imported, and uses it as desired. Here, for instance, are the
top  few  colleges  from  this  page  at  the  time  of  this  writing;  we  copied  the  relevant  data  from  the
Import output, and pasted it into the Grid command below (evidently Carleton and Middlebury are
tied, as are Pomona and Bowdoin):
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In[25]:= Text Grid "1.", "Williams College MA " ,

"2.", "Amherst College MA " , "3.", "Swarthmore College PA " ,

"4.", "Wellesley College MA " , "5.", "Carleton College MN " ,

"5.", "Middlebury College VT " , "7.", "Pomona College CA " ,

"7.", "Bowdoin College ME " , "9.", "Davidson College NC " ,

"10.", "Haverford College PA " , Alignment Right, Left

Out[25]=

1. Williams College MA
2. Amherst College MA
3. Swarthmore College PA
4. Wellesley College MA
5. Carleton College MN
5. Middlebury College VT
7. Pomona College CA
7. Bowdoin College ME
9. Davidson College NC
10. Haverford College PA

You  may  also  Import  data  from  a  file  on  your  local  hard  drive.  Suppose  you  have  a  spreadsheet
containing data that you want to analyze using Mathematica. The first step when importing a file is
to  tell  Mathematica  where  to  look  for  it.  This  is  accomplished  with  the  SetDirectory  command.
There are many ways to use this command. Its argument is a string representing the complete path of
the directory (i.e.,  the folder) containing the file.  Of course this can be tedious to type if  the file is
many levels from the top, and if the file is later moved, then its new path will be needed. Instead we
advocate  the  following  approach:  save  your  notebook  if  you  have  not  already  done  so,  and  then
place  the  file  you  wish  to  import  into  the  same  directory  containing your  Mathematica  notebook.
Then type and enter the following into this notebook:

In[26]:= SetDirectory NotebookDirectory ;

This will set the current directory to be that of the notebook in which you are working. Even if you
later  move  this  directory  (containing  the  Mathematica  notebook  and  your  data  file)  to  another
location,  even  to  a  different  computer  running  a  different  operating  system,  the  command above
will still set the directory correctly.

Now you are ready to Import your file. Here we use an Excel spreadsheet that we downloaded from
the data pages at the Math Forum maintained by Drexel University: 

http://mathforum.org/workshops/sum96/data.collections/datalibrary/index.html. 

We placed this spreadsheet into our notebook directory, as described above. The spreadsheet shows
the 2005  National League baseball  salaries.  Note  that  Import  recognizes  the  file-type  by  the  suffix
.xls, so no additional input is needed.

In[27]:= baseballData Import "NLBB.salaries.2005.xls" ;
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Excel  spreadsheets  typically  have  multiple  “sheets.”  Mathematica  will  import  spreadsheets  in  the
form  {sheet1, sheet2, sheet3,…},  where  each  sheet  is  imported  as  a  standard  list  of  lists,  suitable  for
display  by  Grid.  In  particular,  if  all  of  the  data  resides  on  the  first  sheet  (a  very  typical  scenario),
there will be an extra set of curly brackets around your data. That is the case with this file, so we use
First to access the first (and only) sheet, and display the top 20 rows of data:

In[28]:= Text Grid First baseballData 1 ;; 20 , Alignment Left

Out[28]=

National League Baseball Salaries 2005

Team Name Salary Position

Arizona Diamondbacks Aquino, Greg 325000. Pitcher
Arizona Diamondbacks Bruney, Brian 322500. Pitcher
Arizona Diamondbacks Choate, Randy 550000. Pitcher
Arizona Diamondbacks Cintron, Alex 360000. Shortstop
Arizona Diamondbacks Clark, Tony 750000. First Baseman

Arizona Diamondbacks Clayton, Royce 1.35 106 Shortstop

Arizona Diamondbacks Counsell, Craig 1.35 106 Second Baseman

Arizona Diamondbacks Cruz Jr, Jose 4. 106 Outfielder

Arizona Diamondbacks Estes, Shawn 2.5 106 Pitcher
Arizona Diamondbacks Gil, Jerry 318 000. Shortstop

Arizona Diamondbacks Glaus, Troy 9. 106 Third Baseman

Arizona Diamondbacks Gonzalez, Luis 1.00833 107 Outfielder
Arizona Diamondbacks Gosling, Mike 317500. Pitcher

Arizona Diamondbacks Green, Shawn 7.83333 106 First Baseman
Arizona Diamondbacks Halsey, Brad 317500. Pitcher
Arizona Diamondbacks Hill, Koyie 318 000. Catcher

A careful look at  the data indicates that  the actual  data  values begin on row 5,  and that the last  3
rows  are  empty.  Noting  this,  we  can  now  make  a  histogram  of  all  of  the  2005  National  League
baseball salaries:

In[29]:= Needs "Histograms`" ;
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In[30]:= Histogram First baseballData 5 ;; 4, 3

Out[30]=

5 000 000 10 000 000 15 000 000 20 000 000

50

100

150

200

We  easily  calculate  that  the  mean  salary  exceeds  a  quarter  million  dollars,  while  the  median  is  a
paltry $800,000:

In[31]:= Table f First baseballData 5 ;; 4, 3 , f, Mean, Median

Out[31]= 2.5858 106, 800000.

Import  will work with over 120 file formats. File types are recognized by the suffix on the filename,

so simply try Import "filename" , (where your filename includes the appropriate suffix) and chances

are good that you will have success. Here is a quick list of formats that are recognized at the time of
this writing:

In[32]:= $ImportFormats

Out[32]= 3DS, ACO, AIFF, ApacheLog, AU, AVI, Base64, Binary, Bit, BMP, Byte, BYU, BZIP2,

CDED, CDF, Character16, Character8, Complex128, Complex256, Complex64, CSV,

CUR, DBF, DICOM, DIF, Directory, DXF, EDF, ExpressionML, FASTA, FITS, FLAC,

GIF, Graph6, GTOPO30, GZIP, HarwellBoeing, HDF, HDF5, HTML, ICO, Integer128,

Integer16, Integer24, Integer32, Integer64, Integer8, JPEG, JPEG2000, JVX, LaTeX,

List, LWO, MAT, MathML, MBOX, MDB, MGF, MOL, MPS, MTP, MTX, MX, NB,

NetCDF, NOFF, OBJ, ODS, OFF, Package, PBM, PCX, PDB, PDF, PGM, PLY, PNG,

PNM, PPM, PXR, QuickTime, RawBitmap, Real128, Real32, Real64, RIB, RSS, RTF,

SCT, SDTS, SND, Sparse6, STL, String, SXC, Table, TAR, TerminatedString, Text,

TGA, TIFF, TSV, UnsignedInteger128, UnsignedInteger16, UnsignedInteger24,

UnsignedInteger32, UnsignedInteger64, UnsignedInteger8, USGSDEM, UUE, VCF,

WAV, Wave64, WDX, XBM, XHTML, XHTMLMathML, XLS, XML, XPORT, XYZ, ZIP
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Exercises 3.12
1. This exercise makes use of the ElementData command.

a. Construct a table with 118 rows and 3 columns. Each row should contain the name of an 
element, its atomic weight (in atomic mass units), and its molar volume (in moles, obviously). 
Use the first 118 elements listed in ElementData.

b. Make a ListPlot of molar volume versus atomic weight for your data.

c. Add a Tooltip to your ListPlot so that the name of each element is displayed as you mou-
seover it.

2. Visit the web site http://www.census.gov/genealogy/names/names_files.html.

a. Find the file giving the distribution of female first names, and make a table of female first 
names, ranked by frequency.

b. With male first names, we showed in the text that roughly 70% of all males had one of the 
top 200 names. What proportion of females have one of the top 200 names?

3. Visit the web site http://research.stlouisfed.org/fred2/data/FEDFUNDS.txt. It shows the effective 
federal funds rate each month from 1954 to the present. Like the census site in the previous 
exercise, this page contains raw data suitable for display in a Grid. Unlike the census site, how-
ever, the first 13 lines of text on this page describe the data that follows. That is, the file contains 
more than just the straight data.

a. Use Import with the URL above as the first argument, and "Table" as the second argument.

b. Extract the data (starting on line 12, so that the column headers are included), and name it 
data.

c. Use DateListPlot and Rest to view the data.

4. The Select command will apply a function to each member of a list. The syntax is: 
Select[list,function]. It will return all items in the list for which the function returns the value 

True. Typically the function is given as a pure function (these are discussed in Section 8.4). For our 

purposes, just remember that the Slot character # represents the variable for the function, that is, 
the items in the list. Enter the input below to find all of the properties available to CountryData 
which contain the substring "Product":

Select CountryData "Properties" , StringMatchQ , "Product" &

5. Use Select to find all chemicals listed in ChemicalData that contain the substring "ButylEther".

6. How many cities in the U.S. have a population exceeding 100,000? Hint: Use the CityData 
command together with Select to produce a list of such cities, then use Length to get the answer.

7. There are two standard ways of removing Missing data values from a list. One is to use Select, 
and another is to use Cases together with Except.

a. Enter the two inputs below to see an example of each.
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Select 1, 2, Missing "NotAvailable" , 4 , NumberQ &

Cases 1, 2, Missing "NotAvailable" , 4 , Except Missing

b. List all countries in CountryData for which the "OilConsumption" property is given as 
numerical value (i.e., for which it is not Missing).

c. List all countries in CountryData for which both the "OilConsumption" and the "Popula
tion" properties are given as numerical values.

8. The Sort command is used to rearrange the items in a list. With a list given as its argument, Sort 
will arrange the list in standard order (ascending order for a list of numbers, alphabetical order 
for a list of strings, etc.).

a. Use Sort to put the list {10,7,9,8} in ascending order.

b. A second argument may be added to Sort. It specifies the sorting function to use. This is typi-
cally given as a Function with two arguments, #1 and #2. Pairs of list members are given as 
the two arguments, and the function should return True precisely if the item #1 should 
precede #2 in the sorting order. Enter the inputs below to sort the rows of a table according 
the values in the third column (by oil consumption). Note that we first remove missing values 
from the data as discussed in the previous exercise.

Select CountryData , NumberQ CountryData , "OilConsumption" &&

NumberQ CountryData , "Population" & ;

Table c, CountryData c, "Population" , CountryData c, "OilConsumption" , c, ;

Sort , 1 3 2 3 & Grid

c. Make a Grid with two columns. The first gives the name of a country. The second gives the oil 
consumption per capita, in units of barrels per year per person. Sort the rows of the table so that 
the countries with the greatest per capita oil consumption are listed first.

d. Where does the U.S. rank in per capita oil consumption?

3.13 Working with Difference Equations
A  sequence  is  a  function  whose  domain  consists  of  the  positive  integers.  In  other  words,  it  is  a
function s whose values can be listed: s 1 , s 2 , s 3 , …. A more traditional notation for these values
is s1, s2, s3, ….

It  is  often possible to define a  sequence by specifying the value of the first  term (say s 1 3), and
giving a difference equation (also called a recurrence relation) that expresses every subsequent term as a
function of the previous term. For instance, suppose the first  term in a sequence takes the value 3,
and each term that  follows has a  value  twice that of  its  predecessor.  We could express  this via the
difference equation s n 2 s n 1  for each n 1. A sequence defined this way is said to be defined
recursively. Computers make it easy to calculate many terms of recursively defined sequences. Here’s
a means for harnessing Mathematica for such a purpose:

142 Functions and Their Graphs



In[1]:= Clear s, n ;

s n Integer :
s 1 3 n 1

s n 2 s n 1 n 1

Let’s walk through this carefully, as it makes nontrivial use of all three types of equal signs. First, the
left  hand side  is  of  the  form s[n_Integer].  This  indicates  that  the  variable  n  must  be an integer in
order  for  the  definition  that  follows  to  be  applied.  This  is  a  safety  feature,  as  it  will  prevent  the
inadvertent use  of  the  function s  being applied,  for  instance,  to  n .5  or  to  any other  non-integer
input.  Next  we  see  the  SetDelayed  operator  :=.  This  indicates  that  the  expression  to  its  right  will
only  be  evaluated  when  the  function  s  is  called.  We  also  see  that  the  expression  to  its  right  is  a

Piecewise  defined function,  as  described  in Section  3.6  on  page  94.  There  are  two  distinct  defini-
tions of s according to whether the input n is equal to 1 or greater than 1. These two conditions (on
the far  right) will,  for  any value of  n,  evaluate to either True  or  False.  Note the double  equal  sign
here;  it  is  a  condition to be  tested,  not  an assignment  being made to the  symbol  n,  so  the  double
equal sign is needed. Finally, what happens when s n  is called with a specific value of n? Let’s see:

In[3]:= s 4

Out[3]= 24

Here is what is now stored in memory for the symbol s:

In[4]:= ? s

Global`s

s 1 3

s 2 6

s 3 12

s 4 24

s n Integer : Piecewise s 1 3, n 1 , s n 2 s n 1 , n 1

Here’s  what  happened:  s 4  was  evaluated  as  2 s 3 ,  which  was  in  turn  evaluated  as  2 2 s 2 ,
which in  turn  was  evaluated  as  2 2 2 s 1 ,  which was  finally  evaluated  as  2 2 2 3 24,
with the assignment s[1]=3 being made. At this point, the intermediate assignments s[2]=6, s[3]=12,
s[4]=24  were made in turn. If you were to ask for s 4  again, it would be a one-step process and the
value 24 would be returned immediately, for at this point the assignment s[4]=24  has already been
made. This is  very important,  for if  you were to then ask for, say, s 5 , it would be a quick calcula-
tion:  2 s 4 2 24 48.  This  is  the  reason for  the  Set  operator  =  in  each of  the  two lines  of  the
Piecewise definition of s; it prevents long chains of calculations being repeated.
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The only down side  to  this  approach is  that  after,  for  instance,  s 20  is  evaluated,  the assignments
s[1]=3,  s[2]=6,  …  ,  s[20]=1572864  are  all  stored  in  memory.  If  s 200  is  called,  you  literally  have
hundreds of  assignments stored in memory.  Fortunately,  they are all associated with the symbol s,
and so can be Cleared in one line:

In[5]:= Clear s

In[6]:= ? s

Global`s

Here are three things you can do with a sequence: compute an individual value (such as s 4  above),
make a table of  values,  or  make a plot.  These are easy,  and will be discussed below.  More subtle  is
the task  of  trying to find a solution  to a  difference equation—an explicit  representation of s n  as  a

function of n.  For  instance,  the function in our example above has the solution s n 3 2n 1 .  The

task of solving difference equations is addressed in Section 4.8 on page 189.

Let’s use a different example to illustrate the remaining topics. It is vitally important that we Clear
the  symbol  s  when  moving  from  one  function  to  the  next,  as  the  myriad  of  intermediate  assign-
ments  from an  earlier  definition could  easily  pollute  calculations  to  be  made with  a  newer  defini-
tion. For this reason it’s always a good idea to include a Clear  statement when defining a function
recursively.

In[7]:= Clear s ;

s n Integer :
s 1 2 n 1

s n 3 s n 1 .05 s n 1 2 n 1

Finding individual values is simple. For instance:

In[9]:= s 20

Out[9]= 37.0838

However, there is one subtlety. Mathematica has a safety mechanism in place to prevent calculations
from falling  into  an  infinite  loop.  It  will  not  allow,  by  default,  any  recursively  defined  command
from calling itself more than 256 times. In practice, this means that you cannot ask for s n  when n
is more than 256 units greater than the largest n with which s was previously called. For example, if
you want to know s 1000 , you can’t just ask for it and receive an answer. But you can work up to it
by evaluating s 250 , then s 500 , then s 750 , and then s 1000 :

In[10]:= s 250 , s 500 , s 750 , s 1000

Out[10]= 39.1038, 39.3646, 39.481, 39.5505

The  system  parameter  $RecursionLimit  is  by  default  set  to  256.  Another  means  of  making
more than this number of recursive calculations is to assign a new value to this parameter. For
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instance, you may simply type $RecursionLimit 1024, or whatever value you need, prior to
evaluating your sequence term.

Making a table of sequence values is accomplished exactly as it is for any other type of function:

In[11]:= Text Grid Table n, s n , n, 10 , Alignment Right, Left , Spacings 2

Out[11]=

1 2
2 5.8
3 15.718
4 34.8012
5 43.8474
6 35.4125
7 43.5353
8 35.8398
9 43.2948
10 36.1624

ListPlot may be used as discussed in Section 3.10 for plotting the values of a sequence.

In[12]:= ListPlot Table n, s n , n, 50 ,

AxesLabel "n", "sn" , AxesOrigin 0, 0 , PlotRange All

Out[12]=

10 20 30 40 50
n

10

20

30

40

sn

The option setting Joined True will connect the dots. In this case, it helps to clarify the oscillatory
nature of this sequence.

In[13]:= ListPlot Table n, s n , n, 50 , AxesLabel "n", "sn" ,

AxesOrigin 0, 0 , PlotRange All, Joined True

Out[13]=

10 20 30 40 50
n

10

20

30

40

sn
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To generate several terms of a sequence defined by a first-order difference equation it is quite
efficient to use NestList with a pure function as its first argument, rather than using Piecewise

to define the sequence and Table  to generate values. NestList  is discussed in Section 8.7 and

pure  functions  are  discussed in  Section  8.4.  Here’s  an  example  showing how to  generate the

first  ten  terms  of  the  sequence  in  the  last  example  with  only  a  few  keystrokes.  The  first
argument  is  a  pure  function  that  will  generate  a  member of  the sequence from the  previous
term.  The  second  argument  is  the  initial  value  in  the  sequence.  The  final  argument  is  how
many iterations you desire.

In[14]:= NestList 3 .05 2 &, 2, 9

Out[14]= 2, 5.8, 15.718, 34.8012, 43.8474, 35.4125, 43.5353, 35.8398, 43.2948, 36.1624

Exercises 3.13
1. Consider the sequence s n  with s 1 100, and with the remaining terms defined by the differ-

ence equation s n 1.05 s n 1 .

a. Enter this into Mathematica.

b. Find s 20 .

c. Make a ListPlot of the first 30 terms of the sequence.

d. Assuming that the solution to this difference equation is of the form s n p bn for real 

parameters p and b, use FindFit and the data used in the ListPlot above to find a solution.



4
Algebra

4.1 Factoring and Expanding Polynomials
A polynomial in the variable x is a function of the form:

 f x a0 a1 x a2 x2 an xn,

where the coefficients a0, a1, … , an  are real numbers. Polynomials may be expressed in expanded or

in  factored  form.  Without  a  computer  algebra  system,  moving  from  one  form  to  the  other  is  a
tedious  and  often  difficult  process.  With  Mathematica,  it  is  quite  easy;  the  commands  needed  to
transform a polynomial are called Expand and Factor.

In[1]:= Clear f, x ;

f x : 12 3 x 12 x3 3 x4

In[3]:= Plot f x , x, 2, 5

Out[3]=

2 1 1 2 3 4 5

100

200

300

Here  we  see  the  graph  of  a  polynomial  that  appears  to  have  roots  at  x 1  and  x 4  (that  is,  the
function appears to assume the value 0 when x 1 and x 4 . We can confirm this by factoring the
polynomial:

In[4]:= Factor f x

Out[4]= 3 4 x 1 x 1 x x2

Observe that when x assumes the value 4, the linear factor 4 x  is zero, making the entire product
equal to zero. Similarly, if x 1, the linear factor 1 x  is zero, and again the product is zero. Roots
of a polynomial are often easily identified by determining the linear factors in the factored form of
the polynomial.



The task of finding the roots of a given function f  is a vitally important one. Suppose, for instance,

that  you  need  to  solve  an  equation  in  one  variable,  say  12 x3 3 x4 3 x 12.  Equations  such  as
this arise in a wide variety of applied contexts,  and their solution is often of great importance. But
solving such  an equation  is  equivalent  to  finding the  roots  of  a  function—just  subtract  from each
side  of  the  given  equation  everything  on  the  right  hand  side.  In  this  case  we  get

12 3 x 12 x3 3 x4 0,  so  the  solutions  of  this  equation  are  the  roots  of  the  function

f x 12 3 x 12 x3 3 x4,  which we  have  just  found (via  factoring)  to  be  4  and 1.  Solving  equa-

tions and finding roots are essentially the same task. 

You can expand a factored polynomial with the Expand command. This will essentially “undo” the
factoring.  One  way  to  use  this  command  is  to  open  the  AlgebraicManipulation  palette  (look  for
palettes  in  the  Palettes  menu).  Use  your  mouse  to  highlight the  factored output  above,  then  push

the Expand  button. Another way is to type:

In[5]:= Expand

Out[5]= 12 3 x 12 x3 3 x4

The  expanded  form  gives  us  different  information  about  the  function.  The  constant  term  (in  this
case 12) represents  the y  intercept  of  the polynomial’s  graph.  It’s  simply  the  value of  the function

when x 0.  The  leading coefficient  (in  this  case  3,  the  coefficient  of  x4)  is  positive.  Since  the  3 x4

summand will  dominate the  others  for  large values  of  x,  a  positive  leading coefficient tells  us  that
the function values will get large as x gets large. 

It is important to note that some polynomials have real roots that will not be revealed by the Factor
command:

In[6]:= Plot 1 3 x x2, x, 5, 3

Out[6]=

4 2 2

5

10

15

In[7]:= Factor 1 3 x x2

Out[7]= 1 3 x x2

The graph clearly indicates two real roots, the x intercepts, yet there are no linear factors present in
the  factored  form  of  the  polynomial.  Why?  The  Factor  command  will  not  extract  factors  that
involve irrational or complex numbers unless such numbers appear as coefficients in the polynomial
being  factored.  Since  the  coefficients  in  the  above  polynomial  are  all  integers,  only  factors  with
integer  coefficients will  be extracted.  To get  approximations  to  the  real  roots,  simply  replace one of
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the  integer  coefficients  in  the  original  polynomial  by  its  decimal  equivalent  by  placing  a  decimal
point after it. In doing this you are telling Mathematica that decimals are acceptable in the output:

In[8]:= Factor 1. 3 x x2

Out[8]= 1. 0.302776 x 3.30278 x

 The real roots are approximately .302776 and 3.30278. You can easily check that this is consistent
with the graph (and of course, you should).

Lastly,  note  that  as  always  Mathematica  makes  a  distinction  between  decimals  and fractions  when
factoring:

In[9]:= Factor x2 0.25

Out[9]= 1. 0.5 x 0.5 x

In[10]:= Factor x2
1

4

Out[10]=
1

4
1 2 x 1 2 x

Exercises 4.1
1. Let f x 1 5 x 2 x3 10 x4.

a. Use a Plot to estimate the real roots of f x .

b. Use Factor to find the real roots of f x .

2. Factor the following expressions and explain the differences in the resulting factorizations.

a. 1 xn xm xn m and 1 x x3 x4

b. 1 x3 and 1 xn

c. 1 x4 and 1 x2 n

4.2 Finding Roots of Polynomials with Solve and NSolve
The Factor  command together  with  the  Plot  command are  a  powerful  set  of  tools  for  discovering
the  real  roots  of  polynomials.  But  there  are  a  few  shortcomings.  Notice,  for  instance,  that  we  can
only approximate  real  roots that  happen to be irrational (inexpressible as a  quotient of  integers).  In
addition, complex roots  (involving the  imaginary number  ,  the  square  root  of  1)  are  completely
inaccessible. For these reasons we introduce the NSolve and Solve commands.
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Let’s take another look at the polynomial 1 3 x x2 from the previous section:

In[1]:= NSolve 1 3 x x2 0, x

Out[1]= x 3.30278 , x 0.302776

NSolve provides approximate numerical solutions to equations. It takes two arguments, separated as
always by a comma. The first argument is an equation. Note that the double equal sign  is used for
equations;  this  is  because  the  single equal  sign  is  used  to  assign values  to  expressions,  an essen-

tially different operation. You may also use the  button on the BasicMathInput palette. The second

argument  in  the  NSolve  command  (x  in  the  example  above)  specifies  the  variable  for  which  we
want to solve.  It  may be obvious to you that you wish to solve for x,  but it’s not to the computer.
For  instance,  there  may  be  occasions  when  the  equation  you  are  solving  involves  more  than  one
variable  (we’ll  see  an  example  later  in  this  section).  Lastly,  the  NSolve  command  can  take  an
optional third argument which specifies the number of digits of precision that you desire:

In[2]:= NSolve 1 3 x x2 0, x, 15

Out[2]= x 3.30277563773199 , x 0.30277563773199

Now what about the output? First  notice that it is  in the form a list  (a sequence of items separated
by commas with a set of curly brackets around the whole thing). This is because there are typically
numerous solutions to a given equation, so it is sensible to present them in a list. Now let’s focus on
the  items  in  this  list.  Each  is  of  the  form  x solution .  This  looks  strange  at  first,  but  it  is  easy
enough to interpret.  It is an example of a structure called a replacement rule,  which will be explored
later in this section. 

You can smarten the appearance of the list of solutions by making a Grid of the results. As discussed
in the last  chapter (Section 3.5, see page 87) when Grid  is  applied to a such a list  it will  produce a
neatly formatted column:

In[3]:= NSolve 1 3 x x2 0, x, 35 Grid

Out[3]=
x 3.3027756377319946465596106337352480

x 0.3027756377319946465596106337352480

Can Mathematica  produce exact  solutions to polynomial equations? The answer is sometimes. It is a
mathematical  fact  that  some polynomial  equations involving powers  of  x  that  exceed 4  cannot be
solved  algebraically,  period.  However,  if  an  equation  can  be  solved  algebraically,  the  Solve  com-
mand is the ticket. Here are the precise roots of the polynomial above:

In[4]:= Solve 1 3 x x2 0, x Grid

Out[4]=

x 1

2
3 13

x 1

2
3 13

150 Algebra



Remember  the  quadratic  formula?  That’s  all  that’s  happening  here.  In  fact,  if  you  ever  forget  the
quadratic formula, you can have Mathematica derive it for you:

In[5]:= Clear a, b, c, x ;

Solve a x2 b x c 0, x Grid

Out[6]=

x b b2 4 a c

2 a

x b b2 4 a c

2 a

Note the  space  between a  and x2,  and between b  and x  in  the  last  input  line;  they are needed to
indicate  multiplication.  This  example  also  makes  it  clear  why  the  second  argument  to  the  Solve
command is  so important;  this  is  an equation that could be solved for a,  for  b,  for c,  or for x.  You
have to specify the variable for which you wish to solve.

Let’s look at a few more examples of these commands in action. We’ll start with the NSolve command
and later address some special considerations for using the Solve command:

In[7]:= Plot x 3 x2 x3, x, 3, 1

Out[7]=

3 2 1 1

2

2

4

In[8]:= Factor x 3 x2 x3

Out[8]= x 1 3 x x2

In[9]:= NSolve x 3 x2 x3 0, x

Out[9]= x 2.61803 , x 0.381966 , x 0.

Note that the factor x corresponds to the root x 0, but that the other roots are not revealed by the
Factor  command  (although  they  would  have  been  found  had  we  replaced  the  x  by  1.*x  in  the
polynomial). The NSolve command reveals all roots, always.

Now let’s tweak things a little. We can shift the graph of this function up by one unit by adding 1 to
its expression, and the resulting function should have only one real root (the dip on the right of the
graph will be entirely above the x-axis):
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In[10]:= Plot 1 x 3 x2 x3, x, 3, 1

Out[10]=

3 2 1 1

2

2

4

6

In[11]:= Factor 1 x 3 x2 x3

Out[11]= 1 x 3 x2 x3

This didn’t do a thing; the new function has no rational roots.  What happens if  we replace one of
the integer coefficients with its decimal equivalent?

In[12]:= Factor 1. x 3 x2 x3

Out[12]= 1. 2.76929 x 0.361103 0.230708 x x2

This reveals a real root near x 2.76929. But what about the quadratic factor?

In[13]:= NSolve 1 x 3 x2 x3 0, x

Out[13]= x 2.76929 , x 0.115354 0.589743 , x 0.115354 0.589743

Mathematica is reporting three roots. The first root reported is the x-intercept that we see in the plot.
The second two are complex numbers;  they are each expressions  of  the form a b ,  where  is  the
imaginary  number  whose  square  is  1.  They  are  purely  algebraic  solutions  to  the  polynomial
equation,  bearing  no  obvious  geometric  relationship  to  its  graph.  Although  you  may  not  care  to
contemplate complex roots of equations, the Solve and NSolve commands will always display them
if  they  exist.  It  is  a  fact  that  every  polynomial  whose  highest  power  of  x  is  n  will  have  exactly  n
roots, some of which may be complex numbers (see the fundamental theorem of algebra in Section 4.4

on page 169). It is also true that any complex roots of a polynomial (whose coefficients are all real)
come in conjugate pairs; one will be of the form a b , the other a b , as in the output above.

How can you extract one solution from a list  of solutions? For instance,  you may only need a real
solution, or the context of the problem may dictate that only positive solutions be considered. You
can extract  a  single  solution  from the  list  of  solutions  using  double  square  brackets.  This  was  dis-
cussed in Section 3.11 on page 126. Here’s an example to illustrate:

In[14]:= sols Solve x2 225 0, x

Out[14]= x 15 , x 15

We have given the list of solutions the name sols (note the assignment operator = assigns the name
sols  to  the  output,  while  the  equation  operator   is  used  to  produce  equations).  Here’s  how  to

152 Algebra



extract  the  first  element  from  a  list  (type  [[  to  get  ,  or  you  may  also  just  use  two  square
brackets back to back): 

In[15]:= sols 1

Out[15]= x 15

and the second element:

In[16]:= sols 2

Out[16]= x 15

This method works for any list:

In[17]:= a, b, c, d, e 2

Out[17]= b

You may also use the  button on the BasicMathInput palette to extract an item from a list.

To use one of the solutions provided by the NSolve or Solve command in a subsequent calculation,
you need to understand the  syntax of  replacement  rules.  The symbol  /.  tells  Mathematica  to  make a
replacement. It is shorthand for a command called ReplaceAll. You first write an expression involv-
ing x, then write /. and then write a replacement rule of the form x solution. The arrow  is found
on the  BasicMathInput  palette.  You  may  type  ->  (the  “minus”  sign  followed  by  the  “greater  than”
sign) in place of the arrow if you wish:

In[18]:= x2 . x 3

Out[18]= 9

This last input line can be read as “Evaluate the expression x2, replacing x by 3.” 

Here’s how you can use replacement rules to extract solutions generated by the Solve command:

In[19]:= x . sols 1

Out[19]= 15

In[20]:= x . sols 2

Out[20]= 15

In[21]:= x2 . sols 2

Out[21]= 225

If you don’t specify which solution you want, you will get a list where x is replaced by each solution
in turn:
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In[22]:= x . sols

Out[22]= 15, 15

You can do all  of this in one step,  generating output that is a list of solutions rather  than a list of
replacement rules:

In[23]:= x . Solve x2 225 0, x

Out[23]= 15, 15

You may also use replacement rules to test whether an equation holds for a particular value of x:

In[24]:= x2 225 0 . sols 1

Out[24]= True

In[25]:= x2 225 0 . x 10

Out[25]= False

Replacement  rules  take  some  getting  used  to,  but  they  are  enormously  convenient.  Here,  for
instance, we plot a polynomial, and include an Epilog to place a Point at each of the roots (this will
work when all roots are real):

In[26]:= f x : 12 4 x 15 x2 5 x3 3 x4 x5

In[27]:= Plot f x , x, 4, 3 , Epilog PointSize .02 , Point x, 0 . NSolve f x 0, x

Out[27]=
4 3 2 1 1 2 3

40

20

20

40

Now  let’s  look  at  the  Solve  command  in  greater  detail.  Note  that  you  can  find  the  exact  roots
(without any decimal approximations) for any polynomial whose degree is four or less:

In[28]:= Grid Solve x4 x 2 0, x , Alignment Left
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Out[28]=

x 1

x 1

3
1 2 2

47 3 249

1 3
1

2
47 3 249

1 3

x 1

3

1

3
1 3 2

47 3 249

1 3
1

6
1 3 1

2
47 3 249

1 3

x 1

3

1

3
1 3 2

47 3 249

1 3
1

6
1 3 1

2
47 3 249

1 3

Wow,  this  is  powerful  stuff!  But  be  careful  when  using  the  Solve  command.  If  you  just  need  an
approximate decimal solution to an equation you will be better served using NSolve. In particular, if
you want a numerical approximation to a solution generated by the Solve command, as you might
with  the  output  generated  above,  it  is  not  a  good  idea  to  apply  the  N  command to  the  result.  In
some  cases,  for  instance,  you  may  end  up  with  complex  numbers  approximating  real  roots  (try

solving x3 15 x 2 0; it has three real roots, yet applying N to the output of the Solve command
produces  complex  numbers—see  Exercise  2).  The  moral  of  the  story:  Use  Solve  to  generate  exact
answers; use NSolve to generate numerical solutions to any required degree of accuracy.

Another consideration to  be  aware  of  when using  the  Solve  command is  that  equations  involving
polynomials  of  degree  5  or  more  (i.e.,  where  the  highest  power  of  x  is  5  or  more)  may  not  have
explicit algebraic solutions. This is a mathematical fact; there are equations of degree five with roots
that cannot be represented in radicals. Here is what the output will look like in these situations:

In[29]:= Solve x5 x 1 0, x

Out[29]= x Root 1 1 15 &, 1 , x Root 1 1 15 &, 2 , x Root 1 1 15 &, 3 ,

x Root 1 1 15 &, 4 , x Root 1 1 15 &, 5

The output here is comprised of Root objects, which are a means of cataloging the (in this case five)
roots that cannot be expressed in algebraic form using radicals. When Root objects arise, it is always
possible to apply N to the output to get numerical approximations. Alternately, NSolve can be used
to get the same result:

In[30]:= Grid NSolve x5 x 1 0, x , Alignment Left

Out[30]=

x 1.1673

x 0.181232 1.08395

x 0.181232 1.08395

x 0.764884 0.352472

x 0.764884 0.352472

After all this you may wonder why the Solve command is ever used, since NSolve seems to be more
versatile  and  robust.  The  answer  is  that  it  depends  on  your  purposes.  For  numerical  solutions  to
specific  problems,  NSolve  is  probably  all  you need.  But  for  exact  algebraic  solutions  or  the  deriva-
tion of general formulae, Solve is indispensable. Here are two more examples to illustrate the power
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of  this  command.  The  first  provides  the  general  formula  for  the  roots  of  a  cubic  equation  of  the

form x3 b x c, where b and c may be any numbers:

In[31]:= Clear b, c, x ;

Grid Solve x3 b x c 0, x , Alignment Left

Out[32]=

x
2

3

1 3
b

9 c 3 4 b3 27 c2
1 3

9 c 3 4 b3 27 c2
1 3

21 3 32 3

x
1 3 b

22 3 31 3 9 c 3 4 b3 27 c2
1 3

1 3 9 c 3 4 b3 27 c2
1 3

2 21 3 32 3

x
1 3 b

22 3 31 3 9 c 3 4 b3 27 c2
1 3

1 3 9 c 3 4 b3 27 c2
1 3

2 21 3 32 3

The next example illustrates how Solve may be used to put a given formula into a different form. It
is a rather trite computation, but it illustrates the versatility of the Solve command:

In[33]:= Clear e, m, c ;

Solve e m c2, m

Out[34]= m
e

c2

One  last  comment  about  the  Solve  command  is  in  order.  As  you  may  expect,  it  will  distinguish
between decimals and fractions in the input, and adjust its output to match:

In[35]:= Solve x2 0.25 0, x

Out[35]= x 0.5 , x 0.5

In[36]:= Solve x2
1

4
0, x

Out[36]= x
1

2
, x

1

2

Exercises 4.2
1. In Exercise 1 of Section 4.1 we used Factor to find the real roots of f x 1 5 x 2 x3 10 x4. 

a. Use Solve to find the real roots of f x  and compare your solutions with the values you found 
in Exercise 1 of Section 4.1.
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b. Use NSolve to approximate the real roots of f x  and compare your solutions with the values 
you found in Exercise 1 of Section 4.1.

2. Use Solve followed by N to approximate the roots of the polynomial x3 15 x 2. Then find the 
roots using NSolve. Which gives the better approximation?

3. Fix two real numbers p and q, and consider the following quadratic equation in the variable z: 

z2 q z 1

27
p3 0.

a. Solve this equation in terms of p and q (use Mathematica, or work by hand using the quadratic 
formula).

b. Consider the expression 
z2 q z

1

27
p3

z
, which has the same roots as the quadratic above. Use 

replacement rules to replace z by w3, then w by 1

6
3 y 3 4 p 3 y2 , and then p by 

b a2

3
 and q by 2 a3 9 a b 27 c

27
, and finally, y by x a

3
. Simplify the result and Collect the 

terms as ascending powers of x. What do you get?

c. Use the information in parts a and b to develop a means of using the quadratic formula to 
solve the general cubic equation x3 a x2 b x c 0. That is, take the solution to the qua-
dratic in part a and transform it into a root of the cubic x3 a x2 b x c using the transforma-
tions in part b. The idea to use these successive replacements for the purpose of solving a 
cubic was perfected in the 1500s by Italian mathematicians such as Cardano and Tartaglia.

d. Compare the output to that of Solve x3 a x2 b x c 0, x 1 .

4.3 Solving Equations and Inequalities with Reduce
The Reduce  command provides another means for solving equations.  The input syntax is  like that
used for Solve and NSolve, but the output is expressed in a very different way.

In[1]:= Reduce x2 100, x

Out[1]= x 10 x 10

The  values  of  x  are  given  as  equations  rather  than  as  replacement  rules.  The  double  vertical  bar  ||
stands for the word “or.” So the output here reads, “Either x is equal to 10, or x is equal to 10.”

The reason for the different output format is that Reduce is designed to consider special conditions
on all parameters appearing in an equation, whereas Solve will ignore conditions on any parameter
whose  solution  is  not  explicitly  being  sought.  For  example,  the  solution  below  only  makes  sense
when the parameter a 0: 

In[2]:= Solve a x b, x

Out[2]= x
b

a
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Reduce takes into account the possibility that a could be zero: 

In[3]:= Reduce a x b, x

Out[3]= b 0 && a 0 a 0 && x
b

a

Note that  the  double  ampersand &&  stands  for  the  word “and,”  so  this  reads,  “Either  a  and b  are

both  equal  to  0,  or  a  is  nonzero  and  x b

a
.”  The  output  syntax  is  designed  to  handle  subtle

expressions like this.

Another  point  where Reduce  and  Solve differ arises when an equation has an  infinite  number of
discrete solutions, such as cos x 0. We all know that the cosine function is equal to zero when its
argument is of the form 2 k

2
, where k is any integer. Solve will not attempt to display them all.

Rather it will send a warning message suggesting that you try Reduce instead: 

In[4]:= Solve Cos x 0, x

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[4]= x
2

, x
2

Okay, let’s try it:

In[5]:= Reduce Cos x 0, x

Out[5]= C 1 Integers && x
2

2 C 1 x
2

2 C 1

The output says precisely what it should, but we first need to understand the syntax. We said earlier
that  the  solution  set  is  comprised  of  all  numbers  2 k

2
,  where  k  is  an  integer.  Reduce  uses  the

generic name C[1] (rather than k) when it has to introduce a constant. It’s a rather unsightly name,
but  something  like  this  is  necessary.  For  instance,  in  an  output  where  fifty  such  constants  are
needed, they will be called C[1], C[2], and so on; the numerical piece guarantees that the notation is
capable  of  handling arbitrarily  many  such  constants.  Next,  we  see  the  symbol  .  This  is  standard
mathematical notation; it reads “is an element of.” Hence the output above says: “C 1  is an element
of  the  set  of  integers,  and  x 2 C 1

2
.”  The  output  concisely  describes  all  of  the  roots  of  the

cosine function.

Reduce is also effective at expressing inequalities:

In[6]:= Reduce x2 1 0, x

Out[6]= x 1 x 1

If  you  were  asked  to  describe  the  natural  domain  (among  all  real  numbers)  for  the  function
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f x x2 7 x 3

x3 4 x2 2 x 1
,  you  would  want  to  know  for  which  values  of  x  the  polynomial

x3 4 x2 2 x 1 0. Reduce can handle this:

In[7]:= Reduce x3 4 x2 2 x 1 0, x

Out[7]= x Root 1 2 1 4 12 13 &, 1

The solution is  given in terms  of  a  Root  object,  which at  first  glance may seem both intimidating
and unhelpful. A careful inspection shows that Root  simply writes the polynomial in the form of a

pure function (see Section 8.4 page 403 for a discussion of these) for its first argument. The second

argument gives  an index number for  the root in question.  Essentially,  Root  objects  are a  means of
cataloging  roots  of  polynomials.  What  is  important  for  us  here  is  the  fact  that  using  N,  we  can
numerically approximate any Root object with ease:

In[8]:= Reduce x3 4 x2 2 x 1 0, x N

Out[8]= x 3.51155

If  an  exact  answer  is  preferred,  one  can  specify  for  cubic  or  quartic  polynomials  that  an  explicit
expression in radicals be given (instead of Root  objects); just set  the option Cubics  (or Quartics  in
the case of a polynomial of degree 4) to True:

In[9]:= Reduce x3 4 x2 2 x 1 0, x, Cubics True

Out[9]= x
4

3

1

3

83

2

3 321

2

1 3

1

3

1

2
83 3 321

1 3

A plot is consistent with the result that x 3.51:

In[10]:= Plot
x2 7 x 3

x3 4 x2 2 x 1

, x, 0, 5

Out[10]=

1 2 3 4 5

8

6

4

2

Note  that  Mathematica  can  also  express  the  output  generated  by  Reduce  using  standard  notation
from the field of mathematical logic. In this notation, the symbol  means “and” and the symbol 
means “or.” If you have experience with this notation, you may find it easier to read. A constant is
also represented as c1  rather than C 1 .  In all, it  reads a bit more nicely. To get your output in this
form, simply apply TraditionalForm to the output of Reduce.
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In[11]:= Reduce Cos x 0, x TraditionalForm

Out[11]//TraditionalForm=

c1 x 2 c1
2

x 2 c1
2

Here is a more complicated example in which there are two constants. The symbol  denotes the set
of integers, as is traditional in mathematical notation.

In[12]:= Reduce Sin 1 Cos x 1, x TraditionalForm

Out[12]//TraditionalForm=

c1 c2 x 2 c2 cos 1
1

2
4 c1 2 x cos 1

1

2
4 c1 2 2 c2

While the output for Reduce  reads  very nicely, it is not obvious how one could work programmati-
cally with it  to perform some follow-up work. It  is certainly possible to copy and paste  portions of
the output, but there are other ways. First note that just as you can extract parts from a List, you can
extract parts from a logical expression like the one above:

In[13]:= Reduce Sin 1 Cos x 1, x 1

Out[13]= C 1 C 2 Integers

In[14]:= ans Reduce Sin 1 Cos x 1, x 2

Out[14]= x ArcCos
1

2
2 4 C 1 2 C 2 x ArcCos

1

2
2 4 C 1 2 C 2

One can take this second part (or any other such logical combination of equations) and use ToRules
to turn it into a list of replacement rules, suitable as input to other commands:

In[15]:= ToRules ans

Out[15]= x ArcCos
1

2
2 4 C 1 2 C 2 ,

x ArcCos
1

2
2 4 C 1 2 C 2

Finally,  one  can  replace  the  constants  by  numerical  values,  and  hence  obtain  a  usable  list  of
replacement rules. Flatten is applied to this list to remove extra curly brackets.
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In[16]:= rules Flatten Table ToRules ans . C 1 0, C 2 k , k, 1, 1 , 1

Out[16]= x 2 ArcCos
1

2
2 , x 2 ArcCos

1

2
2 ,

x ArcCos
1

2
2 , x ArcCos

1

2
2 ,

x 2 ArcCos
1

2
2 , x 2 ArcCos

1

2
2

Here,  for  example,  is  a  plot  of  the  function f x sin 1 cos x  with  the solutions to the equation

f x 1 shown as large points via the Epilog:

In[17]:= Plot Sin 1 Cos x , x, 10, 10 , Epilog PointSize .02 , Point x, 1 . rules

Out[17]=

10 5 5 10

0.2

0.4

0.6

0.8

1.0

As with Solve and NSolve, it may be the case that complex numbers are generated by Reduce. 

In[18]:= Reduce x3 x 2 0, x, Cubics True

Out[18]= x
9 78

1 3

32 3

1

3 9 78
1 3

x
1 3 9 78

1 3

2 32 3

1 3

2 3 9 78
1 3

x
1 3 9 78

1 3

2 32 3

1 3

2 3 9 78
1 3

In the next section we discuss a means for dispensing with non-real output.
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Exercises 4.3

1. Find the largest possible domain in the real numbers for the function f x x3 5 x2 4 x 5

x2 2 x 3
. Make a 

plot of f over a valid domain in the positive real numbers, along with the function 

x4 8 x3 20 x2 34 x 58 . What do you notice?

2. Reduce can be used to solve systems of equations. A system of equations is a collection of several 
equations, each in several variables. A solution to such a system is a set of values for the variables 
for which all the equations are satisfied.

a. A system of equations can be entered in several ways. One can either type a list of equations, 
or an equation of lists like the input below. Type and enter this input.

Reduce Cos y Cos x Cos y , x Cos x Cos y Sin y 0, 0 , x, y , Reals

b. The output is a bit intimidating at first. This is unavoidable for the simple reason that the 
solution set happens to be rather complex. If we regard a particular solution x0, y0  as a point 

in the x y plane, then this output is comprised of both discrete points and entire curves in the 

plane. Read the output carefully and identify the discrete points. ListPlot them in the plane.

c. Use ContourPlot to sketch the solutions of both equations.

3. We can also use Reduce to solve a single equation with more than one variable. Use Reduce to 

find the set of points in the plane that are solutions of 8 x y2

1 y2 2
4 x

1 y2  and then use ContourPlot to 

graph the set of solutions.

4.4 Understanding Complex Output
You’ve noticed by now that complex numbers sometimes appear in Mathematica’s output. They can

pop  up  in  a  variety  of  places,  even  when  you  don’t  expect  them.  In  Section  3.2  on  page  57,  for

instance, we saw that Mathematica regards the cube root of a negative number as a complex number.

In[1]:= 8 1 3 N

Out[1]= 1. 1.73205

In high school and early college courses it  is  more common to work with the real-valued  cube root
function, which would return the value 2 (instead of the complex number above) as the cube root
of 8.  Here are a  few other  instances where complex numbers  can pop up in the context of  a real
computation:

In[2]:= Log 2

Out[2]= Log 2
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In[3]:= ArcSin 2.

Out[3]= 1.5708 1.31696

In[4]:= Solve x2 4, x

Out[4]= x 2 , x 2

In[5]:= Reduce 1 x 3 x2 x3 0, x, Cubics True

Out[5]= x 1
9 57

1 3

32 3

2

3 9 57
1 3

x 1
1 3 9 57

1 3

2 32 3

1 3

3 9 57
1 3

x 1
1 3 9 57

1 3

2 32 3

1 3

3 9 57
1 3

Now this sort of output ought to make you hungry to learn about the complex numbers. If you are
even a bit curious, ask your instructor about them. And even if you are not particularly interested in
such matters  be mindful that you are now using a grown-up software package, so you are going to
have  to  deal  with  them  from  time  to  time.  Let’s  deal  with  the  inputs  above  individually.  We’ll
discuss the cube root function at length later in this section. The next two inputs simply extend the
domains  of  the  logarithm  and  inverse  sine  functions  beyond  what  we  ordinarily  allow.  Doing  so
results  in complex output.  In a  precalculus or calculus course,  the likelihood of encountering com-
plex numbers  in this  way  is  small.  The next  outputs,  however,  will  be more difficult to  avoid.  We
have  already  seen  instances  in  which  Solve  and  NSolve  will  find  complex  solutions  to  equations,
even  when  every  quantity  appearing  in  those  equations  is  real.  Whereas  Solve  and  NSolve  are
designed to always report  complex solutions when they exist,  the command Reduce  allows one to
specify that only real values are to be considered. Simply set the optional third argument of Reduce
to Reals. If there are no real solutions, it will return False.

In[6]:= Reduce x 2, x, Reals

Out[6]= False

In[7]:= Reduce Sin x 2, x, Reals

Out[7]= False
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In[8]:= Reduce x2 4, x, Reals

Out[8]= False

In[9]:= Reduce x3 8, x, Reals

Out[9]= x 2

In[10]:= Reduce 1 x 3 x2 x3 0, x, Reals, Cubics True

Out[10]= x 1
9 57

1 3

32 3

2

3 9 57
1 3

The lesson here is that if  you are interested only in real solutions to equations,  using Reduce  with
Reals as its third argument is a good strategy. 

Another subtle issue that can arise from time to time is illustrated below:

In[11]:= Reduce x3 15 x 2 0, x, Reals, Cubics True

Out[11]= x
5

1 2 31
1 3

1 2 31
1 3

x
5 1 3

2 1 2 31
1 3

1

2
1 3 1 2 31

1 3

x
5 1 3

2 1 2 31
1 3

1

2
1 3 1 2 31

1 3

Here we have asked only for real roots,  and yet Reduce has returned three expressions involving .
The output is  correct; each of these  numbers is  indeed a real  number (one could verify  this with a
plot of this cubic—its graph crosses the x-axis three times). But just as one can write the real number

1  as  2,  it  is  possible  to  express  other  real  numbers  in  a  manner  that  makes  use  of  the  complex
number  .  That’s  what  has  happened here.  In  some cases  it  is  possible  to  algebraically  manipulate
such numbers so that all the ’s go away. The command that can accomplish this is called Complex
Expand. It will attempt to break a knotty complex number into its real and imaginary components.
In  this  case,  the  imaginary  part  of  each  of  the  numbers  above  should  be  exactly  zero.  One  could
apply simply append //ComplexExpand  to the previous input, but we will apply it just to the first
root reported above to make the output easier to read:
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In[12]:= ComplexExpand
5

1 2 31
1 3

1 2 31
1 3

Out[12]= 5 Cos
1

3
ArcTan 2 31 5 Cos

1

3
ArcTan 2 31

5 Sin
1

3
ArcTan 2 31 5 Sin

1

3
ArcTan 2 31

Notice  the  structure  of  the  output;  it  is  of  the  form  a b.  If  this  is  indeed  a  real  number,  it  had
better be the case that b 0. Now your first impression upon seeing intricate output like this may be
to both marvel  at  what  Mathematica  can do,  and simultaneously  to glaze over  and fail  to  examine
the output critically. Pause for a moment to take a good look at it, and focus your attention on the

imaginary component b. You will find that b is indeed zero. It is of the form 5 sin c 5 sin c ,

and since  sin c sin c ,  the  entire  quantity  is  zero.  In  the  next  section  the  Simplify  command
will be discussed. It can be invoked to carry out this simplification as well: 

In[13]:= Simplify 5 Sin
1

3
ArcTan 2 31 5 Sin

1

3
ArcTan 2 31

Out[13]= 0

Note  also  that  the  opposite  issue  can  arise—certain  non-real  complex  numbers  may  be  expressed
using only real numbers. At first glance they don’t betray their complexity:

In[14]:= Reduce x3 1, x

Out[14]= x 1 x 1 1 3 x 1 2 3

Again, ComplexExpand is the ticket for putting a complex number into standard form:

In[15]:= ComplexExpand

Out[15]= x 1 x
1

2

3

2
x

1

2

3

2

 Real-valued Versus Complex-valued Rational Powers
We have already noted that there are different definitions of the cube root function. In precalculus
and calculus courses, where the complex number system is not utilized, one defines the cube root of

any real  number to be its  real cube root.  So,  for instance, 8 1 3 2.  Mathematica  uses  a  different

definition, which we will discuss in this section. Under this definition 8 1 3 1 3 .
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In[16]:= ComplexExpand 8 1 3

Out[16]= 1 3

The  reality  is  that  when complex  numbers  are  taken  into  account,  there  are  three  numbers  whose
cube is 8:

In[17]:= Reduce x3 8, x

Out[17]= x 2 x 1 3 x 1 3

So  in  defining  the  cube  root,  one  of  these  three  must  be  chosen.  Mathematica  chooses  the  last of
these. Note that the underlying command used to raise a number to a power is called Power:

In[18]:= xp FullForm

Out[18]//FullForm=

Power x, p

It  is  the  definition  of  this  basic  arithmetic  operation  that  is  at  issue.  When  a  negative  number  is
raised to a rational power, and the denominator of that rational power is an odd number (e.g., 3, for
the rational  power  1 3),  you  might  like  to  have  a  power  expression  evaluate  to  a  real  number,  as
would be expected in a a precalculus or calculus course. In Section 3.2 on page 58 an alternate power
command called  realPower  was  defined  that  can  be  used  to  emulate  the  real-valued  power  func-
tions commonly encountered in such a course.

We now discuss a topic that falls outside of the standard precalculus and calculus curricula: why on

earth does Mathematica  report that 8 1 3 1 3  when it would be so much simpler to say that

the cube root of 8 is just 2? What possible reason could there be for such insanity? This will take
a  bit  of  careful  thought,  and  a  page  or  two  of  explanation,  so  make  yourself  comfortable  before
reading on. We’ll see that there is indeed a compelling reason.

Let’s suppose, for the sake of argument, that the cube root of 8 is 2. What consequences follow?
Well, raising any negative real number  to  the  power  1 3  would,  in  a  similar  manner,  produce a
negative real number. In fact, raising any negative real number to the power 1 n, where n is an odd
positive integer, would produce a negative real number. Now suppose we raise this result to the mth
power,  where m  is  a  positive  integer;  that  is,  our  original negative number is  raised to the rational
power m n. If m is odd the result is another negative number, while if m is even the result is a posi-
tive number (since squaring a negative number results in a positive number). To summarize: raising
a negative number to a positive rational power with odd denominator produces a real number. This
number  is  negative  or  positive  according  to  the  parity  (odd  or  even)  of  the  numerator.  So  far  so
good, but there’s a problem. 

Just  as  the  exponential  function  g x 2x  is  continuous,  in  a  just  world  we  would  also  expect  the

function f x 2 x to be continuous. What happens when x is a rational number with odd denomi-

nator? Are we to accept a state of affairs in which 2 311 99 is a negative real number, but 2 312 99 is
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a  positive  real  number?  The  two  exponents  are  very  close  to  each  other,  yet  they  are  producing

values that are not close to each other (you can check this). Furthermore, noting that 311

99

312

99
,

how would we define 2 ? It simply cannot be done when we operate under this convention that
a negative number raised to a rational power with odd denominator is real.

And of course, under such a convention it does not even make sense to raise a negative number to a
rational  power  with  even  denominator.  For  instance,  using  the  power  1 2,  the  square  root  of  a
negative number  is  … what?  It  is  certainly not  a  real  number.  That’s  a  strong indication that  one
may need to consult the complex number system.

The  complex  numbers  are  in  fact  rather  simple.  They  include  the  imaginary  number  ,  which has

the  property  that  2 1.  There  are  many  other  complex  numbers  whose  squares  are  real.  For

instance, 2 2 22 2 4.  Using multiples of  like this,  one can find square roots of any negative
real number. In general, a complex number has the form a b , where a and b are real. a is referred
to as the real part of this complex number, and b  is its imaginary  part. At this point, let’s note that
every complex number a b  can be represented as  an ordered pair  a, b ,  and so can be geometri-
cally  identified  with  a  point  in  the  plane.  The  complex  plane  refers  to  this  model  of  the  complex
numbers. The real number 1 has coordinates 1, 0 , and the complex number  has coordinates 0, 1 .

The  correct  definition  of  the  powers  of  a  negative  real  number  necessarily  entails  the  complex
number  system.  Just  as  every  positive  real  number  has  two  square  roots  (one  positive  and  one
negative),  every  negative number also has two square  roots.  But  neither  of  them are real numbers,
both are complex. And just as we choose, for any positive real number a, one of its two square roots

to  be  a1 2  (we  define  a1 2  to  be  the  positive  square  root  of  a),  we  must  also  choose  one  of  the  two

complex square  roots  of  a  to  be  a 1 2.  Which is  the  square  root of  a?  We choose the  complex
root  whose  argument  is  least,  the  so-called  principal  square  root.  That  is,  if  one  were  to  draw  rays
from the origin, one to each of the square roots of a in the complex plane, and for each measure
the angle counterclockwise from the positive real axis to each ray (this angle is the argument  of the
complex  number),  the  ray  with  the  smallest  angle  corresponds  to  the  principal  root.  Under  this

convention, for instance, 1 1 2 1 .

Higher roots are even more subtle. In the complex number system, every nonzero number has three
cube roots. One is real, and the other two are complex. The correct definition of the cube root of any

real number a (that is,  the definition of a1 3) is the principal cube root, the one whose argument is

smallest.  When a 0,  this  is  the  real  cube  root  that  we  know and love.  For  instance,  81 3 2.  The
argument of 2 is zero radians after all, so it must be the principal cube root. But when a 0, the real
cube root is negative, and so its argument is  radians. It so happens that one of the complex roots

has argument 3. This  is  the principal cube root of a.  This  is the one that we designate to be a1 3.

So, in particular,  working in the complex numbers as Mathematica  does, 8 1 3  is  not  2.  Here is  a
graphic  showing  all  three  roots  of  8  in  the  complex  plane.  Each  is  shown  at  the  end  of  a  ray
projecting from the origin. The root in the first quadrant has the smallest argument. It is the princi-

pal cube root of 8, so it is 8 1 3.
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In[19]:= Graphics

Thick, Blue, Line 0, 0 , Re x , Im x . NSolve x3 8, x ,

Red, PointSize .03 , Point Re x , Im x . NSolve x3 8, x ,

Axes True, AxesLabel "real", "imaginary"

Out[19]=

2.0 1.5 1.0 0.5 0.5 1.0
real

1.5

1.0

0.5

0.5

1.0

1.5

imaginary

This notion of using the principal nth root as the proper definition of a1 n has long been accepted by
the  mathematical  community.  The  most  immediate  benefit  is  the  continuity  of  exponential  func-

tions,  such as  f x 2 x.  Note that  for  values  of  x  that  are  close  to each other,  the values  of  this

function, while complex, are also close to each other.

In[20]:= N 2 311 99, 2 312 99 Column

Out[20]=
7.96732 3.79246

7.89809 4.07175

This means that it is possible to define powers with irrational exponents to be limits of powers with
rational exponents. That is, for each irrational power (such as ), there is one and only one value of

2  that is consistent with nearby rational powers. For instance:

In[21]:= N 2 311 99, 2 , 2 312 99 Column

Out[21]=

7.96732 3.79246

7.96618 3.7974

7.89809 4.07175

It  is  easy,  in  fact,  to  witness  the  continuity  (and  the  beauty)  of  the  complex-valued  function

f x 2 x  on  the  domain  4 x 0,  by  making  a  table  of  values  for  this  function,  and  then

produce  a  graphic  of  these  numbers  in  the  complex  plane,  joining  adjacent  values  with  line
segments:
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In[22]:= pwrs Table 2 x, x, 4, 0, .01 ;

Graphics Line Table Re z , Im z , z, pwrs ,

Axes True, AxesLabel "real", "imaginary"

Out[23]= 0.4 0.2 0.2 0.4 0.6 0.8 1.0
real

0.6

0.4

0.2

0.2

imaginary

Note that the function assumes real values at precisely those points where this graph crosses the x-
axis.  You  would  be  correct  to  speculate  that  it  does  so  on  this  domain  when  the  input  variable
assumes  the  integer  values  4  through  0.  Can  you  calculate  the  values  of  this  function  at  those
points?

One last word regarding the complex numbers is in order. If you’ve made it this far, you deserve to
know one final fact. This fact is so important that it is commonly known as the fundamental theorem
of algebra. We won’t prove it, but we will tell you what it says. It states simply that every polynomial
of degree n (with real or complex coefficients) can be factored completely over  the complex numbers
into n linear factors. It follows that for any positive integer n, and any real number r, the polynomial
xn r  has  n  linear  factors.  It  so  happens  that  the  factors  will  all  be  distinct  in  this  case.  In  other
words,  every  real  number r  has precisely n  nth roots.  This  is  why all real  numbers have three cube

roots. Letting r 8, we reconstruct the polynomial x3 r x3 8 from the three cube roots of 8:

In[24]:= x 2 x 1 3 x 1 3 Expand

Out[24]= 8 x3

The  fundamental  theorem  also  explains  why  Solve  and  NSolve  will  always  report  n  roots  for  a
polynomial of degree n. Here is an example in which we display the eight roots of an eighth-degree
polynomial as eight points in the complex plane (of which two happen to be real):
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In[25]:= Graphics Directive Red, PointSize .02 , Point Re x , Im x .

NSolve x8 9 x5 x 1 0, x , Axes True, PlotRange 2

Out[25]=
2 1 1 2

2

1

1

2

Exercises 4.4
1. Use the following Manipulate to guess the value of c for which the polynomial c 6 x 8 x3 has 

precisely two real roots. Test your guess. Note that by default, TraditionalForm is applied to the 
PlotLabel in any Plot.

In[26]:= Manipulate Plot c 6 x 8 x3, x, 1.1, 1.1 ,

PlotLabel Reduce c 6 x 8 x3 0, x, Reals , PlotRange 4, 8 , c, 0., 4

Out[26]=

c

1.0 0.5 0.5 1.0

4

2

2

4

6

8
x 0.866025 x 0 x 0.866025

2. Use the command realPower defined in Section 3.2 on page 58 to produce the graph of the real-

valued function f x x2 5 on the domain 32 x 32 shown below. What is f 32 ?
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30 20 10 10 20 30

1

2

3

4

3. Use Reduce to find the roots of f x x4 x,

a. with the option setting Quartics True.

b. with the optional third argument Reals.

c. Explain how it can be that there are no ’s in the expressions representing the non-real roots.

d. Re-do this problem with the polynomial f x x4 x 1.

4. Consider the following input and output, and use the fundamental theorem of algebra to formu-
late a plausible explanation for the apparent redundancy:

In[27]:= Solve x 2 3 0, x

Out[27]= x 2 , x 2 , x 2

5. Make a Manipulate that displays the roots of a fifth degree polynomial 

x5 ax4 bx3 cx2 dx e in the complex plane. Make sliders for each of a, b, c, d, and e, which 
assume values from 2 to 2. Set the PlotRange to 4.

6. Make a Manipulate that displays the roots of the nth degree polynomial xn 1 in the complex 
plane, where there is a SetterBar displaying values of n from 1 to 10. These will be graphical 
depictions of all the nth roots of 1.

7. Make a Manipulate that displays a Line joining a Table of values for the function k x on the 
domain 4 x 0 in the complex plane. Make a slider for k which assumes values from 0.1 to 4. 
Set the PlotRange to 2.

4.5 Working with Rational Functions

Solving Equations
The Solve  and NSolve  commands  are  built  for  polynomials,  but  they  will  also  work  for  equations
involving rational functions  (quotients  of  polynomials).  Essentially,  the  roots  of  the  numerator that
are not also roots of the denominator will be reported:

In[1]:= Solve
x 3 x 1

x 1
0, x

Out[1]= x 3
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Thus all the remarks in Section 4.2 apply to equations involving rational functions as well to those

involving only polynomials.

Simplifying Rational Expressions
When you  are  working  with  a  rational  function,  you may want  to  use  the  Simplify  command to,
well … simplify things:

In[2]:= Simplify
1 x5

1 x

Out[2]= 1 x x2 x3 x4

The  Simplify  command,  like  Expand  and  Factor,  takes  an  expression  as  input  and  returns  an
equivalent expression as output. Simplify attempts a number of transformations and returns what it
believes is the most simple form. In the case of rational functions, Simplify will cancel the common
factors  appearing  in the  numerator  and denominator.  In  the  example  above,  the  linear  expression
1 x can be factored out of the numerator. You can easily check the result:

In[3]:= Expand x 1 1 x x2 x3 x4

Out[3]= 1 x5

You can also guide Mathematica  through such a simplification step by step. The best way to do this
is by opening the AlgebraicManipulation palette (in the Palettes menu). Use your mouse to highlight a
certain portion of an algebraic expression, and then feed that portion of the expression to one of the
algebraic  manipulation  commands.  This  essentially  allows  you  to  drive  Mathematica  step  by  step
through an algebraic manipulation. Here, for instance, is a rational function:

x4 5 x3 8 x2 7 x 3

3 x4 14 x3 18 x2 10 x 3

Rather  than simplify  it  in  one go with  the  Simplify  command,  let’s  drive  through it  step  by  step.

First,  use  the  mouse  to  highlight  the  numerator,  then  push  the  Factor  button  on  the

AlgebraicManipulation palette. The cell will then look like this:

x 1 x 3 x2 x 1

3 x4 14 x3 18 x2 10 x 3

Now repeat the process to factor the denominator:

x 1 x 3 x2 x 1

x 1 x 3 3 x2 2 x 1

There  is  clearly  some  cancellation that  can  be  done.  Highlight the  entire  expression  and push  the

Cancel  button:
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x2 x 1

3 x2 2 x 1

The  results  are  the  same  as  if  you  had  simplified  the  original  expression  using  the  Simplify  com-
mand. The difference is that you know exactly how the simplification took place:

In[4]:= Simplify
3 7 x 8 x2 5 x3 x4

3 10 x 18 x2 14 x3 3 x4

Out[4]=
1 x x2

1 2 x 3 x2

This sort  of  interactive manipulation puts  you in the driver’s  seat.  You will  sharpen your  algebraic
skills without falling into the abyss of tedium and silly mistakes (such as dropped minus signs) that
can occur when performing algebraic manipulations by hand. 

A rational function and the function that results from its simplification are identical, except that the
original rational function will not be defined at those values of x that are roots of both the numera-
tor  and  denominator.  In  the  example  above,  the  original  function  is  not  defined  at  x 1  and
x 3,  while  the  simplified  function  is  defined  at  those  points.  For  all  other  values  of  x  the  two
functions are identical.

Formatting Output Using TraditionalForm
By  default,  Mathematica  will  always  write  a  polynomial  with  ascending powers  of  x  as  you  read  it
from left to right. It can be an annoyance reading 3 x  rather than x 3 , but the former adheres
to the ascending powers of x convention, and so that’s what you will get.

In[5]:= x 3

Out[5]= 3 x

However, any expression produced by Mathematica can be displayed in several ways. Append //Tradi
tionalForm  to  any  input,  and  it  will  be  displayed  using  traditional  notation  (which,  for  a
polynomial, means descending powers of x):

In[6]:= x 3 TraditionalForm

Out[6]//TraditionalForm=

x 3

You can also convert an output into TraditionalForm  by selecting its cell bracket with your mouse,
and then choosing Cell Convert To TraditionalForm in the menus.
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Vertical Asymptotes
Roots of the denominator that are not also roots of the numerator will yield vertical asymptotes in
the graph of a  rational  function. Here,  for  example,  is  a  function with vertical  asymptotes  at  x 3
and x 3:

In[7]:= k x :
x4 3 x3 x2 5 x 4

x2 9

In[8]:= Plot k x , x, 10, 10 , Exclusions x2 9 0 ,

ExclusionsStyle Directive Gray, Dashed

Out[8]=

10 5 5 10

100

50

50

100

150

200

Long Division of Polynomials
Another manipulation that is useful when working with rational functions is long division. It can be

done by hand, and you may have discovered that it is a tedious process. Every rational function f x

h x

can be expressed in the form q x r x

h x
, where q x  and r x  are polynomials, and r x  has degree less

than h x . The term q x  is called the quotient, and the numerator r x  is called the remainder. When x

gets sufficiently large, r x

h x
 assumes values close to zero (since r x  has lesser degree than h x ), so the

rational  function  f x

h x
 and  the  polynomial  q x  are  asymptotic  to  each  other  as  x  gets  large.  Here’s

how to get Mathematica to calculate the quotient and remainder:

In[9]:= k x :
x4 3 x3 x2 5 x 4

x2 9

The commands Numerator and Denominator can be used to isolate the numerator and denomina-
tor of any fraction. You can then use these to find the quotient q x  and the remainder r x  with the

commands PolynomialQuotient and PolynomialRemainder:

In[10]:= num Numerator k x

Out[10]= 4 5 x x2 3 x3 x4

In[11]:= den Denominator k x

Out[11]= 9 x2
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In[12]:= q x PolynomialQuotient num, den, x

Out[12]= 8 3 x x2

In[13]:= r x PolynomialRemainder num, den, x

Out[13]= 68 32 x

The  commands  PolynomialQuotient  and  PolynomialRemainder  each take  three  arguments.  The
first  and  second  are  polynomials  representing  the  numerator  and  denominator  of  a  rational  func-
tion,  respectively.  The  third  is  the  name  of  the  independent  variable.  In  this  example  we  have
computed that:

x4 3 x3 x2 5 x 4

x2 9
8 3 x x2 68 32 x

x2 9

You can check that Mathematica has done things correctly. The following computation accomplishes
this. Can you see why?

In[14]:= Expand 8 3 x x2 x2 9 68 32 x

Out[14]= 4 5 x x2 3 x3 x4

Here is  a plot of k  together with the quotient polynomial, which in this case is  a parabola. We see
that the graph of k is asymptotic to the parabola as x approaches :

In[15]:= Plot k x , q x , x, 15, 15 , Exclusions x2 9 0 ,

ExclusionsStyle Directive Gray, Dashed

Out[15]=

15 10 5 5 10 15

200

100

100

200

300

Partial Fractions
One final manipulation that is sometimes useful when working with rational functions is known as
partial fraction decomposition. It  is  a  fact that  every rational function can be expressed as a sum of
simpler  rational  functions,  each  of  which  has  a  denominator  whose  degree  is  minimal.  The
Mathematica command that can accomplish this decomposition is called Apart:
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In[16]:= Apart
x4 3 x3 x2 5 x 4

x2 9

Out[16]= 8
82

3 3 x
3 x x2

14

3 3 x

The command that  puts  sums  of  rational  expressions  over  a  common denominator (i.e.,  the  com-
mand that does what Apart undoes) is called Together. Both can be found in the AlgebraicManipula–
tion  palette.  If  you  take  your  mouse  and  highlight  the  output  cell  above,  and  then  push  the

Together  button, an input cell will be created that will look like this:

4 5 x x2 3 x3 x4

3 x 3 x

Exercises 4.5

1. The rational function 6 7 x x2 x3 x4

2 x x2  has no vertical asymptotes in its graph. Explain why.

2. The rational function 6 7 x x2 x3 x4

4 x x2  has two vertical asymptotes in its graph. Identify them, and 

explain why. Plot this function along with the quadratic function to which it is asymptotic for 
large values of x. Use 10 x 10 as your domain, and used Dashed lines for the vertical 
asymptotes.

4.6 Working with Other Expressions
The commands found in the AlgebraicManipulation  palette can be applied to all sorts of expressions
other  than  polynomials  and  rational  functions.  Like  Expand  and  Factor,  the  commands  in  this
palette are  given an algebraic expression as input,  and return an equivalent algebraic expression as
output. In this section we give examples how some of these commands can be used.

Simplifying Things
The  Simplify  command can  handle all  types  of  expressions  as  input.  Any  time  you  have  a  messy
expression, it won’t hurt to attempt a simplification. The worst that can happen is nothing; in such
cases the output will simply match the input:

In[1]:= Simplify 1 Tan x 4

Out[1]= Cos 2 x Sec x 4
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In[2]:= Simplify 1 Tan x 4

Out[2]= 1 Tan x 4

The Simplify command can also accept a second argument specifying the domain of any variable in
the expression to be simplified. For instance, consider the following example:

In[3]:= Simplify Log x

Out[3]= Log x

This  seems  odd;  you  may  recall  having  been  taught  that  the  natural  logarithm  function  and  the
exponential  function  are  inverses  of  one  another—their  composition  should  simply  yield  x.  The
problem  is  that  this  is  not  necessarily  true  if  x  is  a  complex  number,  and  Mathematica  does  not
preclude this possibility. To restrict the domain of x to the set of real numbers, do this:

In[4]:= Simplify Log x , x Reals

Out[4]= x

The  character  can be  read “is  an element of. ”  It  can be found on the  BasicMathInput  palette  (in
the  same  row  with   and  ).  This  paradigm  in  which  Simplify  is  called  with  a  second  argument
restricting  the  domain  of  one  or  more  parameters  is  extremely  useful.  The  second  argument  may
also be an inequality, such as x 0. In this case it is implied that x is a positive real number. That is,
including a variable in an inequality means it is not necessary to state that the variable is real. 

In[5]:= Simplify x2

Out[5]= x2

In[6]:= Simplify x2 , x 0

Out[6]= x

In[7]:= Simplify x2 , x 0

Out[7]= x

It  is  also  possible  to  restrict  variables  to  the  set  of  integers.  To  learn  about  other  choices  for  this
second argument, look up Assumptions in the Documentation Center.

Here is  another example of  how the Simplify  command might be used.  Note carefully the distinct
uses of := (for defining functions),  (for writing equations), and = (for assigning names):

In[8]:= Clear f, x ;

f x : x3 2 x 9

4.6   Working with Other Expressions          177



In[10]:= Solve f x 0, x

Out[10]= x 2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3
,

x 1 3
2

3 81 6465

1 3
1 3 1

2
81 6465

1 3

2 32 3
,

x 1 3
2

3 81 6465

1 3
1 3 1

2
81 6465

1 3

2 32 3

In[11]:= realroot x . 1

Out[11]= 2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3

When you plug a root of a function into the function, you had better get zero:

In[12]:= f realroot

Out[12]= 9 2 2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3

2
2

3 81 6465

1 3
1

2
81 6465

1 3

32 3

3

Really?

In[13]:= Simplify

Out[13]= 0

That’s better.
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The command FullSimplify  works like Simplify, but it applies more transformations to the expres-
sion (and consequently it may take longer to execute). In certain instances, it will be able to reduce
an expression that Simplify cannot.

Manipulating Trigonometric Expressions
There is a suite of commands specifically designed to deal with trigonometric expressions.  They are
TrigExpand,  TrigFactor,  TrigReduce,  ExpToTrig,  and TrigToExp.  They  really  shine when you’re
working  with  trigonometric  functions,  and  they’re  great  for  helping  you  remember  your
trigonometric identities:

In[14]:= Clear , , , x ;

TrigExpand Cos

Out[15]= Cos Cos Sin Sin

Of course we all know that identity. But what about this one?

In[16]:= TrigExpand Cos

Out[16]= Cos Cos Cos Cos Sin Sin Cos Sin Sin Cos Sin Sin

Here are examples of some other commands:

In[17]:= TrigFactor Cos Cos

Out[17]= 2 Cos
2 2

Cos
2 2

In[18]:= TrigReduce 1 Tan x 4

Out[18]=
1

4
3 Sec x 4 Cos 4 x Sec x 4

TrigExpand  and  TrigFactor  are  analogous  to  Expand  and  Factor,  but  they  are  designed  to  deal
with  trigonometric  expressions.  TrigReduce  will  rewrite  products  and  powers  of  trigonometric
functions in terms of trigonometric functions with more complicated arguments.

Any of the commands on the AlgebraicManipulation palette can be used in an interactive manner as
explained  in  the  previous  section,  where  a  method  for  individually  factoring  the  numerator  and
denominator in a rational expression was discussed. Here’s another example:

Cos x 2 2 Cos 2 x 3

Highlight  the  first  summand,  cos2 x ,  with  your  mouse  and  push  the  TrigReduce  button  on  the

AlgebraicManipulation palette. The cell will then look like this:
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1

2
1 Cos 2 x 2 Cos 2 x 3

There is now clearly some combining of like terms that can occur. Do it in your head, or else high-

light the entire expression and push the Simplify  button. The cell will then look like this:

1

2
7 5 Cos 2 x

You  can  keep  manipulating  an  expression  as  much  as  you  like.  For  instance,  if  you  highlight  the

entire expression and push the TrigExpand  button you will have this:

1

2
7 5 Cos x 2 5 Sin x 2

The point  is  that  you have  a  great  degree of  control  in  manipulating expressions.  You  might  con-
tinue to operate on an expression until it reaches a form that reveals some interesting property that
was less than obvious before the expression was put in that form.

Here  is  an  example  where  we  will  demonstrate  why  cos 9  is  a  root  of  the  polynomial

f x 8 x3 6 x 1. First we state the (rarely seen) triple angle formula for the cosine function:

In[19]:= Clear a ;

Cos 3 a TrigExpand

Out[20]= Cos a 3 3 Cos a Sin a 2

Next, use a replacement rule to manually replace sin2 a  with 1 cos2 a :

In[21]:= Cos 3 a TrigExpand . Sin a 2 1 Cos a 2

Out[21]= Cos a 3 3 Cos a 1 Cos a 2

Finally, expand this out and combine like terms:

In[22]:= Cos 3 a TrigExpand . Sin a 2 1 Cos a 2 Expand

Out[22]= 3 Cos a 4 Cos a 3

If  a
9
,  then  cos 3 a cos

3

1

2
.  Hence  we  have  4 cos a 3 3 cos a 1

2
.  Multiply  each side  by  2,

and we see that indeed, cos
9

 is a root of the cubic 8 x3 6 x 1. Reduce confirms this:

In[23]:= Reduce 8 x3 6 x 1 0, x, Cubics True 2 ComplexExpand

Out[23]= x Cos
9
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As useful  as  these commands are,  it  is  important to realize that they are not a panacea.  Most alge-
braic identities are at best  difficult to uncover through blind application of the suite  of commands
provided in the AlgebraicManipulation palette. Rather, as in the previous example, they are best used
when guided by a clear purpose. Here is another example. It is true that

4
arctan 1

2
arctan 1

3

yet  no  amount  of  manipulation  of  the  right  hand  side  using  only  the  tools  in  the
AlgebraicManipulation  palette will produce the value 

4
. How can these tools be used to explore, or to

uncover, such an identity? The answer is subtle. First, recognize that they are only tools. They must
be  used  carefully,  with  due  deliberation  and  forethought.  Owning  a  hammer  doesn’t  make  one  a
carpenter.  That’s  the bad news.  The process  is  much like  traditional pencil-and-paper  mathematics
in that  you pursue  an idea and see  if  it  bears  fruit.  The good news  is  that  the  pursuit  is  made less
tedious with Mathematica working for you.

Let’s explore the identity above. First, for sanity’s sake, let’s see if it can possibly be true:

In[24]:= ArcTan
1

2
ArcTan

1

3
N

Out[24]= 0.785398

In[25]:=
4

N

Out[25]= 0.785398

Okay,  it’s  believable.  Now  can  we  derive  a  general  formula,  for  which  the  above  identity  is  but  a
special  case?  As  a  first  attempt,  we  might  try  commands  such  as  TrigExpand,  TrigFactor,  and
TrigReduce  on  the  expression  ArcTan a ArcTan b .  We  find  that  none  has  any  effect.  For
instance:

In[26]:= Clear a, b ;

ArcTan a ArcTan b TrigExpand

Out[27]= ArcTan a ArcTan b

Now we  are at  a  critical  juncture  in our  investigation.  We have  made no progress,  except  to learn
that Mathematica  does not appear to have the magic command that will provide us with the type of
formula we  seek.  It  is  at  this  point that  we need to stop  and think.  What else  might  we try?  Well,
what  if  we  took  the  tangent  of  the  expression  ArcTan a ArcTan b ,  then  tried  to  expand that?
Believe it or not, this gets us somewhere:
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In[28]:= Clear a, b ;

Tan ArcTan a ArcTan b TrigExpand

Out[29]=
a

1 a2 1 b2 1

1 a2 1 b2

a b

1 a2 1 b2

b

1 a2 1 b2 1

1 a2 1 b2

a b

1 a2 1 b2

In[30]:= Simplify

Out[30]=
a b

1 a b

This tells us that

a b

1 a b
tan arctan a arctan b

or, taking the inverse tangent of each side, that

arctan a b

1 a b
arctan a arctan b

It is a simple matter to see that when a 1

2
 and b 1

3
, the left-hand side is equal to arctan 1 , which

is  
4
,  and  so  this  reduces  to  the  identity  mentioned previously.  This  formula  is  a  generalization of

that identity. The final task is determining for which values of a and b the formula is valid. We leave
this task to the reader.

Exercises 4.6
1. Use TrigExpand to examine patterns in the nth angle formulas for the sine function, i.e., identi-

ties for sin n x . 

2. Use the AlgebraicManipulation palette to derive the trigonometric identity 
sin a t sin 2 a t

2 sin t
cos 1 a t .

3. Derive a quadruple angle formula for the cosine function, and use it to show that cos 12  is a 

root of 16 x4 16 x2 1.
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4.7 Solving General Equations
The  Solve  and  NSolve  commands  are  built  for  polynomials.  They  will  also  work  for  equations
involving rational functions, and they will sometimes work with equations involving other types of
functions.  Reduce  is  even  more  inclusive,  and  can  sometimes  be  used  to  describe  solutions  to
equations  when  Solve  fails.  These  are  the  commands  to  start  with  when  you  need  to  solve  an
equation. However, there are still a few things you can do if you don’t get the answer you desire.

Often Solve and NSolve can be effectively used to solve equations involving powers that are rational

numbers. For instance, since raising a quantity to the power 1

2
 is the same as taking its square root,

equations involving square roots fall into this category:

In[1]:= Solve 1 x x2 2, x Grid

Out[1]=

x 1

2
1 13

x 1

2
1 13

In[2]:= Solve x
1

3 4 x, x Grid

Out[2]=

x 0

x 1

8

Solve  and  NSolve  may  be  able  to  find  solutions  to  simple  equations  with  the  variable  appearing
inside a logarithm or as an exponent:

In[3]:= x . Solve 400 Log 10, x 2, x

Out[3]= 101 200

In[4]:= x . Solve 200 1 r x 300, x

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[4]=

Log 3

2

Log 1 r

Here  we  are  warned  that  although  one  solution  was  found,  there  may  be  more.  In  fact,  for  this
example  no  other  real  solution  exists,  but  we  have  no  way  of  knowing  that  on  the  basis  of  this
output.  Fortunately  Reduce  is  effective  here,  working  either  over  the  complex  numbers  (which  it
does by default), or over the reals where we see that the solution above is indeed unique:
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In[5]:= Reduce 200 1 r x 300, x

Out[5]= C 1 Integers && 1 r 0 && Log 1 r 0 && x
2 C 1 Log 3

2

Log 1 r

In[6]:= Reduce 200 1 r x 300, x, Reals

Out[6]= Log 1 r 0 && r 1 && x
Log 3

2

Log 1 r

On occasion these solving commands may come up empty, even when a unique solution exists:

In[7]:= Solve Sin x 2 x2, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[7]= Solve Sin x 2 x2, x

In[8]:= NSolve Sin x 2 x2, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[8]= NSolve Sin x 2 x2, x

In[9]:= Reduce Sin x 2 x2, x

Reduce::nsmet : This system cannot be solved with the methods available to Reduce.

Out[9]= Reduce Sin x 2 x2, x

There  are  powerful  numerical  techniques  for  approximating  solutions  to  equations  such  as  this.
FindRoot is the final equation-solving command that we introduce. It is your last line of defense. It
is very robust,  and adapts its methodology according to the problem it is fed. It’s tenacious, but it’s
also old-school. To use it you must give it a numerical value as a starting point. Like a hound dog it
will  hunt  down  a  single  solution  from  this  starting  point,  iteratively  using  its  current  position  to
zero in  on it.  It  is  likely  to  hone in to  the  solution  nearest  the  starting  point,  so  choosing a  good
starting point is key. A plot is helpful in this endeavor. A simple approach is to Plot two functions,
the left side and right side of the equation you wish to solve. The solutions are the x coordinates of
the points  where  the  curves  intersect.  For  instance,  here’s  a  view of  the  functions in the  equation
above:
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In[10]:= Plot Sin x , 2 x2 , x, 2, 2

Out[10]=
2 1 1 2

2

1

1

2

We expect solutions near x 1.6 and x 1. To zero in on a solution once you know roughly where
it is, use the FindRoot command like this:

In[11]:= FindRoot Sin x 2 x2, x, 1.6

Out[11]= x 1.72847

In[12]:= FindRoot Sin x 2 x2, x, 1

Out[12]= x 1.06155

The first argument of the FindRoot  command is an equation, the second is a list whose first mem-
ber is the variable to be solved for, and whose second member is a rough guess at the true root. To
have  all  internal  calculations  performed  with  n-digit  precision  you  can use  the  optional  argument
WorkingPrecision:

In[13]:= x . FindRoot Sin x 2 x2, x, 1 , WorkingPrecision 400

Out[13]= 1.06154977463138382560203340351989934205887417838924148608498893580932536
58078013681605147722169795200205523517584438182489915752386795185105198

01898497141789694624781317887368590739943328390244768652889979635131820
54066331171612084604692146632416602626438286949734162187208102212531109
55046026055069360793013098705252533458512558323397412062383035427145357

98284624484729386618537019854165883676711994

This technique of first estimating a solution with a plot and then using FindRoot to zero in on it is
very robust in that it will work on almost any equation you wish to solve (provided that a solution
exists). It does have several drawbacks, however. First,  it is a strictly numerical command; it cannot
be  used  when  there  are  more  variables  than  there  are  equations.  For  instance,  it  won’t  be  able  to
solve x y 1 for x; the solution must a number (or a list of numbers if there are several equations).

Second, it may be tedious to find an appropriate domain for a plot, one in which a point of intersec-
tion resides. Third, it is often difficult to discern whether or not other intersection points might be
present  to  the  left  or  right  of  those  you  have  already  found.  And  finally,  for  some  equations  the
algorithm will fail altogether. For instance, FindRoot relies at times on a well-known algorithm, the
Newton-Raphson method,  to  produce  its  solutions.  It  is  also  well  known that  this  method doesn’t
work for all combinations of equations and initial guesses, even when a unique solution exists:
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In[14]:= FindRoot 200 1.05 x 300, x, 2700

FindRoot::cvmit : Failed to converge to the requested accuracy or precision within 100 iterations.

Out[14]= x 650.407

The output here is not correct (so the warning message is welcome). You can usually avoid this sort
of  thing  if  you  make  a  reasonable  initial  guess.  This  sort  of  problem  is  unlikely  if  you  follow  our
advice and make a few plots first, using the plots to generate reasonable initial guesses for FindRoot.

In[15]:= Plot 200 1.05 x, 300 , x, 0, 15

Out[15]=

2 4 6 8 10 12 14

250

300

350

400

In[16]:= FindRoot 200 1.05 x 300, x, 8

Out[16]= x 8.31039

Let’s look at another example: solve the equation log x x3 x:

In[17]:= Solve Log x x3 x, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[17]= Solve Log x x x3, x

In[18]:= NSolve Log x x3 x, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[18]= NSolve Log x x x3, x

In[19]:= Reduce Log x x3 x, x

Reduce::nsmet : This system cannot be solved with the methods available to Reduce.

Out[19]= Reduce Log x x x3, x
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You shouldn’t allow these outputs to let you to give up your hunt for a solution. Solve, NSolve, and
Reduce may be unable to find a solution but that doesn’t mean one does not exist. In your dealings
with computers, you should live by the maxim made famous by Ronald Reagan: “Trust, but verify.”
In that spirit, we endeavor to make a plot and see what is going on:

In[20]:= Plot Log x , x3 x , x, 0, 10

Out[20]=

2 4 6 8 10

100

200

300

400

500

600

One of the functions is barely visible. It is not uncommon for one function to dwarf another when
viewed over certain domains. To make things clearer we render the Log function thick, dashed, and
blue, and the cubic red.

In[21]:= Plot Log x , x3 x , x, 0, 10 , PlotStyle Directive Thick, Dashed, Blue , Red

Out[21]=

2 4 6 8 10

100

200

300

400

500

600

Suspicion confirmed: the Log  function is quite flat compared to the cubic on this domain. Perhaps
they  intersect  over  on  the  left,  somewhere  between  0  and  2.  Try  again:  edit  the  iterator  above,
specifying the new plot domain, and reenter the cell:

In[22]:= Plot Log x , x3 x , x, 0, 2 , PlotStyle Dashed, Red

Out[22]=
0.5 1.0 1.5 2.0

2

1

1

2

 Bingo! Let's see if FindRoot can find these solutions:
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In[23]:= FindRoot Log x x3 x, x, 0.4

Out[23]= x 0.699661

In[24]:= FindRoot Log x x3 x, x, 1

Out[24]= x 1.

Is x 1 an exact solution? Yes: plug it in by hand to the original equation, or do this:

In[25]:= Log x x3 x . x 1

Out[25]= True

It  is  worth  noting  that  you  can  manipulate  any  equation  into  the  form  expression 0  simply  by
subtracting the original quantity on the right from each side of the equation. Solving the resulting
equation is then a matter of finding the roots of expression. The obvious advantages to this approach
is that the roots are easy to read off of a plot, since they fall directly on the labeled x axis. Here is the
graph for  the  last  example  when presented  this  way.  Note that  we still  plot  two functions,  one of
which is  the  x-axis.  This  guarantees  that  the x-axis  will  be  included in the  output  graphic,  even if
you are unlucky enough to choose a domain on which there are no solutions.

In[26]:= Plot Log x x3 x, 0 , x, 0, 2

Out[26]=

0.5 1.0 1.5 2.0

3

2

1

The roots,  of course,  are the same as the solutions we found earlier.  FindRoot  will report  the same

output  regardless  of  whether  you  input  the  equation  Log x x x3  or  the  equation

x x3 Log x 0.  In  fact  you  can simply  use  x x3 Log x  (and forgo  the  0)  when  using

FindRoot.  The  name “FindRoot”  makes  good sense  in this  light.  You  can use  whichever  approach
seems easier to you.

Exercises 4.7
1. Approximate the solutions to the equation 1 x2 sin x.

2. Approximate three of the solutions to the equation x2
sin x.

3. Is it true that 
2

sin ?
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4.8 Solving Difference Equations
Difference equations (also called recurrence relations) were discussed in Chapter 3 (Section 3.13, see

page  142).  Suppose  we  are  given  a  difference  equation  for  a  sequence  a n .  Let’s  say  that  the  nth

term of the sequence is always twice the previous term, so the difference equation is a n 2 a n 1 .
How can we find an explicit formula for a n , not in terms of a n 1 , but as a function of n? It is not
difficult in this example to find a solution by hand, but how can Mathematica  be employed for the
purpose  of  solving  this  or  any  other  difference  equation?  The  command  that  you  need  is  called
RSolve.

In[1]:= Clear a, n ;

RSolve a n 2 a n 1 , a n , n

Out[2]= a n 2 1 n C 1

If  no initial  conditions are  given (so  the  first  argument  is  a  difference equation and nothing else),
one or  more  constant  terms  may  be  generated,  as  seen above.  C[1]  represents  the  constant  in  the
output above. Any specific real or complex numerical value for this constant value will give, accord-
ing to the previous output,  a solution to the difference equation. The first argument may also be a
list of equations. For instance, here we solve the same difference equation, but also specify the initial
value a 0 1 3.

In[3]:= RSolve a n 2 a n 1 , a 0 1 3 , a n , n

Out[3]= a n
2n

3

RSolve is most useful when dealing with somewhat more complicated difference equations. Here we
ask it to solve the difference equation that defines the Fibonacci numbers:

In[4]:= RSolve a n a n 1 a n 2 , a 1 1, a 2 1 , a n , n

Out[4]= a n Fibonacci n

Yes, these are indeed the Fibonacci numbers:

In[5]:= Table a n . 1 , n, 10

Out[5]= 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Here is a logistic growth difference equation that RSolve cannot handle:

In[6]:= RSolve a n 1 3 a n .05 a n 2, a n , n

Out[6]= RSolve a 1 n 3 a n 0.05 a n 2, a n , n

And here’s an example of a logistic growth equation that RSolve can handle:
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In[7]:= RSolve a n 1 2 a n
1

3
a n 2, a n , n

Out[7]= a n 3 3 2n C 1

Adding  an  initial  condition  forces  it  to  use  Solve  internally,  and  in  this  case  it  is  not  able  to
determine if it has found a unique solution. We look at the first few values as a check:

In[8]:= RSolve a n 1 2 a n
1

3
a n 2, a 0 1 , a n , n

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[8]= a n 31 2n
22n

32n

In[9]:= Table a n . 1 , n, 0, 3

Out[9]= 1,
5

3
,

65

27
,

6305

2187

We  can  also  look  at  the  solution  to  the  difference  equation  without  the  initial  condition  (three
outputs ago), and do the solving ourselves:

In[10]:= Reduce 3 3 c 1, c, Reals

Out[10]= c Log
3

2

So  c ln 2

3
,  and  the  solution  is  a n 3 3 2n ln

2

3 3 3 2 3 2n
.  It  is  now  clear  from  an  algebraic

viewpoint that this function will quickly approach the value 3. A plot confirms this:

In[11]:= Plot 3 3 2 3 2n
, n, 0, 5

Out[11]=

1 2 3 4 5

1.5

2.0

2.5

3.0

Moreover,  using  NestList  to  generate  the  first  few terms  of  the  sequence generated by  the  original
difference equation, we see that it agrees with our solution. The use of NestList to generate terms of
a sequence defined by a difference equation is discussed at the end of Section 3.13 on page 146.
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In[12]:= NestList 2
1

3
2 &, 1, 3

Out[12]= 1,
5

3
,

65

27
,

6305

2187

In[13]:= Table 3 3 2 3 2n
, n, 0, 3

Out[13]= 1,
5

3
,

65

27
,

6305

2187

At  times  it  may  be  helpful  to  note  that  the  second  argument  to  RSolve  can  be  simply  the
symbol  a  (rather  than  a[n]),  and  the  output  will  be  a  pure  function  expression  for  a.  Pure

functions are discussed in Section 8.4.

In[14]:= RSolve a n 2 a n 1 , a 0 1 , a, n

Out[14]= a Function n , 2n

Exercises 4.8
1. Suppose a $30,000 car was purchased with no money down, using a five-year loan with an

annual interest rate of 7%, compounded monthly. This means that each month interest is 

compounded at the monthly rate of .07

12
, while the principle is reduced by the amount p of 

the monthly payment.

a. Calculate the monthly payment.

b. Make a table breaking down each payment as principle and interest for the 60 month loan 
period.

2. Suppose that the value of a new automobile is $30,000, and that it loses 10% of its value each 
year. That is, at the end of each year it is worth only 90% of what it was worth at the beginning 
of that year. When will it be worth $8,000?

4.9 Solving Systems of Equations
It  is  sometimes  necessary to  solve  several  equations simultaneously.  For  instance,  what  values  of  x
and y satisfy both 2 x 39 y 79 and 7 x 5 y 800? To find out, use Solve, NSolve, or Reduce with

a list of equations as the first argument and a list of variables to be solved for (such as {x,y}) as the
second argument:
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In[1]:= Solve 2 x 39 y 79, 7 x 5 y 800 , x, y

Out[1]= x
31 595

283
, y

1047

283

You can leave out the second argument entirely if you want to solve for all the variables appearing
in the equations:

In[2]:= Solve 2 x 39 y 79, 7 x 5 y 800

Out[2]= x
31 595

283
, y

1047

283

You can easily use generic coefficients to generate a general formula for solving similar systems:

In[3]:= Clear a, b, c, d, e, f, x, y ;

Solve a x b y c, d x e y f , x, y

Out[4]= x
c e b f

b d a e
, y

c d a f

b d a e

The Solve  command works very well for linear equations (like those above). It also does a good job
with systems of polynomials. Here is an example showing the points of intersection of a circle and a
parabola:

In[5]:= ContourPlot x2 y2 4, y 1 x 1 2 , x, 2, 2 , y, 2, 2

Out[5]=

2 1 0 1 2
2

1

0

1

2

It turns out that there are two real solutions (you can see them on the plot) and two complex ones.
One of the real ones is the point (2, 0). The other is:
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In[6]:= Solve x2 y2 4, y 1 x 1 2 2 Column

Out[6]=

y 2

3

1

9 28 3 87
2 3

2

9 28 3 87
1 3

2

9
28 3 87

1 3
1

9
28 3 87

2 3

x 1

3
2 1

28 3 87
1 3 28 3 87

1 3

We won’t list the complex solutions, as they’re even nastier. Here’s another example:

In[7]:= ContourPlot y x2, y7 2 x2 1 , x, 2, 2 , y, 1.5, 4

Out[7]=

2 1 0 1 2

1

0

1

2

3

4

In[8]:= Reduce y x2, y7 2 x2 1 , x, y , Reals

Out[8]= x AlgebraicNumber Root 1 2 12 114 &, 2 ,

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 x AlgebraicNumber

Root 1 2 12 114 &, 2 , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 && y x2

This  output,  while  potentially  useful,  may  make  you  cringe.  In  such  situations,  applying  N  to  the
result will often provide a good numerical approximation:

In[9]:= x, y . ToRules N

Out[9]= 0.70448, 0.496292 , 0.70448, 0.496292

Similarly, NSolve can be used, but it will report both real and complex solutions.
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In[10]:= Grid NSolve y x2, y7 2 x2 1 , x, y , Alignment Left, Dividers Gray

Out[10]=

x 0.978813 0.298975 y 0.868688 0.585282

x 0.978813 0.298975 y 0.868688 0.585282

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.268914 1.05489 y 1.04048 0.56735

x 0.268914 1.05489 y 1.04048 0.56735

x 0.268914 1.05489 y 1.04048 0.56735

x 0.268914 1.05489 y 1.04048 0.56735

x 0.70448 y 0.496292

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.73046 0.780978 y 0.0763556 1.14095

x 0.978813 0.298975 y 0.868688 0.585282

x 0.978813 0.298975 y 0.868688 0.585282

x 0.70448 y 0.496292

Just as  there are single equations that can foil the Reduce,  Solve  and NSolve  commands, there are
systems  of  equations  that  can  as  well.  In  such  situations  one  can  use  FindRoot  to  approximate  a
solution. Give as  the first  argument  the list  of equations.  Follow that  with an additional argument
for each variable. Each of these arguments is of the form {variable,guess}, where the guess is your best
estimate of the actual value for that variable. Use a plot to help you make your guess:

In[11]:= FindRoot y x2, y7 2 x2 1 , x, 1 , y, 0.5

Out[11]= x 0.70448, y 0.496292

Exercises 4.9
1. Use a graph to estimate the solutions to the system of equations y x2 and y 4 sin x . Then find 

a command that will find or approximate the real valued solutions.
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5
Calculus

5.1 Computing Limits
An understanding of limits is fundamental to an understanding of calculus. Let’s start by defining a
few functions:

In[1]:= Clear f, g, x ;

f x :
Sin x

x
;

g x :
1

x

Note that x 0 is not in the domain of either of these functions. How do they behave as x approaches
0, that is, as x assumes values very close to 0? A plot is a sensible way to approach this question:

In[4]:= Plot f x , x, 10, 10

Out[4]=

10 5 5 10
0.2

0.2

0.4

0.6

0.8

1.0

In[5]:= Plot g x , x, 1, 1

Out[5]=
1.0 0.5 0.5 1.0

10

5

5

10



The  two  outcomes  are  strikingly  different,  and  they  illustrate  the  likely  possibilities  for  similar
investigations. The function f x  assumes values that approach 1 as x  approaches 0. The function g

has a vertical asymptote at x 0; as x  approaches 0 from the right, g  assumes values that approach

, while as x approaches 0 from the left, g assumes values that approach . 

We  can  check  this  numerically  by  making  a  table  of  values.  Here  is  a  table  of  values  for  f  as  x

approaches 0 from the right:

In[6]:= data Table N 10 n , N f 10 n , 15 , n, 1, 5 ; Text

Grid Prepend data, "x", "f x " , Alignment Left, Dividers Center, 2 True

Out[6]=

x f x
0.1 0.998334166468282
0.01 0.999983333416666
0.001 0.999999833333342
0.0001 0.999999998333333
0.00001 0.999999999983333

The Limit  command provides an easy way to investigate the behavior of functions as the indepen-
dent variable approaches some particular value (such as 0):

In[7]:= Limit f x , x 0

Out[7]= 1

In[8]:= Limit g x , x 0

Out[8]=

The first  argument  to the Limit  command is  the  expression  for  which you wish  to find a limiting
value.  The  second  argument  (x 0  in  these  examples)  specifies  the  independent  variable  and  the
value  which  it  will  approach.  You  may  use  the   symbol  from  the  BasicMathInput  palette  or  the
keyboard equivalent -> by hitting the “minus” sign followed by the “greater than” sign.

It is important to note that the Limit command by default computes one-sided limits, and these are
limits from the right. That is, the expression is examined with x values chosen slightly to the right of
the value that x approaches. In the limit for g  as x 0, for instance, the output was . You can take

limits  from the  left  by  adding the  option Direction 1.  You  can think of  this  as  the  direction in
which you need to move on a number line to get to the number 1 from the origin.

In[9]:= Limit g x , x 0, Direction 1

Out[9]=

In a strictly mathematical sense, a limit exists if and only if the limits from the left and right agree.
So the  limit  of  the function g  as  x  approaches 0 does  not  exist  since  the limit  from the  right is  

while the limit from the left is  .  In Mathematica,  the Limit  command defaults to the limit from
the right to increase the likelihood of being able to find a limiting value.  It is crucial to check that
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the limit from the left matches the limit from the right before concluding that a limit exists. A plot
is  usually  helpful  in  this  regard.  The  only  exception  to  this  convention is  a  limit  as  x  approaches
infinity (where the Limit command will by default compute limits from the left).

In[10]:= Limit g x , x

Out[10]= 0

Taking another glance at the graph of g,  you can see that as  the value of  x  gets large,  the value of

g x  approaches 0. A table of values is also useful in this regard:

In[11]:= data Table N 10n, g 10n , n, 1, 5 ; Text

Grid Prepend data, "x", "g x " , Alignment ".", Dividers Center, 2 True

Out[11]=

x g x
10. 0.1
100. 0.01
1000. 0.001
10000. 0.0001
100000. 0.00001

Note that  you may  use  the   symbol  from the  BasicMathInput  palette,  or  type  Infinity.  Note  also
that some functions will not have one-sided limits:

In[12]:= Limit Sin x , x

Out[12]= Interval 1, 1

The output here indicates that the sine function assumes values in the interval from 1 to 1 without
approaching a single limiting value as x  approaches infinity. This is  consistent with our knowledge
of the sine function; a plot provides additional confirmation:

In[13]:= Plot Sin x , x, 0, 30

Out[13]=
5 10 15 20 25 30

1.0

0.5

0.5

1.0

Piecewise functions  provide the  standard examples  of  functions for  which the  left  and right  direc-
tional limits differ.
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In[14]:= Plot
x2 x 1 x 0

Sin x x 0
, x, 1, 1

Out[14]=

1.0 0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

In[15]:= Limit
x2 x 1 x 0

Sin x x 0
, x 0, Direction 1

Out[15]= 1

In[16]:= Limit
x2 x 1 x 0

Sin x x 0
, x 0, Direction 1

Out[16]= 0

In some cases there may be one or more parameters appearing in an expression other than the one
whose limiting value we wish to determine. For instance, what happens to an expression of the form
1 xn

n
 as x 0? 

In[17]:= Clear x, n ;

Limit
1 xn

n
, x 0

Out[18]= Limit
1 xn

n
, x 0

This  should  be  interpreted  to  mean that  without some  further  assumptions  regarding the  value  of
the  parameter  n,  it  is  simply  impossible  to  determine  the  value  of  the  limit.  Assumptions  can  be
specified using an optional argument of that name:

In[19]:= Clear x, n ;

Limit
1 xn

n
, x 0, Assumptions n 0

Out[20]=
1

n
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In[21]:= Limit
1 xn

n
, x 0, Assumptions n 0

Out[21]=

Exercises 5.1

1. Use the Limit command to find limx 2
6 x 12

x2 4
 and limx 2

6 x 12

x2 4
. Then use a graph to explain 

these answers.

2. Use a graph to examine the behavior of functions of the form y x sin b

x
 for large values of b and 

use your graph to predict limx x sin b

x
. Use the Limit command to confirm your answer.

3. The function f x x2 2 x 3 x has very different behavior as x approaches  and x 

approaches . Use the Table command to examine this function for large positive and nega-
tive values of x.

5.2 Working with Difference Quotients

Producing and Simplifying Difference Quotients
It  is  easy  to  simplify  difference  quotients  with  Mathematica.  (Get  the   character  from  the
BasicMathInput  palette, and do not put a space between it and x, for you are creating a new symbol
whose name is x, rather than multiplying  by x.)

In[1]:= Clear diffquot, x, x ;

diffquot f :
f x x f x

x

This is much more fun to do than to read about, so if possible get yourself started in a Mathematica
session. You first define a function, and then produce the difference quotient: 

In[3]:= h x : x3;

diffquot h

Out[4]=
x3 x x 3

x
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You can now simplify it by typing and entering Simplify , but it’s much more fun (and informa-

tive) to “drive”  Mathematica  through it  step  by  step.  First  use  your  mouse to highlight x x 3  in

the last output, and then hit the Expand  button on the AlgebraicManipulation  palette. You will then

have this:

x3 x3 3 x2 x 3 x x2 x3

x

Now highlight the entire numerator, and hit the Simplify  button. The x3  cancels with the x3, and

x is factored out of the remaining three summands. You will have:

x 3 x2 3 x x x2

x

Lastly, select the entire output and hit the Cancel  button. The x’s cancel and you are left with:

3 x2 3 x x x2

That’s  it!  You’ve  just  simplified  an  algebraic  expression  painlessly,  with  no  dropped  minus  signs,
and without skipping a step. We encourage you to do this for five or six functions of your choosing;
you might even find it fun.

Average Rate of Change
Once you have entered the cell defining the diffquot  command, you can work with specific values
of x and x to find the average rate of change of a function as the independent variable ranges from
x to x x:

In[8]:= Clear f, x, x ;

f x :
Sin x

x

In[10]:= diffquot f

Out[10]=

Sin x

x

Sin x x

x x

x

You can find the average rate of change of f  from x 2 to x 2.5 as follows:

In[11]:= diffquot f . x 2, x 0.5

Out[11]= 0.8

Recall  from  the  last  chapter  (Section  4.2,  page  153)  that  the  replacement  rule  /.{x 2, x 0.5}
instructs Mathematica  to replace x by 2 and x by 0.5. The average rate of change of f  from x 2 to

x 2.1 is:
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In[12]:= diffquot f . x 2, x 0.1

Out[12]= 1.47151

Here is a table of values for the difference quotient of f  at x 2 for various small values of x:

In[13]:= data Table x, diffquot f . x 2, x N 10 n , n, 1, 5 ;

dataWithHeadings Prepend data, " x", "
f 2 x f 2

x
" ;

Text Grid dataWithHeadings, Alignment Left, Dividers Center, 2 True

Out[14]=

x f 2 x f 2
x

0.1 1.47151
0.01 1.56272
0.001 1.57001
0.0001 1.57072
0.00001 1.57079

Instantaneous Rate of Change
The  instantaneous  rate  of  change  at  x 2  is  found  by  taking  the  limit  as  x  approaches  0  of  the
difference quotient at x 2:

In[15]:= diffquot f . x 2

Out[15]=
Sin 2 x

x 2 x

In[16]:= Limit , x 0

Out[16]=
2

In[17]:= N , 10

Out[17]= 1.570796327

Note that this result is consistent with the table that we computed above.

Exercises 5.2

1. Find the difference quotient for f x 1

x2  and use the AlgebraicManipulation palette to simplify 

this expression.
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2. Find the limit of the difference quotient for f x 1

x2  as x 0.

3. Find the difference quotient for f x x  and use the AlgebraicManipulation palette to simplify 

this expression.

4. Find the limit of the difference quotient for f x x  as x 0.

5.3 The Derivative
Of  course  there  is  a  simpler  way  to  take  derivatives  than  to  compute  the  instantaneous  rate  of
change  as  above.  This  is  an  instance  where  the  Mathematica  syntax  matches  that  of  traditional
mathematical notation. For the function f  defined above, the derivative can be found as follows:

In[1]:= f ' x

Out[1]=
Cos x

x

Sin x

x2

If you check this using the quotient rule, your answer may look slightly different. You can simplify

the output  above by highlighting it  and pushing the Simplify  button on the AlgebraicManipulation

palette, or by typing:

In[2]:= Simplify

Out[2]=
x Cos x Sin x

x2

This  is  exactly  what  you  would  obtain  if  you  worked  by  hand  using  the  quotient  rule.  We  can
evaluate the derivative at any value of x:

In[3]:= f ' 2

Out[3]=
2

A plot  of  a  function and the  tangent line to the  function at  a  point (at  x 2,  for  example)  can be
produced as  follows.  The  expression  representing  the  line  is  obtained from the  point-slope  formula
for a line, where the point on the line is 2, f 2 , and the slope of the line is f ' 2 . You can zoom in

(or out) by changing the bounds on the iterator. Try x, 1.9, 2.1  to zoom in on the two graphs near
x 2.

202 Calculus



In[4]:= Plot f x , f 2 f ' 2 x 2 , x, 1.5, 2.5

Out[4]=
1.8 2.0 2.2 2.4

0.5

0.5

You may also find it  instructive to study the graph of a function and its derivative on the same set
of axes. Here the graph of f  is black, while its derivative is gray. Of course you can use your favorite

colors.

In[5]:= Plot f x , f ' x , x, 0, 3 ,

PlotStyle Black, Gray

Out[5]= 0.5 1.0 1.5 2.0 2.5 3.0

4

3

2

1

1

2

3

There  is  another  way  to  take  derivatives  of  expressions  with  Mathematica  that  is  useful  in  many
situations.  The  command is  called  D,  and  it  takes  two  arguments;  the  first  is  an  expression  to  be
differentiated, and the second is name of the variable with respect to which the differentiation is to
be performed:

In[6]:= D
Sin x

x
, x

Out[6]=
Cos x

x

Sin x

x2

A  palette  version  of  the  D  command  exists  and  is  sometimes  useful.  Go  to  the  BasicMathInput

palette, and find the  button. Type and highlight the expression you wish to differentiate, then

push  this  button.  Now  type  x  (as  the  subscript)  to  indicate  that  you  wish  to  differentiate  with
respect to x: 

In[7]:= x Sin x

Out[7]= Cos x

The palette approach is most useful when the expression you wish to differentiate already exists on
your screen (as the output of some former computation, for instance). You can then highlight it and
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push the button.

A word  of  warning  regarding the  palette  button  is  in  order.  If  you first  hit  the  palette  button  and
then  enter  an  expression  to  be  differentiated  in  the  position  of  the  placeholder,  you  should  put
grouping parentheses around the expression. Here’s an example of what can happen if you don’t:

In[8]:= x x2 x3

Out[8]= 2 x x3

You certainly don’t want to report that the derivative of x2 x3  is 2 x x3! With parentheses things
are fine:

In[9]:= x x2 x3

Out[9]= 2 x 3 x2

When  you  first  highlight  the  expression  to  be  differentiated,  and  then  push  the  palette  button,
Mathematica will add the grouping parentheses automatically.

D can be used to easily derive just about any differentiation rule. You just need to ask it to derive an
expression involving “dummy” functions (functions which have been given no specific definition).
Here is the product rule, for instance:

In[10]:= Clear f, g, x ;

D f x g x , x

Out[11]= g x f x f x g x

There are two points to remember about the D command. First, it is imperative that the variable (x
in the example above) be cleared of  any value before it  is  used in the D  command.  Second, if  you
plan to plot a  derivative generated by the D  command, you need to wrap it  in the Evaluate  com-
mand before plotting:

In[12]:= Plot Evaluate x2, D x2, x , x, 1, 1

Out[12]=
1.0 0.5 0.5 1.0

2

1

1

2

As  a  general  rule  of  thumb,  D  is  useful  for  differentiating  unnamed  expressions  and  for  deriving
general  formulae.  For  functions  to  which  you  have  already  given  names  (such  as  f ),  the  “prime”

command f'[x] is generally easier to use than D.
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Exercises 5.3
1. Make a Manipulate that shows the tangent line to f x cos x  at the point x a as a assumes 

values from 4  to 4 .

2. Graph the derivatives of f x sin xn  for n 2, 3, 4 and look for patterns in the graphs that are 

reflected in the expressions for their derivatives.

5.4 Visualizing Derivatives
It can be instructive to create a dynamic visualization environment, using Manipulate, showing the
derivative function as the limit of a difference quotient. Moving the slider in the Manipulate below
demonstrates graphically that the derivative of sin x  is cos x . Note the iterator for x is backwards;
it moves  from a value of 2 when the slider  is  positioned on the left down  to .01 when the slider is
moved all the way to the right.

In[1]:= Manipulate Plot
Sin x x Sin x

x
, Cos x , x, 2 , 2 , x, 2, .01

Out[1]=

x

6 4 2 2 4 6

1.0

0.5

0.5

1.0

The equivalence of the instantaneous rate of change and the slope of the tangent line can be visual-
ized by the following Manipulate.  Here we see the graph of f x x  and its tangent line at x 1.

As we move the slider we zoom down to the microscopic level where the curve and the tangent line
become indistinguishable. 
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In[2]:= Manipulate Plot Exp x , Exp ' 1 x 1 Exp 1 , x, 1 , 1 ,

Frame True, Axes False, Epilog Red, Point 1, Exp 1 ,

GridLines Range 0, 2, .05 , Range 1, 8, .2 , GridLinesStyle Gray,

FrameTicks None, Filling 1 2 , , 1, "zoom" , 1, .01

Out[2]=

zoom

Exercises 5.4
1. Make a Manipulate like the first one in this section, showing the difference quotient for the 

natural logarithm function ln x  converging to 1

x
 as x 0.

2. Modify the zooming Manipulate at the end of this section so that it includes a Checkbox 
control. The tangent line should display if the checkbox is checked, but not otherwise.

5.5 Higher Order Derivatives

In[1]:= Clear f, x ;

f x :
Sin x

x

The easiest way to take a second derivative is to do this:

In[3]:= f '' x

Out[3]=
2 Cos x

x2

2 Sin x

x3

2 Sin x

x

You must use two single quotation marks.
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Third derivatives?

In[4]:= f ''' x

Out[4]=
6 Cos x

x3

3 Cos x

x

6 Sin x

x4

3 2 Sin x

x2

 Another way to take a third derivative is to use the D command as follows:

In[5]:= D f x , x, 3

Out[5]=
6 Cos x

x3

3 Cos x

x

6 Sin x

x4

3 2 Sin x

x2

The D command is useful for producing general formulae as in the last section. For example, here is
the (seldom seen) second-derivative product rule:

In[6]:= Clear f, g, x

In[7]:= D f x g x , x, 2

Out[7]= 2 f x g x g x f x f x g x

And here is a product rule for third derivatives. Note that the StandardForm  notation for the third

derivative of f[x] is f 3 x . A similar notation is employed for all derivatives beyond the second.

In[8]:= D f x g x , x, 3

Out[8]= 3 g x f x 3 f x g x g x f 3 x f x g 3 x

Exercises 5.5

1. Use the D command to find a general rule for the second derivative of y f x

g x
.

2. Use a Table to look for patterns in the higher order derivatives of Sec x .
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5.6 Maxima and Minima
A function can only attain its relative maximum and minimum values at critical points, points where
its  graph  has  horizontal  tangents,  or  where  no  tangent  line  exists  (due  to  a  sharp  corner  in  the
graph, for instance). For a differentiable function there is a unique tangent line at each point in the
domain,  so  the  critical  points  are  all  of  the  first  type.  To  find  a  value  of  x  for  which  f  has  a

horizontal tangent, one must  set  the derivative equal  to 0 and solve for  x.  Having experience with
taking derivatives and solving equations with Mathematica,  this shouldn’t be too difficult. In many
cases it’s not. Here’s an example:

In[1]:= Clear f, x ;

f x : x3 9 x 5

In[3]:= Reduce f ' x 0, x

Out[3]= x 3 x 3

In[4]:= Solve f ' x 0, x

Out[4]= x 3 , x 3

Recall from Section 4.2 on page 149 that the Solve command returns a list of replacement rules. Here
is how to use that output to get a list of the two critical points, each of the form x, f x . These are
the points in the plane where the graph of f  assumes its extreme values:

In[5]:= extrema x, f x .

Out[5]= 3 , 5 6 3 , 3 , 5 6 3

And here is a plot of f , with the extreme points superimposed as large dots. They will appear as large

red dots on a color monitor:

In[6]:= Plot f x , x, 4, 4 , Epilog PointSize 0.02 , Red, Point extrema

Out[6]=

4 2 2 4

20

10

10

20

30

The Epilog  option can be  used  with  any command that  produces  graphics,  such as  Plot.  It  allows
you to  overlay  “graphics  primitives,”  such as  points,  on  the  graphic  after  it  has  been rendered.  In
this  case,  the  directive  PointSize[.02]  makes  the  points  big  (they  are  each 2% of  the  width of  the
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graphic),  the  directive Red  makes  them red,  and the  Point[extrema] transforms the  list  of  coordi-
nate pairs into a Graphics primitive Point object.

In any event,  that little  bit  of  technical typing produces  a  satisfying plot,  and allows you to verify
visually that the points you found using the Solve command are really the extrema you sought. 

We can confirm that an extreme point is a maximum or a minimum by using the second derivative:

In[7]:= f '' 3 0

Out[7]= True

The  function  is  concave  down  at  x 3  and  so  has  a  maximum  at  x 3 .  Similarly,  the

second derivative confirms that f  has a minimum at x 3 :

In[8]:= f '' 3 0

Out[8]= True

Returning to the task at hand, the strategy that we followed above will fail precisely when the Solve
(or NSolve) command is unable to solve the equation f ' x 0,  typically when f  is something other

than a polynomial of low degree:

In[9]:= f x :
Sin x

x

In[10]:= Reduce f ' x 0, x

Reduce::nsmet : This system cannot be solved with the methods available to Reduce.

Out[10]= Reduce
Cos x

x

Sin x

x2
0, x

In[11]:= NSolve f ' x 0, x

Solve::tdep :

The equations appear to involve the variables to be solved for in an essentially non algebraic way.

Out[11]= NSolve
Cos x

x

Sin x

x2
0, x

This  is  a  clue  that  you  need  to  follow  an  alternate  strategy.  One  approach  is  to  stare  hard  at  the
equation  f ' x 0  and  see  if  you  can  find  a  solution  by  hand.  There  are  rare  occasions  in  which

there  is  an obvious  solution that  Mathematica  will  miss  (there’s  an example at  the end of this  sec-
tion). Try a few values of x, such as 0 or 1, and see if they work. If the Solve (or NSolve) command
does produce a solution, but warns you that inverse functions were used, work by hand to see if you
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can find other solutions.  Bear in mind that this process  of finding extrema cannot be reduced to a
single, simple, automated procedure; you have to remain fully engaged at every step. If your efforts
in  solving  f ' x 0  bear  no  fruit  (as  will  probably  be  the  case  with  the  example  above),  don’t

despair. In such cases we resort to attacking the extreme points one at a time, using Plot and Find
Root, and settle for approximations to the actual extreme points. 

The first step in this strategy is to produce a graph of f . In this example, we’ll look at the graph of f

between x 0 and x 3. If you are working on an applied problem, there is probably some specified
domain. That would be a good choice for your plot.

In[12]:= Plot f x , x, 0, 3

Out[12]=

0.5 1.0 1.5 2.0 2.5 3.00.5

0.5

1.0

1.5

2.0

2.5

3.0

There appears to be a relative minimum near x 1.5. Use that as an initial guess,  and let FindRoot
do the rest:

In[13]:= FindRoot f ' x 0, x, 1.5

Out[13]= x 1.4303

The coordinates of the relative minimum can be easily recovered using replacement rules:

In[14]:= minpoint x, f x .

Out[14]= 1.4303, 0.68246

Note that this is an approximate, rather than an exact solution. This is the best that Mathematica can
do in such situations. Note also that when you use FindRoot, you can almost always get an answer,
but you have to settle for one solution at a time. If you need to find six extreme points, you need to
run FindRoot six times, each with a different initial guess (suggested by a plot).

Here’s  how to  produce  a  plot  with  the  relative  minimum  shown.  It  will  appear  as  a  red  dot  on  a
color monitor:

In[15]:= Plot f x , x, 0, 3 , Epilog PointSize 0.02 , Red, Point minpoint

Out[15]=

0.5 1.0 1.5 2.0 2.5 3.00.5

0.5

1.0

1.5

2.0

2.5

3.0
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Be mindful that a plot of some sort is important. For although relative extrema for a function f  must

occur at  values  of x  that  satisfy  f ' x 0,  satisfying this equation is  no guarantee that  the point in

question  is  in  fact  a  relative  maximum  or  minimum.  This  will  often  happen  when  the  equation
f ' x 0 has repeated roots:

In[16]:= f x : 8.01 12 x 6 x2 x3

In[17]:= NSolve f ' x 0, x

Out[17]= x 2. , x 2.

In[18]:= Plot f x , x, 1, 3 , Epilog PointSize 0.02 , Red, Point 2, f 2

Out[18]=

1.0 1.5 2.0 2.5 3.0

15.5

16.0

16.5

17.0

The plot  suggests  that even though f  has  a  horizontal tangent when x 2,  f  takes  points  immedi-

ately to the left of 2 to values smaller than f 2 , and f  takes points immediately to the right of 2 to

values greater than f 2 . In other words, f  has no relative maximum or minimum at x 2. Without a

plot  (or  some  careful  mathematical  reasoning)  it  is  unclear  whether  a  function  f  has  extrema  at

those values  of  x  satisfying f ' x 0.  Note  that  the  second derivative confirms that  the  function is

neither concave up nor concave down at x 2:

In[19]:= f '' 2

Out[19]= 0

We next give an example of a function f for which Mathematica’s Solve command cannot produce a

real  solution  for  the  equation  f ' x 0,  but  for  which  Reduce  can.  An  exact  solution  can  also  be

found by hand.

In[20]:= f x : Cos x

In[21]:= f ' x

Out[21]=
x Sin x
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In[22]:= Solve f ' x 0, x

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information.

Out[22]= x

Solve is likely to fail when the function in question is a transcendental function without an inverse.
We know from the expression for f  that it  will oscillate, and hence will  have infinitely many local

extrema.  In  fact,  a  moment’s  thought  reveals  that  since  the  cosine  function  attains  its  extreme
values  when  its  argument  is  an  integer  multiple  of  ,  this  function  will  attain  its  extreme  values
when x  is  the  natural  logarithm of  an integer.  This  is  precisely  what  Reduce  tells  us,  provided we
instruct  it  to  restrict  x  to  the  field  of  real  numbers.  It  distinguishes  between  the  cases  when  the
integer is odd and even. This is a remnant of the more general case when x  is permitted to assume
complex  values,  where  this  distinction  is  necessary;  it  also  neatly  divides  the  solutions  between
maxima and minima:

In[23]:= Reduce f ' x 0, x, Reals Simplify

Out[23]= C 1 Integers && C 1 1 && x Log 2 C 1 C 1 0 && x Log 1 2 C 1

Recall from Chapter 4 that C[1] Integers  means that C[1] is an element of the set of integers. The
symbol && means “and” and the symbol || means “or.” Note that Reduce finds every solution. The
output  may  seem  a  bit  difficult  to  read,  but  this  is  necessary.  After  all,  there  are  infinitely  many
solutions;  a  careful  description  is  necessary.  In  this  case,  however,  a  more  concise  description  is
possible: every solution to the equation f ' x 0 is of the form x ln c  where c is a positive integer.

A plot confirms this:

In[24]:= Plot f x , x, 3, 3 ,

Epilog PointSize 0.02 , Red, Point Table Log c , f Log c , c, 20

Out[24]=
3 2 1 1 2 3

1.0

0.5

0.5

1.0

The moral of this example is that the process of finding extrema is not one that can be completely
automated.  Rather,  you  must  have  a  clear  grasp  of  the  underlying  mathematical  ideas,  and  the
flexibility to combine abstract mathematical thinking with the tools that Mathematica provides.

That  said,  however,  Mathematica  does  have  two  built-in  commands  that  go  a  long  way  toward
automating the process of finding extrema. The commands are called Maximize and Minimize. But
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be careful, these commands will return only global (a.k.a. absolute) minima and maxima, not local
extrema. For example, recall the first function discussed in this section.

In[25]:= Clear f, x ;

f x : x3 9 x 5;

Maximize f x , x

Maximize::natt : The maximum is not attained at any point satisfying the given constraints.

Out[27]= , x

We saw in the graph that this function does not attain a global maximum on its full domain. But we
can add constraints on the values to be considered by Maximize as follows:

In[28]:= Maximize f x , 4 x 0 , x

Out[28]= 5 6 3 , x 3

The  output  is  a  list  of  two  items.  The  first  gives  the  maximum  value  of  the  function,  while  the
second gives a replacement rule that indicates the point in the domain where the maximum occurs.
On the same interval the minimum occurs at the left endpoint.

In[29]:= Minimize f x , 4 x 0 , x

Out[29]= 23, x 4

Constraints  can  be  inequalities  or  equations.  When  entering  equations  be  sure  you  use  double
equals ( ).  These commands can be very useful  when you want to find global extrema. Be warned
that in the case of finding extreme values for transcendental functions, they may not find all solu-
tions (this is the case for the previous example where f x cos x ; see Exercise 1). But for polyno-

mial equations, they are bulletproof. For instance, here is an optimization word problem of the type
frequently encountered in a calculus course:

A rectangular field is to be enclosed by a fence on three sides and by a straight stream on the fourth
side. Find the dimensions of the field with maximum area that can be enclosed with 1000 ft of fence. 

We want to maximize the area, A x y, subject to the constraint 2 x y 1000.

In[30]:= Maximize x y, 2 x y 1000 , x, y

Out[30]= 125000, x 250, y 500

It  is  always  a  good idea to check any solution found with Maximize  or  Minimize  by looking at  a
graph.  As  always,  don’t  trust—verify!  Here  is  a  somewhat  intricate  Manipulate  that  provides  a
graphical confirmation by showing the rectangular field on the left and its area on the right:
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In[31]:= Manipulate Module y ,

y : 1000 2 x;

GraphicsRow

Plot y, x, 0, 500 , AspectRatio .5,

Epilog Gray, EdgeForm Black , Polygon 0, 0 , x, 0 , x, y , 0, y ,

AxesLabel "x", "y" , Ticks 0, 250, 500 , Automatic ,

Plot x y, x, 0, 500 , AspectRatio .5,

Epilog PointSize .04 , Red, Point x, x y ,

AxesLabel "x", "Area of Rectangle" , ImageSize 400 ,

x, 250 , 0, 500

Out[31]=

x

250 500
x

200

400

600

800

1000

y

100 200 300 400 500
x

20 000

40 000

60 000

80 000

100 000

120 000

Area of Rectangle

A Module was used in the Manipulate above. While not strictly necessary, it is convenient. If
the line beginning with Module were eliminated (along with its closing square bracket on the
second-to-last  input  line),  one  would  simply  have  to  replace  all  occurrences  of  y  with
1000 2 x. In fact, that was how we first made the Manipulate. But it was annoying having to
type 1000 2 x in five different places, and it made the code more difficult to read. Module is a
“scoping construct”; it allows one to define local variables. It is much like the command With,

(first seen in Section 3.2) but it is more flexible in that delayed assignments can be made. The

first argument is a list of all such variables (here there is only one, namely y). Then y is defined
using the SetDelayed  operator :=. That’s it. The rest is simply a GraphicsRow  containing the
two plots. Outside of this Module, the symbol y has no assigned value. Note also that switch-
ing to a different example, such as y 1500 3 x, would mean only having to change one line

of code. Module is discussed in Section 8.6.

Exercises 5.6
1. Read the example concerning the function f x cos x  in this section. Use Maximize to find 

extreme values of f  on the domain 3 x 3. Compare the output to the graph in the text, and 

comment on what you find.

2. Use Minimize to find the x-coordinate of the third occurrence of the y-value 1 for the function 
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sin 5 x  to the right of the y-axis.

3. Find the dimensions of the right circular cylinder of largest volume that can be inscribed in a 
right circular cone with radius r and height h.

4. Find the minimum value of the function f x x2 3.

5.7 Inflection Points

In[1]:= Clear f, x ;

f x :
Sin x

x
The procedure  for  finding points  of  inflection mirrors  that  for  finding relative extrema outlined in
the last section, except that second derivatives are used. A glance at the graph of f  in the preceding

section  on  page  210,  suggests  that  f  has  an  inflection  point  near  x 2.  Let’s  zero  in  on  it  with

FindRoot:

In[3]:= FindRoot f '' x 0, x, 2

Out[3]= x 1.89088

In[4]:= infpt x, f x .

Out[4]= 1.89088, 0.177769

In[5]:= Plot f x , x, 1, 3 ,

Epilog PointSize .02 , Red, Point infpt

Out[5]= 1.5 2.0 2.5 3.0

0.6

0.4

0.2

0.2

0.4

The plot confirms that f  has an inflection point at approximately x 1.89088.

You may find it  instructive to study the graph of a  function and its  derivatives on the same set  of
axes. Here is the graph of f , and the graph of its derivative with filling added. Note that f  is decreas-

ing on those intervals where f ' is negative, and increasing when f ' is positive. The zeros of f ' corre-

spond to the relative extrema of f . 
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In[6]:= Plot f x , f ' x , x, 0, 3 , Filling 2 Axis

Out[6]=

And below we see f  and f '' plotted together, where f '' has filling added. Note that f  is concave down

on those intervals where f ''  is negative, and concave up where f ''  is positive. The zeros of f ''  corre-

spond to the inflection points of f . 

In[7]:= Plot f x , f '' x , x, 0, 3 , Filling 2 Axis

Out[7]=

Exercises 5.7

1. Plot the function f x sin x

x
 on the domain 3 x 3, then make a ContourPlot of the curve 

f ' x 0, and superimpose the two graphics using Show. Describe what you see.

2. Plot the function f x sin x

x
 on the domain 3 x 3, then make a ContourPlot of the curve 

f '' x 0, and superimpose the two graphics using Show. Describe what you see.

3. Repeat the first two exercises, but modify the ContourPlot input so that the first argument is not 
an equation but instead simply f'[x] or f''[x]. Add the option settings Contours {0} and Color
Function "LightTerrain". This will have the effect of adding color to the vertical bands. 
Within the Show command, list the ContourPlot first (otherwise the colored bands will be on 
top of, and hence obscure, the Plot of f ).
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5.8 Implicit Differentiation
For an implicitly  defined function described by  a  simple  equation,  it  is  probably easier  to work  by
hand  than  to  use  a  computer  algebra  system  to  differentiate.  However,  it  is  satisfying  to  have
Mathematica  verify  your  work.  For  complicated  expressions,  on  the  other  hand,  the  computer  will

help you maintain your sanity. (To produce plots of implicitly defined functions, see Section 3.7 on

page 97.)

Here’s  how  to  find  dy

dx
 for  the  implicit  equation  cos x2 sin y2 .  First,  rewrite  the  equation  with

every nonzero term on the left-hand side, so that it is of the form expression 0. In this case we get

cos x2 sin y2 0. The key to implicit differentiation is to tell Mathematica  that y  is to be regarded

as a function of x.  This is  accomplished by typing y[x]  in place of y.  We can now differentiate the
expression on the left-hand side with respect to x. For convenience, we name it lhs: 

In[1]:= Clear x, y ;

lhs D Cos x2 Sin y x
2

, x

Out[2]= 2 x Sin x2 2 Cos y x 2 y x y x

It is important to remember that this derivative is equal to the derivative of 0 (the right-hand side of

our implicit equation), which is also 0. We can get an expression for dy

dx
 by solving this equation:

In[3]:= Solve lhs 0, y ' x

Out[3]= y x
x Sec y x 2 Sin x2

y x

 In traditional notation we replace y x  by y, yielding dy

dx

x sec y2 sin x2

y
.

In  some  instances,  you  may  be  asked  to  differentiate  an  equation  such  as  cos x2 sin y2  with

respect to a third variable, such as t. In this case we assume that each of x  and y  are functions of t,

and type x[t] and y[t] in place of x and y, respectively. The differentiation is carried out with respect
to t:

In[4]:= Clear x, y, t ;

lhs D Cos x t 2 Sin y t
2

, t

Out[5]= 2 Sin x t 2 x t x t 2 Cos y t 2 y t y t

Since this expression is equal to 0, we can find dx

dt
 and dy

dt
 as in the previous example: 
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In[6]:= Solve lhs 0, x ' t

Out[6]= x t
Cos y t 2 Csc x t 2 y t y t

x t

In[7]:= Solve lhs 0, y ' t

Out[7]= y t
Sec y t 2 Sin x t 2 x t x t

y t

Exercises 5.8

1. Find dx

dy
 for the implicitly defined function cos x2 sin y2 .

2. Find d2 y

d x2  for the implicitly defined function x y y2 3 as a function of x and y.

3. A ten foot ladder is leaning against a wall. The base of the ladder is sliding away from the wall at 
3 feet per second when it is one foot from the wall. How fast is the top of the ladder sliding 
down the wall?

4. Use Manipulate to make a movie of a tangent line rolling around a unit circle.

5.9 Differential Equations
There  are  many  applied  settings  in  which  you  can observe  a  relationship  between  a  function  and
one  or  more  of  its  derivatives,  even  when  an  explicit  algebraic  expression  for  the  function  is
unknown. In such situations, it is often possible to find the algebraic expression for the function in
question by solving the differential equation that relates the function to its derivative(s). For instance,

suppose there is a function y t  whose derivative is equal to 1

3
 times y t  for each value of t. This sort

of  situation  can  exist,  for  instance,  in  modeling  population  growth:  the  population  at  time  t  is
denoted  by  y t ,  and  the  rate  of  growth  y ' t  is  proportional  to  the  population  at  time  t.  As  the

population gets larger, it grows faster, since there are more people available to reproduce. What kind
of function is  y t ? What is  its  algebraic formula? You can solve a differential equation such as this

with the DSolve command:

In[1]:= Clear y, t ;

DSolve y ' t
1

3
y t , y t , t

Out[2]= y t t 3 C 1
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The DSolve  command takes  three  arguments.  The first  is  a  differential  equation,  an  equation  that
includes a  derivative.  The second is  the function whose algebraic expression you wish to find,  and
the third  is  the  name of  the  independent variable.  The second and third arguments  appear  redun-
dant in an example like this one, but in more complex situations they are needed to avoid ambigu-
ity. In any event, you need to use them, always.

The output  to DSolve  is  a  list  of  replacement rules,  exactly like those produced by the Solve  com-
mand (see Section 4.2 in the previous chapter for a detailed description of the Solve command and
replacement rules). The C[1]  in the output represents a constant. It can be replaced by any number
to produce an explicit solution. In applied settings, some other information is usually given that will
enable  you  to  find  the  value  of  such  a  constant.  For  instance,  if  we  use  our  population  growth
model,  we  might have  been told that  initially,  at  time t 0,  the  population was  400.  Then we see

that  400 y 0 0 C 1 C 1 .  Thus  we  conclude  that  the  algebraic  expression  for  y t  is

y t 400 t 3.

In[3]:= y t . 1 . C 1 400

Out[3]= 400 t 3

You can also use  DSolve  by  giving a  list  of  equations as  the  first  argument.  You can, for  instance,
put the differential equation and an initial condition in the list. This makes life very easy indeed:

In[4]:= Clear y, t ;

DSolve y ' t
1

3
y t , y 0 400 , y t , t

Out[5]= y t 400 t 3

In[6]:= Plot y t . , t, 0, 10

Out[6]=

2 4 6 8 10

2000

4000

6000

8000

10 000

Here’s another example:

In[7]:= Clear y, t ;

DSolve y ' t
1

5
y t 100 , y t , t

Out[8]= y t 500 t 5 C 1

Here  we  have  a  family  of  solutions,  with individual solutions determined by  the  values  of  the
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constant C[1]. For instance, here are several solutions for values of C[1] ranging from 500 to 500 in
increments of 50:

In[9]:= sols Table y t . 1 . C 1 n, n, 500, 500, 50

Out[9]= 500 500 t 5, 500 450 t 5, 500 400 t 5, 500 350 t 5, 500 300 t 5,

500 250 t 5, 500 200 t 5, 500 150 t 5, 500 100 t 5, 500 50 t 5, 500,

500 50 t 5, 500 100 t 5, 500 150 t 5, 500 200 t 5, 500 250 t 5,

500 300 t 5, 500 350 t 5, 500 400 t 5, 500 450 t 5, 500 500 t 5

We now have a list consisting of twenty-one functions, each a solution of our differential equation,
and  each  corresponding  to  a  different  numerical  value  of  C[1].  Let’s  plot  these  functions  on  the
same set of axes. 

In[10]:= Plot sols, t, 0, 15

Out[10]=

2 4 6 8 10 12 14

300

400

500

600

700

800

Just  as  there  is  the  NSolve  command to complement the Solve command, there  is  the  NDSolve
command  to  complement  the  DSolve  command.  Use  NDSolve  in  situations  where  the  DSolve
command is unable to provide an exact algebraic solution (or if DSolve  seems to be taking all day).
Choose Abort Evaluation in the Evaluation menu to get Mathematica to stop a computation. 

To use NDSolve, you need to specify both a differential equation and an initial condition in a list for
the first argument. The second argument is the function to be solved for, as with DSolve. The third
argument is an iterator, specifying the name of the independent variable and the range of values it is
to  assume.  As  for  the  output,  you  will  not  get  an  explicit  algebraic  formula—only  DSolve  can
provide that.  Rather, you get a nebulous object known as an interpolating function.  It is a numerical
approximation to the true solution of the differential equation on the specified domain. It behaves
like an ordinary function in that it can be plotted, and can be used in calculations:

In[11]:= sol NDSolve y ' t 0.05 y t 0.0001 y t 2, y 0 10 , y t , t, 0, 200

Out[11]= y t InterpolatingFunction 0., 200. , t
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In[12]:= Plot y t . sol 1 , t, 0, 200

Out[12]=

50 100 150 200

100

200

300

400

500

You can also produce a table of values for such a function:

In[13]:= data Table t, y t . sol 1 , t, 0, 200, 20 ;

Text Grid Prepend data, "t", "y t " , Alignment ".", Dividers Gray

Out[14]=

t y t
0 10.
20 26.2797
40 65.5185
60 145.367
80 263.509
100 375.895
120 445.848
140 478.614
160 491.914
180 496.995
200 498.89

Exercises 5.9

1. Find the general solution to the differential equation dy

dx
4 x y2 and then plot several solutions 

by choosing specific values of the constant.

2. Find the general solution for the second order differential equation d2 y

dx2

dy

dx
cos x  and then 

plot solutions for several values of the constants.

3. Use NDSolve to find the solution of d2 y

dx2

dy

dx
cos x  subject to the initial conditions y 0 1 

and y ' 0 .4 and then plot this solution.
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5.10 Integration
If  you  haven’t  been  impressed  thus  far,  this  is  where  Mathematica  really  pays  for  itself.  Unlike
differentiation,  which  with  perseverance  can  always  be  completed  by  hand,  integration  can  be
exceedingly difficult. In most cases, however, if a function has a known antiderivative, Mathematica
can find it:

In[1]:=
1

1 x3
x

Out[1]=

ArcTan 1 2 x

3

3

1

3
Log 1 x

1

6
Log 1 x x2

The integration button can be found on the BasicMathInput palette. First type a function ( 1

1 x3  in the

example above), then highlight it with your mouse. Now press the  button on the BasicMathIn–

put palette. Your function will be pasted inside the integral at the position of the black square, and
the cursor  will  be at  the second placeholder. Here you type  the variable with respect  to  which the
integration will be performed (x in the example above). Now enter the cell.

If  the  function  you  wish  to  integrate  is  already  on  your  screen  (in  an  output  cell  for  instance),
highlight it using the mouse, then push the integration button. It will be pasted inside the integral
in  a  new  input  cell.  You  then  enter  the  variable  with  respect  to  which  the  integration  is  to  be
performed and enter the cell.

Some  people  find  it  more  natural  to  use  the  palette  in  a  slightly  different  way,  first  pushing  the
integral button, and then typing the function in the position delimited by the first placeholder. This
is okay,  but be careful.  If  the expression you want to integrate is  a sum, you need to put grouping
parentheses around the whole thing. Here’s what happens if you don’t:

In[2]:= 1 x2 x

Integrate::nodiffd :

1 cannot be interpreted. Integrals are entered in the form f x, where is entered as dd .

You can probably make sense of this message: Mathematica  sees the incomplete expression 1 from

which it is supposed to subtract x2 x. That’s nonsense. With the parentheses things work fine:

In[2]:= 1 x2 x

Out[2]= x
x3

3

Note also that you must be sure to Clear any previous assignment made to the integration variable.
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Here’s what to expect if you do not:

In[3]:= x 3

Out[3]= 3

In[4]:= 2 x x

Integrate::ilim : Invalid integration variable or limit s in 3.

Out[4]= 6 3

Clearing x is the remedy here:

In[5]:= Clear x

In[6]:= 2 x x

Out[6]= x2

You can produce the  symbol without the palette by typing int ,  and you can produce the 
symbol  by  typing  dd .  This  will  allow  you  to  type  an  integral  entirely  from  the  keyboard.
Alternatively,  you  can  use  the  Integrate  command.  It  does  the  same  thing  as  the  palette  button
described  above;  in  fact  the  palette  button  provides  a  means  of  utilizing  the  standard  syntax  for
integrals,  but  when  evaluated  it  simply  calls  the  Integrate  command.  The  standard  Mathematica
syntax leaves no ambiguity as to the necessity of grouping parentheses;  the integrand is simply the
first argument. The integration variable is the second.

In[7]:= Integrate ArcTan x , x

Out[7]= x ArcTan x
1

2
Log 1 x2

It is important to remember that if a function has one antiderivative, it has infinitely many others.
But given one,  any other can be obtained by adding a constant to it.  Mathematica  always gives  the
most simple antiderivative, the one whose constant term is zero.

One may also use Integrate to produce a general formula by using an integrand that includes one or
more symbolic parameters. Here, for instance, is the first integration formula one typically learns in
a calculus course:

In[8]:= Clear n, x ;

xn x

Out[9]=
x1 n

1 n
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Note that this formula holds for almost  all n  (it fails if n 1). It is an intentional design feature to
not specify such special cases, like this one where there is a single exception to the general formula
provided. This means it’s  left  to you,  the user,  to critically contemplate the output,  cognizant that
there  may  be  exceptions.  However  it  is  also  possible  to  get  a  piecewise  function as  the  value  of  an
integral.  This  will  occur  when  there  are  two  or  more  measurable  regions  on  which  the  integral
assumes different values.  A typical  example of this behavior is  when the integrand is  itself  a piece-
wise function.

In[10]:=
n x 1 x 0

n x x 0
x

Out[10]=

n x

n
x 0

1

n
x 2

3
x n x True

All of  the familiar integration formulae are at  your fingertips.  Here we see the chain rule,  which is
the basis for the technique of substitution:

In[11]:= Clear F, u, x ;

F ' u x u' x x

Out[12]= F u x

A more subtle feature of the Integrate command is the manner in which real variables are handled.
By default, it is assumed that the integrand is a function that may assume complex values, and that
may accept complex input. In most cases this creates no issue whatever. But there are exceptions, so
it is important to know how to restrict the values of parameters to the field of real numbers. To do
so, follow the syntax of this example:

In[13]:= Assuming t Reals, t4 2 t2 1 t

Out[13]= t
t3

3

This  input  reads  pretty  much  as  one  would  say  it  out  loud:  assuming  that  t  is  an  element  of  the
reals, integrate the function that follows with respect  to t.  Equivalently,  you may add an Assump
tions option to the Integrate command:

In[14]:= Integrate t4 2 t2 1 , t, Assumptions t Reals

Out[14]= t
t3

3

The outputs above are simpler than that produced by a straight integration:
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In[15]:= t4 2 t2 1 t

Out[15]=

t 1 t2 2
3 t2

3 1 t2

This output is different since 1 t2 2
 does not necessarily simplify to 1 t2  when t  is a complex

number. Every complex number has two square roots, and the radical indicates the principal  square
root (see Exercise 2). More examples that make use of Assumptions are provided in the next section.

It is also worth noting that there are numerous “special” functions that cannot be defined in terms
of  such  elementary  functions  as  polynomials,  trigonometric  functions,  inverse  trigonometric  func-
tions, logarithms, or exponential functions, but that can be described in terms of antiderivatives of
such  functions.  If  you  use  Mathematica  to  integrate  a  function  and  see  in  the  output  something
you’ve  never  heard  of,  chances  are  that  Mathematica  is  expressing  the  integral  in  terms  of  one  of
these special functions. Here’s an example:

In[16]:= Cos x2 x

Out[16]=
2

FresnelC
2

x

Let’s inquire about FresnelC:

In[17]:= ? FresnelC

FresnelC z gives the Fresnel integral C z .

Don’t be intimidated by such output.  It simply says the integral you asked for cannot be expressed
in terms of elementary functions. It  expresses  the answer in terms of another such integral, one so
famous that it has its own name (like FresnelC). Augustin Fresnel (1788–1827) was a French mathe-
matical  physicist  who studied  this  and similar  integrals  extensively.  There is  a  FresnelS  integral  as
well, it uses sine in place of cosine.

There is also the possibility that Mathematica  will evaluate an integral producing an expression that
involves  complex numbers.  Such numbers  can be  recognized by  the  presence  of  the  character   in

the output, which denotes 1 . In cases such as this, the Assumptions option that we mentioned

earlier  will  not  eliminate the  appearance  of  complex  numbers.  Rather,  they  are  necessary  (even in
the real case) to express the antiderivative.
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In[18]:= x x3 x

Out[18]=

2 x x3 x3 2 2 1 3 4 EllipticE ArcSinh 1 1 4 x , 1 EllipticF ArcSinh 1 1 4 x , 1

1 x2

5 x

In this example we also have an appearance by the special function EllipticE. What’s that?

In[19]:= ? EllipticE

EllipticE m gives the complete elliptic integral E m .

EllipticE , m gives the elliptic integral of the second kind E m .

If that’s  not helpful,  don’t  worry about it.  Suffice it  to say that there is a whole universe of special
functions out there, and you’ve just caught a glimpse of a small piece of it. The bottom line is that
integration  is  difficult  by  nature.  Mathematica  doesn’t  know  whether  or  not  you  hold  a  Ph.D.  in
mathematics.  It  does the best  it  can.  You shouldn’t  be surprised or discouraged if  you occasionally
get a bit more back than you expected.

Another  possibility  when  integrating  is  that  Mathematica  simply  won’t  be  able  to  arrive  at  an
answer.  Alas,  some integrals  are  just  that  way.  In  such situations,  the output  will  match the input
exactly:

In[20]:= ArcTan t t

Out[20]= ArcTan t t

Exercises 5.10
1. Evaluate the following integrals. Note that in many cases a constant a appears in the integrand, 

and that in all cases the integration is with respect to the variable u. The results mimic many 
standard integral tables (such as those found on the inside jackets of calculus textbooks).

a. a2 u2 u

b. a2 u2 u

c. a2 u2 3 2
u

d. u 2 a u u2 u
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e. sec u u

2. Show that for c 1  it is not the case that c2 c, then find another complex number c for 

which the equation does not hold.

3. Consider the family of functions ln x, ln x 2, ln x 3, ln x 4, etc.

a.  Integrate ln x n for integers n 1 through 5, identify the pattern, and propose a general 
formula for ln x n x for any positive integer n.

b. Using pencil and paper, prove that the derivative (with respect to x) of the expression in your 
formula reduces to ln x n. You will then have proved that your formula is correct. Congratula-
tions—you have just discovered and proved a mathematical theorem!

4. Integrate the following functions, and display the results in a table. Can you find a pattern 
(among the latter outputs) that will enable you to predict the value of the next integral?

x, x 1 , x 1 1 , x 1 1 1 ,

x 1 1 1 1 , x 1 1 1 1 1

5.11 Definite and Improper Integrals

Computing Definite Integrals

You’ve probably already found the  button on the BasicMathInput  palette. Use the  key to

move from one placeholder to the next:

In[1]:=
2

2

1 x2 x

Out[1]=
4

3

The  same  comments  made  in  the  last  section  with  regard  to  grouping  parentheses  apply  here  as
well; in particular, if you push the palette button before typing the expression you wish to integrate,
it  may  be  necessary  to  put  grouping  parentheses  around  that  expression  when you  type  it.  If  you
prefer typing to palettes,  the command you need is Integrate. It works as it did in the last section,
but  the  second  argument  is  now  an  iterator  giving  the  name  of  the  variable  and  the  bounds  of
integration. 
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In[2]:= Integrate 1 x2, x, 2, 2

Out[2]=
4

3

Here is  a  plot  where the value of  the  definite integral corresponds  to the signed area  of  the shaded
region—the area of the portion above the x axis minus the area of the portion below it:

In[3]:= Plot 1 x2, x, 2, 2 , Filling Axis

Out[3]=

As in the previous section, the option setting Assumptions may be used, or equivalently an integral
created using the palette may be placed as the second argument to the Assuming command. Here’s
an example:

In[4]:= Clear x, n ;

n

n

Abs x x

Out[5]= n Abs n

In[6]:= Assuming n 0,
n

n
Abs x x

Out[6]= n2

A little thought will reveal that the first output above is exactly right; if n  is a negative number the
absolute value is an absolute necessity.

There  is  a  special  class  of  function  that  needs  discussion.  We  saw  in  Sections  3.2  and  4.4  that

Mathematica’s  cube  root  function x1 3  (internally  this  is  Power[x, 1/3])  differs  from the  elementary
cube root function found in most calculus texts when x is negative. For instance, most calculus texts

use  the  real  cube  root  function,  for  which  8 1 3 2.  In  Mathematica,  the  principal  cube  root

function is  used  instead,  so that  8 1 3 1 3 ,  a  complex number.  In  Section 3.2  an alternate

power  command called realPower  was  defined that  can  be  used  to  emulate  the  real-valued power
functions commonly encountered in such a course. We restate that definition here for convenience:
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In[7]:= realPower x , p : If x 0 && Element p, Rationals ,

If OddQ Denominator p , If OddQ Numerator p ,

Power x, p , Power x, p , Power x, p , Power x, p

If you need to integrate a power function where the power is a rational number with odd denomina-
tor,  and  the  bounds  of  integration  include  negative  numbers,  you  need  to  know  which  power
function to use. If you wish to use the real-valued power function (the one typically used in calculus
courses),  you  will  want  to  use  this  realPower  command  rather  than  Mathematica’s  default  Power

command. The  following example  illustrates  the  difference (note  that  the  antiderivative  of  x 2 3  is

3 x1 3):

In[8]:= Integrate x 2 3, x, 4, 0 ComplexExpand

Out[8]=
3

21 3

3 3

21 3

In[9]:= Integrate realPower x, 2 3 , x, 4, 0

Out[9]= 3 22 3

Note  also  that  with  complex  numbers  lingering  just  below  the  surface,  it  should  be  a  comfort  to
know that  in  many cases  they  simply  cannot arise.  For  instance,  if  one has  real  numbers  for  both
upper  and lower  bounds  (so  that  one is  integrating over  a  real  interval),  and  in  addition the  inte-
grand  is  a  real-valued  function  on  this  interval,  then  the  definite  integral,  if  it  converges,  must
evaluate to a real number. Even if Mathematica produces complex output (the symbol  can be seen),
you can be  assured  that  the  expression  is  using  complex  numbers  to  represent  a  real  number.  For
example, the following output must  be a real number,  as the integrand is real—it’s  the square root
of  a  positive  real  number  throughout  the  interval  0, 1 .  In  the  next  section  we  discuss  how  to
approximate such knotty numbers as the output below.

In[10]:=
0

1

t4 2 t2 2 t

Out[10]=
1

3
5 2 1 EllipticE ArcSinh

1

2 2
,

2 1 EllipticF ArcSinh
1

2 2
,
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Riemann Sums
Mathematica  makes  the  computation  of  Riemann  sums  easy  with  the  Sum  command.  Sum  works
very much like Table, but rather than producing a list of the specified items, it adds them:

In[11]:= Sum i2, i, 1, 4

Out[11]= 30

This is  the same as adding 1 4 9 16. The advantage of using the Sum  command for such addi-
tions can be seen when you want to add lots of numbers:

In[12]:= Sum i2, i, 1, 100

Out[12]= 338350

There  is  a  palette  version  of  the  Sum  command on  the  BasicMathInput  palette  that  allows  you  to

employ the traditional summation notation. Use the  button, and then use the  key to move

from one placeholder to the next: 

In[13]:=
i 1

100

i2

Out[13]= 338350

The  cells  below  provide  an  example  of  a  Riemann  sum  computation  for  a  function  f  over  the

interval from a to b, with n  rectangles and f  evaluated at the left endpoint of each subinterval. The

first cell sets the values of f , a, and b. It needs to be edited every time you move from one example

to the next:

In[14]:= Clear f, a, b, n, x, x, i ;

f x : Cos x ;
a 0;

b 2;

The  following  cell  makes  use  of  the  values  above  and  defines  the  appropriate  Riemann  sum  as  a
function of n. It does not need to be edited as you move from one example to the next: 

In[18]:= x n :
b a

n
;

x i , n : a i x n ;

leftRsum n :
i 0

n 1

f x i, n x n N
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The function x returns the width of an individual rectangle—it is a function of n because its value
depends on the number of subintervals between a and b. The function x returns the right endpoint
of the ith subinterval. It is a function of both i and n. Lastly, leftRsum returns the Riemann sum for
your function between a and b, with the function evaluated at the left endpoint of each subinterval.
It  is  a  function of n,  for  its  value  depends  on the  number  of  rectangles  used.  Here is  the Riemann
sum for cos x  on the interval 0, 2  with 50 rectangles:

In[21]:= leftRsum 50

Out[21]= 0.937499

Note that  the values  of  i  in the  summation (from 0 to  n 1) dictate  that f  be  evaluated at  the left

endpoint of each subinterval. To compute a Riemann sum with f  evaluated at the right endpoint of

each subinterval you can change the bounds of the summation to 1 and n:

In[22]:= rightRsum n :
i 1

n

f x i, n x n N

In[23]:= rightRsum 50

Out[23]= 0.880853

Either sum can be viewed as an approximation to the definite integral of f  over the interval from a

to b. It is not hard to modify the process to generate other approximations such as those employing
the  trapezoidal  rule  or  Simpson’s  rule.  The  approximations  tend  to  get  better  as  the  value  of  n
increases, as the following table shows: 

In[24]:= data Table n, rightRsum n , n, 50, 400, 50 ;

dataWithHeadings Prepend data, "n", "Riemann Sum" ;

Text Grid dataWithHeadings, Alignment Left, Dividers Center, 2 True

Out[25]=

n Riemann Sum
50 0.880853
100 0.895106
150 0.899843
200 0.902209
250 0.903628
300 0.904574
350 0.905249
400 0.905755

Curious about the actual value of the integral?
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In[26]:=
0

2
f x x N

Out[26]= 0.909297

Here is  a plot where the value of the definite integral corresponds to the signed area of the shaded
region:

In[27]:= Plot f x , x, 0, 2 , Filling Axis

Out[27]=

Computing Improper Integrals
Just use  as a bound of integration. You may use the  button on the BasicMathInput  palette, or

type inf , or type the word Infinity:

In[28]:=
x2

x

Out[28]=

In[29]:= Integrate
1

x3
, x, 1,

Out[29]=
1

2

Of  course  there  is  the  possibility  that  an  improper  integral  will  fail  to  converge.  Mathematica  will
warn you in such circumstances:

In[30]:=
1

1

x
x

Integrate::idiv : Integral of
1

x
does not converge on 1, .
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In[31]:=
1

1

x
x

Integrate::idiv : Integral of
1

x
does not converge on 1, .

Out[31]=
1

1

x
x

Other  improper  integrals  occur  when  a  function  has  a  vertical  asymptote  between  the  upper  and
lower bounds. It is dangerous to evaluate these integrals by hand using the Fundamental Theorem of
Calculus  without  carefully  considering  the  behavior  of  the  function  at  the  asymptotes.  Luckily,
Mathematica is very careful and will tell you when these integrals do and do not converge. 

In[32]:=
2

2 1

x2
x

Integrate::idiv : Integral of
1

x2
does not converge on 2, 2 .

Out[32]=
2

2 1

x2
x

In[33]:= Plot
1

x2
, x, 2, 2 , PlotRange 0, 500 , Filling Axis

Out[33]=

Mathematica  is rightly reporting that the shaded area (were it not cut off at y 500) is infinite. Here

is another example: 
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In[34]:=

2

2
Csc x x

Integrate::idiv : Integral of Csc x does not converge on
2

,
2

.

Out[34]=

2

2
Csc x x

In[35]:= Plot Csc x , x,
2

,
2

, PlotRange 100, Filling Axis

Out[35]=

Students  frequently  argue  that  this  integral  should  be  zero  due  to  the  symmetry  apparent  in  the
graph.  But  Mathematica  is  returning  the  correct  answer.  Since  the  area  to  the  left  of  x 0  is  not
convergent the entire integral is divergent.

In[35]:= Clear b ;

Limit
2

b

Csc x x, b 0, Direction 1

Out[36]=

In the  previous  examples  the  functions had  asymptotes  at  x 0.  In  the  next  example  the  interval
also contains a vertical asymptote but the integral converges.

In[37]:=
3

5 1

x 3
x

Out[37]= 2 2
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In[38]:= Plot
1

x 3

, x, 3, 5 , PlotRange 0, 10 , Filling Axis

Out[38]=

Defining Functions with Integrals
It is possible to define functions by integrating dummy variables:

In[39]:= Clear a, t, v, s
a t : 32

In[41]:= v t :
0

t

a u u 20

In[42]:= s t :
0

t

v u u 4

In[43]:= s t

Out[43]= 4 20 t 16 t2

You simply need to remember that Integrate always returns the antiderivative whose constant term
is  equal  to  zero,  so  constants  need  to  be  included  in  such  definitions.  The  function  v t  above
satisfies the condition that v 0 20, while the function s t  satisfies s 0 4. In the example above,
s t  represents  the  height  in  feet  above  ground  level  of  an  object  after  t  seconds  if  it  is  thrown
vertically upward at an initial velocity of 20 feet per second and from an initial height of 4 feet; v t
is the velocity of the object at time t, and a t  is the object’s acceleration. Air resistance is ignored.

Some Integrals Are Bad
And as is the case with indefinite integrals, there are functions for which there is no way to express
an antiderivative in closed form, and consequently no way to evaluate the definite integral exactly: 

In[44]:=
0

1
ArcTan t t

Out[44]=
0

1

ArcTan t t
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Even in cases like this, you will often be able to get numerical approximations:

In[45]:= N

Out[45]= 0.629823

The next section explores a better way to get numerical approximations of definite integrals.

Exercises 5.11

1. Make the following sketch of the graph of f x 1

x2 , and evaluate the definite integral of f  from 

x 1 to x 3.

2. Evaluate the following definite integrals.

a.
0

1

t4 2 t2 1 t

b.
0

1

t4 2 t2 2 t

c.
0

cos t 10 t

3. Use a Riemann sum to approximate the second of the three integrals in the previous exercise.

a. Use n 100 subintervals and left endpoints.

b. Use n 100 subintervals and right endpoints.

c. Use n 100 subintervals and midpoints.

d. Make a Plot of f x x4 2 x2 2  and use it to decide which of the three approximations is 
best.
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4. Your opponent chooses a number p strictly between 0 and 1. Your opponent then chooses a 

second number q strictly between 2  and 2. To defeat your opponent, find a strictly increasing 

function on the domain 0, 1  passing through 0, 0  and 1, 1  whose arc length exceeds q, and 

whose integral over 0, 1  is 

a. smaller than p.

b. greater than p. 

Hint: Enter the following input:

Manipulate

Plot

1 a
a

x 0 x a

a
1 a

x 1 2 a
1 a

a x 1
, x, 0, 1 , PlotRange 0, 1 , 0, 1 ,

AspectRatio Automatic, Filling Axis , a, .75 , 0, 1

5. Under what conditions on a real number n does the integral 
0
1xn x converge?

6. Assuming that a and b are real numbers, under what specific conditions on a and b can the 

integral 
a
b

t t be evaluated? What is does it evaluate to in this case?

7. Use Integrate to illustrate the two parts of the fundamental theorem of calculus.

8. Use D and Integrate to calculate a formula for d

dx a
g x f t t.

9. Sometimes Integrate will return output involving Root objects. Enter 
0
1 t3 3 t 1 t into 

Mathematica, and regardless of the output, explain why this integral must converge to a real (as 
opposed to a complex) number.

5.12 Numerical Integration
Mathematica  has  a  numerical  integration  command,  NIntegrate,  which  is  extremely  effective  at
providing  numerical  approximations  to  the  values  of  definite  integrals,  even  those  (indeed,
especially those) that the Integrate command can’t handle: 

In[1]:= Integrate ArcTan t , t, 0, 1

Out[1]=
0

1

ArcTan t t
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In[2]:= NIntegrate ArcTan t , t, 0, 1

Out[2]= 0.629823

Here’s  an  example  where  using  Integrate  followed  by  N  gives  a  different  result  than  NIntegrate.
That can happen! In almost all cases, NIntegrate will provide a better result. Here, the antiderivative
provided  by  Integrate  involves  complex  numbers,  and  when  approximated  by  N  a  very  small
imaginary component (at the threshold of machine precision) persists.

In[3]:=
0

1
t4 2 t2 2 t

Out[3]=
1

3
5 2 1 EllipticE ArcSinh

1

2 2
,

2 1 EllipticF ArcSinh
1

2 2
,

In[4]:= N

Out[4]= 1.67571 7.40149 10 17

NIntegrate does a better job:

In[5]:= NIntegrate t4 2 t2 2 , t, 0, 1

Out[5]= 1.67571

NIntegrate  accepts arguments exactly as Integrate  does for handling definite integrals. There is no
palette  version  of  NIntegrate.  It  is  important  to  understand  that  NIntegrate  works  in  an  entirely
different way  from Integrate.  Rather than attempt  symbolic  manipulation, NIntegrate  produces  a
sequence of numerical values for the integrand over the specified interval, and uses  these values to
produce  a  numerical  estimate  for  the  integral.  Although the  algorithm used  is  quite  sophisticated,
you can think of NIntegrate  as producing something analogous to a Riemann sum. The good news
is  that  you now have  at  your  disposal  a  means  for  estimating some very  messy  integrals.  The bad
news  is  that  NIntegrate  can  occasionally  produce  poor  estimates.  Just  as  the  Plot  command  can
miss  features  of  the  graph  of  a  function that  are  “narrow”  relative  to  the  domain over  which it  is
plotted, NIntegrate can miss such features also. Problems arise if points near the narrow feature are

not sampled (for a discussion of the Plot command in this context, see Section 3.2 on page 55). Here
is an example:
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In[6]:= Plot x 2 2
, x, 5, 5 , PlotRange 0, 1 , Filling Axis

Out[6]=

Here  is  the  same  function  plotted  over  a  much  larger  domai o  much  larger  that  the  bump
disappears from view:

In[7]:= Plot x 2 2
, x, 5000, 5000 , PlotRange 0, 1 , Filling Axis

Out[7]=

4000 2000 0 2000 4000

0.2

0.4

0.6

0.8

1.0

In[8]:= NIntegrate x 2 2
, x, 5, 5

Out[8]= 1.77243

When NIntegrate is applied to this function over the larger domain, it also misses the bump:

In[9]:= NIntegrate x 2 2
, x, 5000, 5000

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near x

19.3758 . NIntegrate obtained 1.9195034084772933` and

1.1959812980962528` for the integral and error estimates.

Out[9]= 1.9195
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The warning messages provide a hint that something might not be right, yet an incorrect output is
generated.  This  phenomenon  can  be  even  worse  if  the  integrand  has  discontinuities,  for  in  such
situations the actual definite integral may not have a real value, yet NIntegrate may report one. The
following integral, for example, does not converge:

In[10]:= NIntegrate
1

x 1 x 2
, x, 0, 3

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near x

1.99809 . NIntegrate obtained 7.353131720000712` and

10.725954889917318` for the integral and error estimates.

Out[10]= 0. 101

Taking the  right  and left  limits  of  the  exact  integral  as  the  upper  and lower  bounds,  respectively,
approach 1 demonstrates nonconvergence:

In[11]:= Limit
0

b 1

x 1 x 2
x, b 1, Direction 1

Out[11]=

In[12]:= Limit
a

3 2 1

x 1 x 2
x, a 1, Direction 1

Out[12]=

If  you  know  that  the  integrand  has  discontinuities  in  the  interval  over  which you  are  integrating
(vertical asymptotes in the graph are a giveaway), you can instruct NIntegrate to look out for them
by  replacing  the  iterator  {x,xmin,xmax}  with  {x,xmin,x1,x2,x3,…,xmax},  where  x1, x2, x3, …  are  the

points  of  discontinuity.  Sometimes  this  won’t  help,  certainly not  in  those  cases  when the  integral
does not have a real value:
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In[13]:= NIntegrate
1

x 1 x 2
, x, 0, 1, 2, 3

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near x 83 .

NIntegrate obtained 146.633 and 28.765504119209318` for the integral and error estimates.

Out[13]= 146.633

But if the integral has a value, NIntegrate will usually produce a very good approximation to it:

In[14]:= NIntegrate
1

x 1 24
, x, 0, 1, 3

Out[14]= 4.82843

In[15]:= Plot
1

x 1 24
, x, 0, 3 , PlotRange 0, 14 , Filling Axis

Out[15]=

One  strategy  to  help  you  determine  if  NIntegrate  is  providing  an  accurate  answer  is  to  examine
carefully  the  plot  of  the  integrand.  If  the  numerical  value  provided by  NIntegrate  appears  consis-
tent  with  the  area  in  the  plot,  but  you  still  have  your  doubts,  you  might  try  breaking  up  your
integral as a sum of integrals over various disjoint intervals whose union is the interval over which
you are integrating. Place short intervals around any discontinuities:

In[16]:= Assuming b 1,
0

b 1

x 1 24
x

Out[16]= 2 2 1 b
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In[17]:= Limit , b 1, Direction 1

Out[17]= 2

In[18]:=
1

3 1

x 1 24
x

Out[18]= 2 2

In[19]:= Assuming a 1,
a

3 1

x 1 24
x

Out[19]= 2 2 1 a

In[20]:= Limit , a 1, Direction 1

Out[20]= 2 2

In[21]:= NIntegrate
1

x 1 24
, x, 0, 0.9

NIntegrate
1

x 1 24
, x, 0.9, 1, 1.1 NIntegrate

1

x 1 24
, x, 1.1, 3

Out[21]= 4.82843

Good. This is consistent with the previous output. As usual, it is up to you to test and decide on the
efficacy of results produced with the computer.

Exercises 5.12

1. Use NIntegrate to produce a numerical approximation to 
0
1 t3 3 t 1 t.

5.13 Surfaces of Revolution
Surfaces of revolution are often difficult for calculus students to visualize. The command Revolution
Plot3D  makes  this  easy  once  you  understand  how  it  works.  RevolutionPlot3D  always  rotates  the
curve about the vertical axis. A student in single variable calculus can interpret this as rotation about

the y-axis. The plot below shows y x2, for the x values 0 through 2, rotated about the y-axis a full

360 degrees.
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In[1]:= RevolutionPlot3D x2, x, 0, 2

Out[1]=

Once you have generated a plot you can grab it  with your mouse and rotate it  to view it from any
angle. With a little work you can use this feature to display a curve as if it has been rotated about the 
x-axis. To do this it helps to fully understand the command RevolutionPlot3D.  The basic syntax for
this  command  is  RevolutionPlot3D[f(t),{t,tmin,tmax}].  This  generates  a  surface  with  height  f t  at

radius t  rotated about the vertical axis. To get a plot of the surface generated by revolving y x2 for

the x values 0 through 2 about the x-axis you must first generate the graph below:

In[2]:= RevolutionPlot3D y , y, 0, 4

Out[2]=

 Now use your mouse to orient the surface so that it appears  to be a revolution about the x-axis as
below: 
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We used y  above since it is the inverse of x2. As x goes from 0 to 2, y goes from 0 to 4.

Sometimes it  can be easier to visualize a  surface by cutting it  open and peering inside. You can do

this by plotting it on less than a full revolution. The plot below shows the revolution of both x2 and

x  about  the  y-axis  through  only  270  degrees.  Note  that  we  need  to  use  radians  to  indicate  our

angle of revolution.

In[3]:= RevolutionPlot3D x , x2 , x, 0, 1 , , 0,
3

2
, ViewPoint 4, 5, .5

Out[3]=

Consider the region shaded below.

In[4]:= Plot 2 x2, x , x, 0, 1 , Filling 1 2

Out[4]=
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To display the surface formed when this region is revolved about the y-axis enter:

In[5]:= RevolutionPlot3D 2 x2 , x , x, 0, 1 , ,
4

,
3

2

Out[5]=

To  display  the  surface  formed  when  this  region  is  revolved  about  the  x-axis  enter  the  command
below, and then maneuver the plot appropriately with your mouse.

In[6]:= RevolutionPlot3D
y 0 y 1

2 y 1 y 2
, y, 0, 2 , , 0,

3

2
, BoxRatios 1

Out[6]=

Exercises 5.13
1. Use RevolutionPlot3D to plot y sin x  on the interval 0 to 4  and revolve the surface through 

330 degrees.

2. Use RevolutionPlot3D to plot a sphere of radius 6.
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5.14 Sequences and Series
Convergent  sequences  can  be  investigated  with  the  Limit  command  (discussed  in  Section  5.1  on

page  196).  To  type   you  can  either  type  Infinity  or  find  the  symbol   in  the  BasicMathInput

palette, or just type inf .

In[1]:= Limit
n

nn
, n

Out[1]= 0

In[2]:= Limit n Sin n , n

Out[2]=

There are several powerful commands for dealing with series.  The first and most simple is the Sum
command, discussed earlier in this chapter—see the subsection “Riemann Sums” in Section 5.11 on

page 230. If you haven’t yet used this command (to compute a Riemann sum, for instance), it’s not
hard. It works like the Table command, but rather than creating a list of the specified items, it adds
them.

The really amazing thing about this  command is  that  it  can accept  as  a  bound,  meaning that it
can find the value of an infinite series. 

In[3]:=
n 1

1

n2

Out[3]=

2

6

In[4]:= N

Out[4]= 1.64493

Of course some series fail to converge, and others have solutions that Mathematica will not be able to
find. Solutions to the latter type can be approximated by summing a large number of terms. Here is
a series that doesn’t converge:

In[5]:=
n 1

Cos n

Sum::div : Sum does not converge.

Out[5]=
n 1

Cos n

Here is an example of a series involving an independent variable x. Note that the nonpalette version
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of  the  Sum  command  is  more  flexible  than  its  palette  counterpart  in  that  the  iterator  can  be

adjusted to skip certain terms. Here is the sum 1 x2 x4 :

In[6]:= Clear x ;

Sum xn, n, 0, , 2

Out[7]=
1

1 x2

In this  example Mathematica  reported a solution,  but did not specify  which values  of  the  indepen-
dent variable  x  are  acceptable.  In  particular,  note  that  if  x 1 the  denominator will  be  zero,  and
the  solution  makes  no  sense.  Mathematica  reports  the  solution  you  most  probably  need  in  such
situations, but it is up to you to determine the region of convergence, those values of the independent
variable for which the solution is valid. In the example above, x must fall strictly between 1 and 1
for the solution to be valid.

The  Mathematica  command  that  more  or  less  undoes  what  the  Sum  command  does  is  the  Series
command.  Here  are  the  first  few  terms  (those  with  degree  not  exceeding five)  of  the  Taylor  series

expansion of 1 1 x2 :

In[8]:= Series
1

1 x2
, x, 0, 5

Out[8]= 1 x2 x4 O x 6

The Series command requires two arguments. The first is the function for which you wish to find a
power series expansion. The second is a special iterator, one whose form is variable, x0, power}, where

variable  names  the  independent  variable,  x0  is  the  point  about  which  the  series  is  produced,  and

power specifies the highest power of the variable to be included in the output. The output includes a
big O term, indicating that there are more terms in the series than those being shown. To get rid of
the big O term, use the Normal command:

In[9]:= Normal

Out[9]= 1 x2 x4

You can produce a  plot  of  this  polynomial  and the function. Note that  the polynomial provides  a
good approximation to the function when x is near x0 (x0 0 in this example):
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In[10]:= Plot ,
1

1 x2
, x, 1, 1

Out[10]=

1.0 0.5 0.5 1.0

1.5

2.0

2.5

3.0

3.5

4.0

Note that you can get the formula for a Taylor series expansion for an arbitrary function (such as f )

about an arbitrary point (such as a). Here are the first four terms of such a series:

In[11]:= Clear a, f ;
Normal Series f x , x, a, 3

Out[12]= f a a x f a
1

2
a x 2 f a

1

6
a x 3 f 3 a

In  fact  it  is  a  simple  matter  to  design  a  custom  command  for  generating  Taylor  polynomials  of
degree n for the function f  about the point x0:

In[13]:= taylor f , x , x0 , n : Normal Series f x , x, x0, n

For example,  we can now easily  compute the eleventh-degree Taylor polynomial for the sine func-
tion, expanded around the point x 0:

In[14]:= taylor Sin, x, 0 , 11

Out[14]= x
x3

6

x5

120

x7

5040

x9

362880

x11

39916800

Here is another example. The fourth-degree Taylor polynomial for cos x , expanded about the point
x

4
, is given below:

In[15]:= taylor Cos, x,
4

, 4

Out[15]=
1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

4
x

4

24 2

And here is a list of the first five Taylor polynomials for cos x , again expanded about the point x
4
:
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In[16]:= Table taylor Cos, x,
4

, n , n, 5 Column

Out[16]=

1

2

4
x

2

1

2

4
x

2

4
x

2

2 2

1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

4
x

4

24 2

1

2

4
x

2

4
x

2

2 2

4
x

3

6 2

4
x

4

24 2

4
x

5

120 2

Finally, let’s produce a sequence of graphics, one for each of the first twelve Taylor polynomials for
the cosine function,  expanded about the point 

4
.  Each plot  will  show the cosine function in light

gray,  with  the  Taylor  polynomial  in  black,  and  with  the  point  
4
, cos

4 4
, 1

2
,  highlighted.

The  individual  frames  are  displayed  in a  Grid  below,  and should  be  read  sequentially  from left  to
right across the rows to increase the degree of the Taylor polynomial.

In[17]:= tlist Table taylor Cos, x,
4

, n , n, 12 ;

In[18]:= plots Table Plot f, Cos x , x, 2 , 2 ,

PlotRange 3, Ticks None, PlotStyle Black, Darker Gray ,

Epilog PointSize .02 , Point
4

,
1

2
, f, tlist ;

In[19]:= GraphicsGrid Partition plots, 3

Out[19]=
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In a live session the following command is fun. Simply click on a tab to see the Taylor polynomial of
that degree.

In[23]:= TabView Table k plots k , k, 12 , ImageSize Automatic

Out[23]=

1 2 3 4 5 6 7 8 9 10 11 12

Exercise 3 below shows how to use the Thread command to construct this TabView.

Exercises 5.14

1. Find the limit of the sequence: 2

1
, 3

2

2
, 4

3

3
, 5

4

4
, …

2. Find the limit of the sequence: 1

1

1

2
, 1

2

2

3

2

4
, 1

3

3

4

3

5

3

6
, 1

4

4

5

4

6

4

7

4

8
, …

3. The Thread command can be used to take two lists such as {1,2,3} and {a,b,c}, and thread some 
command f  through them to produce the list {f[1,a],f[2,b],f[3,c]}. It is particularly handy when 

constructing a TabView object, where the syntax requires a list of the form {label1 item1,label2
item2,label3 item3,...}. In this case, f  is the command Rule (the FullForm of 1 a is 

Rule[1,a]). Thread is discussed in greater detail in Section 8.4 on page 403.

a. Enter the following inputs to see Thread in action.

Thread exampleFunction 1, 2, 3 , a, b, c

Thread Rule 1, 2, 3 , a, b, c

Thread 1, 2, 3 a, b, c

b. Use Thread rather than Table to create the TabView shown at the end of this section.

4. Create a TabView that displays the first 10 distinct Taylor polynomials for sin x  expanded about 
x0 0.
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6
Multivariable Calculus

6.1 Vectors
A standard notation for a vector in the plane is a coordinate pair, such as 2, 5 . This represents the
vector that has its tail at the origin and its head at the point with x coordinate 2 and y coordinate 5.

Another standard notation for  this  vector  is  2 i 5 j.  Here i  and j  denote the  unit  vectors  in  the  x

and y directions, respectively.

In  Mathematica,  a  vector  in  the  plane  is  expressed  as  a  list  of  length  two,  such  as  2, 5 .  Vector
addition and scalar multiplication work exactly as you would expect:

In[1]:= 2, 5 17, 4

Out[1]= 19, 1

In[2]:= 4 2, 5

Out[2]= 8, 20

In[3]:= i 1, 0 ;

j 0, 1 ;

2 i 5 j

Out[5]= 2, 5

Higher-dimensional vectors are simply given as longer lists. Here is the sum of two vectors in three-
space:

In[6]:= 3, 57, 8 57, 3,
4

Out[6]= 60, 60, 8
4



The Dot Product and the Norm
The dot product  of  the  vectors  u1, u2, …, un  and v1, v2, …, vn  is  the scalar  u1 v1 u2 v2 un vn.

You can compute the dot product  of vectors with Mathematica  by placing a dot (a period) between
them:

In[7]:= u1, u2 . v1, v2

Out[7]= u1 v1 u2 v2

In[8]:= 3, 4 . 4, 5

Out[8]= 32

You can calculate the norm (i.e., the length or magnitude) of a vector using the Norm command.

In[9]:= Norm 3, 4

Out[9]= 5

In[10]:= Norm u1, u2

Out[10]= Abs u1
2 Abs u2

2

For real vectors, this is equivalent to the square root of the dot product of the vector with itself.

In[11]:= Simplify Norm u1, u2 , u1, u2 Reals

Out[11]= u1
2 u2

2

In[12]:= u1, u2 . u1, u2

Out[12]= u1
2 u2

2

We have made use of  subscripts  to  display  general  vectors.  This  looks  very nice.  However,  it
can get you into trouble if you try to give such a vector a name. You should never enter input

such as u u1, u2 . This will throw Mathematica into an infinite loop. See Exercise 4.

The dot product  can also be employed to find the angle between a pair  of  vectors.  You may recall

that the cosine of the angle  between vectors u and v is given by the formula:

cos u v

u v

where u  denotes the norm of u. You can find the angle (in radians) between vectors like this:
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In[13]:= u 2, 4 ; v 9, 13 ;

ArcCos
u.v

Norm u Norm v
N

Out[14]= 2.0724

Conversion to degrees requires multiplying by the conversion factor 180 , or dividing by the built-in

constant Degree:

In[15]:= Degree

Out[15]= 118.74

Rendering Vectors in the Plane
One can display vectors using the graphics primitive Arrow.

In[16]:= Graphics Arrow 0, 0 , 1, 1 , Arrow 0, 0 , 2, 1 , Axes True

Out[16]=

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Arrow accepts as its argument a list of two ordered-pairs. These represent the coordinates of the tail
and  head  of  the  arrow,  respectively.  Note,  however,  that  you  can  double  click  on  any  arrow  in  a
graphic, then drag either end of the arrow to a new location. Or you can drag the middle portion of
the arrow and move the entire thing to a new location, preserving its length and direction.

But  working  programmatically  (rather  than  grabbing  and  dragging)  is  advantageous  for  attaining
precise positioning. Here we illustrate a vector sum:
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In[17]:= Graphics

Arrow 0, 0 , 1, 2 , Arrow 0, 0 , 2, 1 ,

Gray, Arrow 1, 2 , 3, 3 , Arrow 2, 1 , 3, 3 ,

Red, Arrow 0, 0 , 3, 3

, PlotRange 0, 3 , 0, 3 , Axes True

Out[17]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

And why not drop it into a Manipulate? This has a Locator at the head of each of the two compo-
nent vectors in the sum, so that you can drag either of those vectors by the head to move them. It’s
actually easier to make sense of the structure of the input when it’s written in this general form:

In[18]:= Manipulate Graphics

Arrow 0, 0 , u , Arrow 0, 0 , v ,

Gray, Arrow u, u v , Arrow v, u v ,

Red, Arrow 0, 0 , u v

, PlotRange 3, Axes True, Ticks None ,

u, 1, 2 , Locator, Appearance None ,

v, 2, 1 , Locator, Appearance None

Out[18]=
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There  is  no  primitive  Arrow  object  available  for  3D  graphics,  although  the  VectorFieldPlot
package has a command called VectorFieldPlot3D which will draw 3D arrows for vector fields. 

This is discussed  in  Section  6.5  on  page  327.  The  issue  with  3D  arrows  is  the  arrowheads,

which should be cones, and as of version 6 of Mathematica, there is no primitive for cones.

The Cross Product
Imagine a pair of vectors u  and v  in three-space drawn with their tails at the same point.  The cross

product of u and v  is a normal vector to the plane determined by u and v, whose magnitude is equal

to the area of the parallelogram determined by u and v.

You can harness Mathematica to take the cross product of a pair of vectors with the command Cross.
Here that command is used to give the general formula for the cross product:

In[19]:= Cross u1, u2, u3 , v1, v2, v3

Out[19]= u3 v2 u2 v3, u3 v1 u1 v3, u2 v1 u1 v2

And here it is used to find the cross product of a specific pair of vectors:

In[20]:= Cross 1, 3, 5 , 7, 9, 11

Out[20]= 12, 24, 12

You can also use  the small  button on the BasicMathInput  palette  to calculate cross  products.  It’s

the button under the  near the middle of the palette. Don’t confuse it with the larger  button to

its left; that one is used for ordinary (component-wise) multiplication.

In[21]:= 1, 3, 5 7, 9, 11

Out[21]= 12, 24, 12

Exercises 6.1
1. Find an exact expression for the sine of the angle between the vectors 2, 1, 1  and 3, 2, 1 .

2. Look up the Sign command in the Documentation Center. Explain how to use it with the dot 
product to determine whether the angle between a pair of vectors is acute, right, or obtuse.

3. The dot product, we learned in this section, is implemented in Mathematica in infix form by 
placing a period between a pair of vectors. There is (as always) a “square bracket” version of this 
command. It is called Dot.

a. Use Dot to take the dot product of u1, u2, u3  with v1, v2, v3 .

b. The dot product is the most common example of an inner product. Mathematica has another 
command called Inner that can be used to create alternate inner products. Verify that the 
input Inner[Times, {u1, u2, u3}, {v1, v2, v3}, Plus] gives the same output as that produced in 
part a.
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4. Near the beginning of this section, we did several computations using general vectors of the form 
u1, u2 . The subscripts are obtained from the keyboard by typing, for instance, u _  1. The 

FullForm of the resulting expression is Subscript[u,1]. Many textbooks will (in the course of a 

proof, for instance) write, “Let u u1, u2 .” While this is a convenient notation, it cannot be 
replicated in Mathematica. If you were to enter the input u u1, u2 , what would happen? The 
same bad thing will happen if you enter the more simple input u u1. Try it, then explain 
what’s going on. As the blues singer Kelly Joe Phelps put it, “It’s not so far to go to find trouble.”

5. Use Mathematica to verify the parallelogram law in 3: For any pair of vectors u and v, 

u v
2

u v
2

2 u
2

2 v
2
 .

6.2 Real-Valued Functions of Two or More Variables
One  certainly  may  define  a  real-valued  function  with  two  or  more  variables  exactly  as  we  did  in
Chapter 5, but with an additional variable, like this:

In[1]:= f x , y : Sin x2 y2

However,  we will  generally find it  more convenient (for reasons that  will  come to light shortly) to
make a simple assignment like this instead:

In[2]:= Clear f, x, y ;

f Sin x2 y2 ;

A function of three variables is dealt with similarly. Note that it is important to Clear any variables
that have previously been assigned values.

In[4]:= Clear g, x, y, z ;

g x2 y3 3 x z;

Multiletter variable names
When defining a function, remember to leave a space (or to use a *) between variables 
that you intend to multiply, otherwise Mathematica will interpret the multiletter combina-
tion as a single variable. For example, note the space between the x and the z in the 
definition of the function g above. Said another way, one may use multiletter variable 
names when defining a function; for example, names such as x1, x2, and so on.

To  evaluate  a  function  defined  in  this  fashion,  one  uses  replacement  rules.  For  instance,  here  is

f 0, 4 :
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In[6]:= f . x 0, y 4

Out[6]=
1

2

It may be useful to Simplify the output on some occasions. Here is f 1 , 1 :

In[7]:= f . x 1 , y 1

Out[7]= Sin 1 2 1 2

In[8]:= Simplify

Out[8]= 0

Plotting Functions of Two Variables with Plot3D
The  plotting  of  functions  of  two  variables  can  be  performed  with  the  command Plot3D.  It  works
pretty much like Plot, but you will need an iterator specifying the span of values assumed by each of
two  variables.  The plot  will  be shown over  the rectangular domain in the plane determined by the
two iterators. When first evaluated, the positive x direction is to the right along the front of the plot,
the positive y direction is to the back along the side of the plot, and the positive z direction is up:

In[9]:= Plot3D f, x, 2, 2 , y, 1, 1

Out[9]=

Grab such a plot with your mouse and drag. This will  rotate the image so that you can see it  from
any vantage point you like. Hold down the  key while you drag and you can zoom in and out.
It’s a beautiful thing.

Note that  it  is  a  simple  matter  to  produce a sketch of any vertical  cross-section  (sometimes called a
trace) for such a plot in either the x or y direction. Simply set one of the two variables to a numerical

value and make a Plot using the other as the independent variable.
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In[10]:= Plot f . y 0, x, 2, 2 , AxesLabel x, z

Out[10]=

2 1 1 2
x

0.5

0.5

1.0

z

In[11]:= Plot f . x 0, y, 1, 1 , AxesLabel y, z

Out[11]=

1.0 0.5 0.5 1.0
y

0.8

0.6

0.4

0.2

z

We’ll  discuss  how  one  can  use  the  Mesh  option  to  superimpose  these  traces  onto  the  original
Plot3D of f  in the subsection “Controlling the Mesh Lines” on page 265. See Exercise 6 for more on

cross-sections.

Options for 3D Plotting Commands
The information in this section applies to any plotting command that generates a three-dimensional
graphic.  Such  commands  include  Plot3D,  ContourPlot3D,  ParametricPlot3D,  SphericalPlot3D,
and RevolutionPlot3D.

There  are  a  host  of  options  available that will allow you to tweak the output  of  these  plotting
commands in some incredible ways. Among the options that are essentially the same as the familiar
options for  Plot  (see Section 3.3,  see page  59) are  such common settings  as  AxesLabel ,  PlotLabel,
PlotPoints, MaxRecursion and PlotRange. Other options, such as Mesh and MeshFunctions, work
in a similar manner as they do in Plot, but now everything is one dimension higher. In short, they
will take some getting used to. 

PlotPoints, MaxRecursion, and Toggling Mesh to None or All
Note first that the simple setting Mesh None will make the mesh lines disappear, while the setting
Mesh All  will  display  all  of  the  polygons  produced  by  Plot3D  to  render  the  image.  While  the
former is  a  popular  setting that  produces a  beautiful  image (especially when PlotPoints  is  bumped
up from its default value, usually 15), the latter provides a window into the means by which Plot3D
does its stuff:
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In[12]:= Table Plot3D Sin x y , x, , , y, , , Mesh m, MaxRecursion 4 ,

m, None, All

Out[12]= ,

Note that  like Plot,  Plot3D  uses  an adaptive algorithm that  recursively  subdivides  the surface  into
smaller  polygons  in  areas  where  the  surface  bends  more  sharply.  PlotPoints  settings  control  how
many  equally  spaced  points  are  initially  sampled  in  each  direction  (so  a  setting  of  50  will  force
Mathematica to sample 50 50 2500 points in the domain). MaxRecursion controls the number of
recursive  subdivisions  permitted  to  fine-tune  the  image.  Large  settings  for  these  options  produce
beautiful images,  but  may  result  in perceptibly  slower  rendering times,  and will  definitely produce
larger file sizes when the notebook is saved. See Exercise 2.

Adjusting the PlotRange and BoxRatios
As  is  the  case  with  the  Plot  command,  Plot3D  will  sometimes  clip  the  highest  peaks  and  lowest
valleys  in  a  plot  in  order  to  render  the  middle  portions  with  greater  detail.  The  option  setting
ClippingStyle None  will  remove  the  default  horizontal  planes  placed  into  the  clipped  areas.
ClippingStyle may also be set to a Graphics directive such as Opacity[.5]. 

In[13]:= Table Plot3D
x2 y5 x5 y2

100
x2 y2

, x, 3, 3 , y, 3, 3 , ClippingStyle k ,

k, Automatic, None

Out[13]= ,

The setting PlotRange All  will force Mathematica  to show the entire graph. Notice, however, that
the bump in the middle of the plot vanishes from view due to the compression of the vertical axis: 
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In[14]:= Plot3D
x2 y5 x5 y2

100
x2 y2

, x, 3, 3 , y, 3, 3 , PlotRange All

Out[14]=

The option BoxRatios  determines the relative dimensions of the bounding box. The simple setting
BoxRatios 1  will  produce a cubical bounding box, while the setting BoxRatios Automatic  will
scale the bounding box so that all axes have the same scale; it is analogous to the option AspectRa
tio  used in two-dimensional plots.  Be careful to not use this setting in cases such as the one above
where one axis would be dramatically longer than the others. A setting such as BoxRatios {1, 1, 2}
will produce a bounding box whose horizontal sides are the same length, but whose vertical dimen-
sion is twice as long. 

In[15]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 , BoxRatios Automatic

Out[15]=

The Bounding Box, Axes, and ViewPoint
The options  Boxed  and Axes  can be  used to  modify  the appearance  of  the  bounding box and the
tick marks that appear on three of its sides. By default, both options are set to True. To remove the
bounding box  entirely,  set  both  to  False.  Axes  can  also  be  set  to  a  list,  as  in  the  input  below,  to
display only selected axes. The option AxesEdge  controls in each of the three coordinate directions
which of the four parallel sides of the bounding box in that direction are to be used as an axis. Each
coordinate direction is specified by an ordered pair. For example, if the vertical or z axis is given the
specification {-1, -1}, that means that the z axis will be placed on the left (negative x side) and front
(negative y side).
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In[16]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 , BoxRatios Automatic, Boxed False,

Axes False, False, True , AxesEdge Automatic, Automatic, 1, 1

Out[16]=

ViewPoint  specifies  the  position  in  space  (relative  to  the  center  of  the  graphic)  from  which  it  is
seen.  The  setting  {0, 0, 4},  for  instance,  will  give  a  view  from  above,  while  the  setting  {3, 0, 1}  will
yield a vantage point that is three units from the origin along the positive x axis, and one unit up. 

In[17]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 ,

BoxRatios Automatic, ViewPoint 3, 0, 1

Out[17]=

The ColorFunction
The option ColorFunction controls the coloring of the graph. Any of the color gradients available in
the ColorData  archive may  be  used  to  color a  plot.  Type  and enter  ColorData["Gradients"]  for  a
listing of available gradients. For instance, here we color a plot using a color gradient reminiscent of
that used in topographical maps, where low regions are colored dark blue, middle regions are shaded
with greens and browns, and peaks are white.

In[18]:= Plot3D x2 y2
, x, 3, 3 , y, 3, 3 , BoxRatios Automatic,

ColorFunction "DarkTerrain", PlotRange All, Mesh None

Out[18]=
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ColorFunction allows you to assume complete control over the manner in which color is applied to
a surface. With a bit of work, the graph of a function may be colored (using any color gradient you
like) according to the values of any other function. See Exercise 1.

PlotStyle and Lighting
The PlotStyle and Lighting options provide another means of adjusting the appearance of the plot.
In Mathematica,  three-dimensional graphics are colored according to a  physical lighting model that
includes  intrinsic  surface  color,  the  diffusive  and  reflective  properties  of  the  surface,  and  lighting
(you may control the position, direction, and color of as many light sources as you like). By default,
the polygons used to construct a Plot3D are all white; the lighting is responsible for all the color you
see. You have total control over the output, and the possibilities are truly staggering.

PlotStyle is used to set the intrinsic surface color, and to specify the surface’s diffusive and reflective
properties.  Several  settings  may  be  simultaneously  given  by  wrapping  them  within  the  Directive
command.  There  are  three  potential  specifications.  A  straight  color  or  opacity  setting  like  Blue
and/or  Opacity[.5]  can  be  given  to  set  the  intrinsic  surface  color  or  transparency.  This  color  will
interact with the lighting. A Glow setting, such as Glow[Red], will emanate from the surface irrespec-
tive of the color of the lighting. Finally, a Specularity setting determines the diffusive and reflective
properties of the surface. Specularity  can accept two arguments. The first determines the color and
amount of diffusion added to reflected light. A numerical value of 1 is equivalent to a color setting
of White;  in this case 100% of the light is reflected back, with no alteration to its color other than
that determined by  the surface’s  color.  The second argument  controls  the  shininess  of  the surface.
Typical  values  range  from  1  (dull)  to  50  (shiny).  The  setting  Specularity[White, 20]  is  good  for
creating the appearance of an anodized metallic surface:

In[19]:= Plot3D x Cos x y , x, 3, 3 , y, 2, 2 , Mesh None, MaxRecursion 4,

PlotStyle Directive Lighter Red , Specularity White, 20

Out[19]=

Lighting  can  be  adjusted  in  numerous ways. The default setting includes both  ambient  light  and
four colored light sources (although if an explicit ColorFunction  is specified, white light from these
same  sources  will  be  used  instead).  The  simple  setting  Lighting "Neutral"  will  force  the  use  of
white rather than colored lights.

262 Multivariable Calculus



In[20]:= Plot3D x Cos x y , x, 3, 3 , y, 2, 2 , Mesh None, MaxRecursion 4,

PlotStyle Directive Lighter Red , Specularity White, 20 , Lighting "Neutral"

Out[20]=

The  Documentation  Center  page  for  Lighting  gives  information  on  setting  ambient,  spot,  and
directional light sources. We note here that the setting Lighting {{"Ambient", White}}  is similar to
the setting  Lighting "Neutral",  but  the  latter  includes  point  light  sources  and the  shadows  they
create, and so is better at giving the illusion of depth. The former may be appropriate when a special
ColorFunction is used and shadows would interfere with the information that the color provides.

Plotting over Nonrectangular Regions
The  option  RegionFunction  can  be  used  to  specify  the  precise  region  over  which  a  function  is
plotted.  For  instance,  you may  wish  to  plot  a  function over  a  circular  domain for  purely  aesthetic
reasons. The cone provides a classic example; it simply looks better with a circular domain:

In[21]:= GraphicsRow

Plot3D x2 y2 , x, 1, 1 , y, 1, 1 , Plot3D x2 y2 , x, 1, 1 , y, 1, 1 ,

RegionFunction Function x, y , x2 y2 1 , ImageSize 280

Out[21]=

The setting Function x, y , x2 y2 1  is a pure function. It takes a coordinate pair x, y  as input,

and returns True precisely if that coordinate pair lies within the unit circle. In the resulting plot, the
domain is restricted to the region where this region function returns True. The setting in the second
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plot  above  could  also  have  been  given  in  the  shorter  form  RegionFunction 12 22 1 & .

Pure functions are discussed in Section 8.4.

RegionFunction  also  provides  an  excellent  means  of  plotting  over  a  punctured  domain.  A  classic

example is the function f x, y x 2 y

x4 y2 , which is not defined at the origin, and which has an essential

discontinuity  there.  We  remove  a  small  disk  from  the  center  of  the  domain,  and  get  a  beautiful
image:

In[22]:= Plot3D
x2 y

x4 y2
, x, 1, 1 , y, 1, 1 ,

RegionFunction Function x, y , .1 x2 y2 ,

Mesh None, MaxRecursion 4

Out[22]=

Another approach to controlling the domain is by defining a function whose value outside a desired
region is 0. This is easily accomplished using a Piecewise  function. The Exclusions  option is useful
for  specifying  discontinuities;  note  how  easy  it  is  to  specify  the  locus  of  discontinuities  as  an
equation.

In[23]:= f
x2 y2 x2 y2 1

0 x2 y2 1
;

In[24]:= Plot3D f, x, 1, 1 , y, 1, 1 , Exclusions x2 y2 1

Out[24]=
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Controlling the Mesh Lines
We’ve already discussed the two most common settings for the Mesh option, namely None and All.
But much more is  possible.  Set  Mesh  to a  positive  integer, say  20,  and there will  be 20 mesh lines
displayed (rather than the default  15) in each direction. Set  Mesh  to a  list  of two numbers,  say  {5,
30}, and there will be five mesh lines (bounding six regions) corresponding to fixed x values, and 30
mesh lines corresponding to fixed y values.

In[25]:= Plot3D
x2 y

x2 y2
, x, 3, 3 , y, 3, 3 , Mesh 5, 30

Out[25]=

You may also specify lists  of  specific x  and y  values  through which mesh lines should be drawn. A

Mesh setting of 2 , 1  will place one line at x 2 and another at y 1. This is useful for visually

approximating the partial derivatives at the point 2, 1 . See Exercise 6.

In[26]:= Plot3D
x2 y

x2 y2
, x, 3, 3 , y, 3, 3 , Mesh 2 , 1

Out[26]=

The MeshFunctions  option gives you even more control over the rendering of the mesh lines on a
plot. The price of this versatility is that it will take a bit of practice to master. Your efforts here will
be well rewarded, so read on. 

By default there are two mesh functions, one for all the mesh lines corresponding to fixed x values,
and  one  for  the  perpendicular  collection  of  mesh  lines  corresponding  to  fixed  y  values.  Together

they form the familiar grid pattern that graces your Plot3D outputs. This default specification, if you
were to manually type it, would read:
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MeshFunctions Function x, y, z , x , Function x, y, z , y

It is a list of two pure functions, where each takes three arguments (one for each coordinate position
in  three-space).  Equivalently,  this  default  setting  could  be  entered  using  the  common  shorthand
notation: MeshFunctions 1 &, 2 & . Pure functions are discussed in Section 8.4. In any event,
mesh lines  will  be  drawn where  the  mesh  functions  assume  constant  values;  by  default  15  evenly
spaced values will be displayed. 

Perhaps  the  most  common  non-default  setting  is  the  following,  which  places  level  curves  on  your
plot. That is, the third variable (we usually call it z) is set to 15 evenly spaced values within the plot
range, and a mesh curve is added to the surface at each of these values.

In[27]:= Plot3D x2 y3 x 1 2 y, x, 2, 2 , y, 2, 2 , MeshFunctions 3 &

Out[27]=

But  of  course  you  may  define any  mesh function you like.  Here  we  place  mesh lines  according to
distance from the  origin.  In  other  words,  each mesh line lies  on the  surface of  an invisible  sphere
centered at the origin.

In[28]:= Plot3D x2 y3 x 1 2 y, x, 2, 2 , y, 2, 2 ,

MeshFunctions Norm 1, 2, 3 & , PlotRange 2, BoxRatios 1

Out[28]=
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MeshShading
The MeshShading  option allows the regions between mesh lines to receive specific color directives.
The  setting  for  this  option  has  the  same  list  structure  as  MeshFunctions;  if  there  is  a  list  of  two
mesh functions, you should have a list of two MeshShading settings. Each such setting is itself a list
of  directives  that  will  by  used  cyclically  (if  this  list  is  shorter  than  the  number  of  mesh  regions).
Setting the Lighting to "Neutral"  will replace the default colored lighting with white lights, so that
the colors specified in the MeshShading are accurately rendered. For instance:

In[29]:= Plot3D x2 y3 x 1 2 y, x, 3, 3 , y, 3, 3 , BoxRatios 1, MeshFunctions 3 & ,

Mesh 20, MeshShading Red, Green , Lighting "Neutral"

Out[29]=

Set it to a list whose length matches the Mesh setting, and you will cycle precisely once through the
list of directives. To utilize an entire color gradient, keep in mind that each color gradient function
(such as ColorData["StarryNightColors"]) is defined on the domain 0 t 1. 

In[30]:= Plot3D x2 y3 x 1 2 y, x, 3, 3 , y, 3, 3 , BoxRatios 1,

MeshFunctions 3 & , Mesh 20, MeshShading

Table ColorData "StarryNightColors" t , t, 0, 1, 1 20 , Lighting "Neutral"

Out[30]=

The output above is very similar to that produced with the setting ColorFunction "StarryNightCol
ors"  (and  no  MeshShading  or  Lighting  specifications).  When  MeshShading  is  used,  each  band
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between mesh lines is uniformly shaded. When ColorFunction  is used, the shading varies continu-
ously.  When  there  are  multiple  MeshFunctions,  the  colors  will  criss-cross  like  a  woven  basket.
Below we use the default MeshFunctions setting {#1&,#2&}:

In[31]:= Plot3D x2 y3 x 1 2 y, x, 3, 3 , y, 3, 3 , BoxRatios 1, Mesh 20,

MeshShading Yellow, Green , Black, White , Lighting "Neutral"

Out[31]=

Plotting Functions of Two Variables with ContourPlot
Another commonly used command for visualizing a real-valued function of two variables is Contour
Plot. A contour plot is a two-dimensional rendering of a three-dimensional surface. Imagine looking
at  the  surface  from  above  and placing  contour  lines  (also  called level  curves)  on  the  surface,  each
one a curve that is level in the sense that its height above (or below) the x-y  plane is constant. The

contour plot is much like a topographical map—it consists of the vertical projections of the contour
lines onto the x-y plane. By default, ContourPlot will produce ten regions separated by nine contour

lines.  The  regions  will  be  shaded  according  their  relative  height  above  (or  below)  the  x-y  plane;

darker regions are lower and lighter regions are higher.

We’ve  previously  used  ContourPlot  to  plot  solutions  of  equations  (such  as  sin x cos y 0).  This

solution  curve  can  be  regarded  as  a  single  contour  line  for  the  function  f x, y sin x cos y .  To

produce a full contour plot, use ContourPlot in a manner identical to that of Plot3D. Here we see a
ContourPlot  and a Plot3D  of  the  same function, showing the  same level  curves  and using  similar
shading:
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In[32]:= ContourPlot Sin x Cos y , x, 3, 3 , y, 3, 3 ,

Plot3D Sin x Cos y , x, 3, 3 , y, 3, 3 , MeshFunctions 3 & ,

Mesh 9, ColorFunction "LakeColors", ViewPoint 0, 1, 2 ,

Boxed False, Axes True, True, False

Out[32]= ,

Perhaps the most commonly used option setting is Contours. Set it to a positive integer, say 20, and
you will see 20 contour lines in the resulting plot. Set it  to a specific list of values and you will see
the contour lines through precisely those z values. If this list has a single value (as in the second plot
below), you will essentially be viewing the set of solutions to an equation in two variables. 

In[33]:= GraphicsRow ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , Contours 20 ,

ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , Contours 4 ,

ContourPlot 1 x2 1 y2 4, x, 2, 2 , y, 2, 2

Out[33]=

The ContourShading  option works much like the MeshShading  option for Plot3D.  Note that you
may set  this  option  to  None.  As  was  the  case  with  Plot3D,  the  ColorFunction  may  be  set  to  any
named color gradient.
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In[34]:= GraphicsRow

ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , ContourShading Red, Blue ,

ContourPlot 1 x2 1 y2 , x, 2, 2 , y, 2, 2 , ContourShading None ,

ContourPlot 1 x2 1 y2 , x, 2, 2 ,

y, 2, 2 , ColorFunction "IslandColors"

Out[34]=

Also important are PlotPoints and MaxRecursion, which (as you might expect) can be employed to

improve image quality.  The function x2

1 x y
 is not defined along the line y x 1, and ContourPlot

with  its  default  settings  has  difficulty  in  the  vicinity  of  this  line.  The  Exclusions  option  provides
another means of dealing with such discontinuities.

In[35]:= GraphicsRow ContourPlot
x2

1 x y
, x, 2, 2 , y, 2, 2 ,

ContourPlot
x2

1 x y
, x, 2, 2 , y, 2, 2 , PlotPoints 30, MaxRecursion 3 ,

ContourPlot
x2

1 x y
, x, 2, 2 , y, 2, 2 , Exclusions y x 1

Out[35]=

ContourPlot  accepts  many  of  the  same  options  as  Plot3D.  Exceptions  are  those  options  that  are
specific to two-dimensional graphics.  For instance,  one uses  AspectRatio  rather  than BoxRatios  to
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adjust  the  relative  dimensions  of  a  graphic  produced  by  ContourPlot.  Note  that  by  default,  a
ContourPlot will be square.

In[36]:= GraphicsRow ContourPlot Sin x Cos y , x, 6, 6 , y, 3, 3 ,

ContourPlot Sin x Cos y , x, 6, 6 , y, 3, 3 , AspectRatio Automatic

Out[36]=

ContourPlot will embed tooltips into its output. Position the tip of the cursor along a level curve to
see the value of the z coordinate for all points on that curve. The option setting ContourLabels
Automatic can be used to place these values directly onto the graphic.

In[37]:= ContourPlot Sin x Cos y , x, 1, 1 , y, 1, 1 , ContourLabels Automatic

Out[37]=

While  the  placement  of  these  labels  on  the  graphic  is  handled  automatically,  the  appearance  and
indeed the function used to calculate each label can be adjusted. Below we use the default function
value (displaying the z coordinate at the point x, y ), but make the text gray in a six point font. We

also use the ColorData["LightTerrain"] color gradient.
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In[38]:= ContourPlot Sin x Cos y , x, 1, 1 , y, 1, 1 ,

ContourLabels Style Text 3, 1, 2 , GrayLevel .3 , 6 & ,

ColorFunction "LightTerrain"

Out[38]=

It is not difficult to write a command that will place a key next to a ContourPlot, as in the example
below. See Exercise 5.

If  MeshFunctions  are  specified  along with  specific  Mesh  values,  the  curves  where  these  functions
are equal to the respective Mesh    values  will  be  displayed.  By  default,  there  are  no  MeshFunctions
displayed  in  a  ContourPlot  (this  is  different  from  Plot3D,  where  the  default  MeshFunctions  are
{#1&, #2&},  which produces the familiar grid pattern). Mesh  curves will  be superimposed on top of

the level curves. Here, for instance, we display the ellipse x2 2 y2 1 in yellow on the plot:
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In[39]:= ContourPlot x2
4 x y

y2 1
, x, 2, 2 , y, 2, 2 , MeshFunctions 12 2 22 & ,

Mesh 1 , MeshStyle Directive Thick, Yellow

Out[39]=

And here we display in dashed red the  curve where the partial  derivative with respect  to x  is  zero,
and in yellow the curves (lines in this case) where the partial derivative with respect to y is equal to

zero. The critical points (and hence all maxima and minima for the function being plotted) occur at
the intersection points of these curves.

In[40]:= ContourPlot x2
4 x y

y2 1
, x, 2, 2 , y, 2, 2 ,

MeshFunctions Function x, y, z , 2 x
4 y

1 y2
,

Function x, y, z ,
8 x y2

1 y2 2

4 x

1 y2
, Mesh 0 , 0 ,

MeshStyle Directive Thick, Dashed, Red , Directive Thick, Yellow

Out[40]=
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In general,  it’s  not  a  bad idea when including multiple  MeshFunctions  to  use  MeshStyle  to make
the first  one Dashed  or  Dotted.  That  way,  if  two  curves  happen  to  coincide,  the  top  curve  won’t
completely obscure the bottom one.

Plotting Level Surfaces with ContourPlot3D
Just  as  ContourPlot  may  be used  to  plot a  curve  defined by  an equation in two variables  (such as

the  circle  x2 y2 1,  as  outlined  in  Section  3.7  on  page  97)  by  using  an  equation  as  its  first

argument,  the  ContourPlot3D  command may be  used to  plot  a  surface defined by  an equation in
three variables. Behold:

In[41]:= ContourPlot3D x2 y2 z2 1, x, 1, 1 , y, 1, 1 , z, 1, 1

Out[41]=

And just  as  ContourPlot  may  be  used  to  render  a  collection of  level  curves  for  a  function of  two
variables  (as  discussed  in the  previous  subsection of  this  chapter),  ContourPlot3D  may  be  used  to
render a collection of level surfaces for a function of three variables:

In[42]:= ContourPlot3D x2 y2 z2, x, 1, 1 , y, 1, 1 ,

z, 1, 0 , BoxRatios 2, 2, 1 , Contours 5, Mesh None

Out[42]=

Note  that  three  iterators  are  needed,  one  for  each  of  the  three  coordinate  variables.  Virtually  all
options are either identical to those of Plot3D,  or can be surmised from those of ContourPlot. For
instance, the Contours  option works  just  as  it  does in ContourPlot.  The ContourStyle  option can
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be used to assign style  directives to each level  surface.  The ColorFunction  option can also be used
for this purpose; the plot on the right uses a ColorData gradient specified by ColorFunction.

In[43]:= GraphicsRow ContourPlot3D x2 y2 z2, x, 1, 1 , y, 1, 1 ,

z, 1, 0 , BoxRatios 2, 2, 1 , Contours 5, Mesh None,

Axes False, ContourStyle Red, Orange, Yellow, Green, Blue ,

ContourPlot3D x2 y2 z2, x, 1, 1 , y, 1, 1 , z, 1, 0 , BoxRatios 2, 2, 1 ,

Contours 5, Mesh None, Axes False, ColorFunction "Pastel"

Out[43]=

Here is a plot of the surface cos2 x sin2 y 1 sin z:

In[44]:= ContourPlot3D Cos x 2 Sin y
2

1 Sin z , x, 0, 2 , y,
2

,
5

2
, z, 0, 2 ,

Mesh None, ContourStyle Directive Brown, Specularity White, 10

Out[44]=

Constructing 3D plots of solids (rather than surfaces) can be accomplished with RegionPlot3D. This
command is discussed in the subsection “Finding Bounds of Integration and Plotting Regions in the
Plane and in Space” on page 294.
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Graphics3D Primitives
Just  as  one  can  use  the  Graphics  command  to  “manually”  construct  a  two-dimensional  graphic
from primitive  Point,  Line,  Polygon,  and Text  objects,  one can use  the  Graphics3D  command to

build  three-dimensional  graphics.  The  Graphics  command  was  discussed  in  Section  3.9  on  page

114. In most cases you will use  higher level commands such as Plot3D to generate 3D images. But

there may come a time when you want to create a graphic from scratch, or to add a simple sphere or
cylinder to the output of a command such as Plot3D.  This section provides a basic introduction to
such endeavors.

The primitive  3D objects  that can be used to build a  Graphics3D  are  many.  They include familiar
objects  such  as  Point,  Line,  Polygon,  and  Text,  and  new  ones  such  as  Cuboid,  Cylinder,  and
Sphere. Here are a few simple examples to get you started:

In[45]:= Graphics3D Sphere 0, 0, 0 , 3

Out[45]=

In[46]:= Graphics3D Sphere 0, 0, 0 , 3 , Sphere 0, 0, 4 , 2

Out[46]=
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In[47]:= Graphics3D

Sphere 0, 0, 0 , 3 ,

Sphere 0, 0, 4 , 2 ,

Sphere 0, 0, 6.5 , 1 ,

Cylinder 0, 0, 7.5 , 0, .5, 9 , .8 ,

Cylinder 0, 0, 7.5 , 0, .03, 7.6 , 1.5 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2

, Boxed False

Out[47]=

The  overall  situation  is  completely  analogous  to  that  for  building  Graphics.  The  single  argument
given  to  Graphics3D  is  (most  simply)  a  primitive  or  a  list  of  primitives.  Here  we’ve  used  only
Sphere  and Cylinder  primitives.  Sphere  takes two arguments:  the coordinates of its  center,  and its
radius.  Cylinder  also  takes  two  arguments.  The  first  is  a  list  of  two  points:  the  endpoints  of  its
central axis. The second is its radius.

As is the case with Graphics, one can also apply one or more directives to each primitive. Directives
are used to customize the appearance of  the individual primitive elements,  and may include color,
opacity, and/or specularity settings.  To apply a directive to any primitive object,  replace the primi-
tive with the list  {directive,  primitive}.  If  more than one directive is  to be applied,  wrap them in the
Directive command, as in Directive[Red, Opacity[.8]].
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In[48]:= Graphics3D

Directive Red, Opacity .7 , Sphere 0, 0, 0 , 3 ,

Opacity .5 , Sphere 0, 0, 4 , 2

Out[48]=

One may also include Graphics3D  option settings, such as Boxed False. Many of these have been

discussed in Section 6.2.  In particular,  the setting Lighting "Neutral"  can be used to turn off the
colored  lights  that  are  used  by  default  when  rendering  a  Graphics3D.  This  will  provide  a  more
honest rendering of any colors you introduce. Note that by default, surface primitives will be white
(they appear  colored because  of  the  colored lights).  Here,  for  instance,  we make a  white  snowman
with black hat and arms:

In[49]:= Graphics3D

Sphere 0, 0, 0 , 3 ,

Sphere 0, 0, 4 , 2 ,

Sphere 0, 0, 6.5 , 1 ,

Lighter Black ,

Cylinder 0, 0, 7.5 , 0, .5, 9 , .8 ,

Cylinder 0, 0, 7.5 , 0, .03, 7.6 , 1.5 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2 ,

Cylinder 2, 0, 4 , 4, 0, 5 , .2

, Boxed False, Lighting "Neutral"

278 Multivariable Calculus



Out[49]=

It is common to combine a Graphics3D  with the output from one of the plotting commands. Here
we use  Plot3D  to  render  the  function f x, y xy  with  MeshFunctions  set  to  measure  distance on

the surface to the point 0, 0, 3 . The plot is colored according to this distance using MeshShading.
We  use  Graphics3D  to  place  a  small  green  sphere  at  the  point  0, 0, 3 .  We  put  the  two  images
together with Show:

In[50]:= Show Plot3D x y, x, 3, 3 , y, 3, 3 , PlotRange 4, 4 ,

Lighting "Neutral", BoxRatios 1, Mesh 15,

MeshFunctions Function x, y, z , x2 y2 z 3 2 ,

MeshShading Table ColorData "TemperatureMap" 1 k , k, 0, 1, 1. 15 ,

Graphics3D Darker Green , Sphere 0, 0, 3 , .15

Out[50]=
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When  using  commands  such  as  Plot  that  produce  Graphics  (as  opposed  to  Graphics3D)
output,  it  is  common to  add an  Epilog  option  to  place  Graphics  primitives  directly  on  the
image.  This  makes  the  use  of  Show  unnecessary.  While  Epilog  may  also  be  used  with  com-
mands  such  as  Plot3D,  it  cannot  be  used  to  place  3D  primitives  on  the  plot  (such  as  the
Sphere  above). So in a 3D setting, Show  is the best way to add primitive Graphics3D  objects
to an image.

Differentiation of Functions of Two or More Variables

Calculating Partial Derivatives
You  can  calculate  the  partial  derivatives  of  a  function  of  two  or  more  variables  with  the  D
command. This works just as in Chapter 5:

In[51]:= Clear f, x, y ;

f Sin x2 y2 ;

In[53]:= D f, x

Out[53]= 2 x Cos x2 y2

In[54]:= D f, y

Out[54]= 2 y Cos x2 y2

Use replacement rules to evaluate a derivative at a particular point:

In[55]:= . x 0, y

Out[55]= 2

Alternatively,  you  can  calculate  partial  derivatives  with  the  palette  version  of  the  D  command by

using  the   button  on  the  BasicMathInput  palette.  The  subscript  indicates  the  variable  with

respect to which the derivative should be taken. Move from one placeholder to the next with the 
key.

In[56]:= x f

Out[56]= 2 x Cos x2 y2

If you use the palette version of D directly on a function such as x2 2 xy, it is best to first type the

function  expression,  then  highlight  it,  and  then  push  the  palette  button.  If  you  deviate  from  this
convention  by  pushing  the  palette  button  first,  be  sure  to  put  grouping  parentheses  around  the
function expression so that you don’t end up only differentiating the first summand:
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In[57]:= x x2 2 x y

Out[57]= 2 x 2 x y

In[58]:= x x2 2 x y

Out[58]= 2 x 2 y

To find the second partial derivative 
2f

x2 , you can use the D command exactly as in Chapter 5:

In[59]:= D f, x, 2

Out[59]= 2 Cos x2 y2 4 x2 Sin x2 y2

To find the mixed second partial derivative 
2f

x y
, simply do this:

In[60]:= D f, x, y

Out[60]= 4 x y Sin x2 y2

Alternatively, you may use the ,  key on the BasicMathInput palette:

In[61]:= x,x f

Out[61]= 2 Cos x2 y2 4 x2 Sin x2 y2

In[62]:= x,y f

Out[62]= 4 x y Sin x2 y2

Derivatives beyond the second require the D command:

In[63]:= D f, x, 3 , y, 4

Out[63]= 8 x3 12 Cos x2 y2 16 y4 Cos x2 y2 48 y2 Sin x2 y2

12 x 48 y2 Cos x2 y2 12 Sin x2 y2 16 y4 Sin x2 y2

The Gradient
The gradient of  a  function of  two or  more variables  is  a  vector whose  components are  the various
partial derivatives of the function. For instance, for a function f  of two variables, the gradient is the

vector x f , y f . In Mathematica one can simply do this:

In[64]:= x f, y f

Out[64]= 2 x Cos x2 y2 , 2 y Cos x2 y2
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There  is  no  built-in  command  for  producing  gradients,  but  if  you  need  to  make  extensive  use  of
them it is not hard to create your own:

In[65]:= grad f , vars List : Table v f, v, vars

This command takes two arguments. The first is the function whose gradient you wish to compute.
The second is the list of variables used in defining the function. For example:

In[66]:= grad x2 y3, x, y

Out[66]= 2 x y3, 3 x2 y2

In[67]:= grad
x1

2 x2
3 x4

4

x3
5

, x1, x2, x3, x4

Out[67]=
2 x1 x2

3 x4
4

x3
5

,
3 x1

2 x2
2 x4

4

x3
5

,
5 x1

2 x2
3 x4

4

x3
6

,
4 x1

2 x2
3 x4

3

x3
5

You can evaluate the gradient at a specific point in the domain using replacement rules.

In[68]:= x f, y f . x 0, y

Out[68]= 0, 2

The following Manipulate will sketch a gradient vector directly on the ContourPlot for a function.

Initially  it  shows  the  gradient  evaluated  at  the  point  1

2
, 1

2
.  The  tail  of  the  gradient  vector  is  a

Locator;  you  can  simply  click  on  the  graphic  to  move  it  to  a  new  position,  or  you  can  drag  it
around. The geometric properties of the gradient quickly become apparent: it is perpendicular to the
level curve through its tail, and it points uphill.

In[69]:= Manipulate Module x, y ,

ContourPlot x2 y2
x y, x, 1, 1 , y, 1, 1 , Contours 20,

Epilog Dynamic Arrow

pt, pt y 2 x2 y2
x, x 2 x2 y2

y . x pt 1 , y pt 2 ,

pt, .5, .5 , Locator,

Appearance Graphics Red, Disk , ImageSize 5
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Out[69]=

There  are  several interesting features in  this  Manipulate.  Notice that  the first  argument (the
thing we are manipulating) is a Module. Module  is used to localize variables. In this case, the
variables x  and y  are insulated from any assignments made to them elsewhere in the session.

Module and other scoping commands are discussed in Section 8.6 on page 424. Secondly, note

that the Epilog to the ContourPlot  is wrapped in Dynamic. While not strictly necessary, this
has the beneficial  effect of  forcing only  the  arrow to  update as  the Locator  is  moved, rather
than  having  the  ContourPlot  itself  (which  does  not  change)  get  re-rendered  every  time  the
Locator  is  moved.  This  makes  the  action  more  “zippy.”  For  more  information,  search  for
“Advanced Manipulate Functionality” in the Documentation Center and follow the link to the
tutorial of that name. Finally, note that we use the Appearance  option to change the appear-
ance of the Locator from its default crosshair icon to a simple red dot. This option allows you
to make any Locator look exactly the way you like.

Given a function of two variables, there is a simple means for simultaneously plotting an array of its
gradient vectors over a rectangular domain, and for superimposing such a plot with a ContourPlot

of the function. See  the  subsection “Plotting a  Two-Dimensional Vector Field” in Section 6.5, page

325, for a discussion of the GradientFieldPlot command.

You can take a  directional derivative  by taking the  dot product  of the gradient with a unit vector in
the indicated direction. Here, for example, is an expression representing the directional derivative of

the function f x, y x2 y3 in the direction of the vector 3 i j:

In[70]:= grad x2 y3, x, y .
3, 1

Norm 3, 1

Out[70]=
3 x2 y2

10
3

2

5
x y3

To evaluate the directional derivative at a specific point in the domain, use replacement rules:
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In[71]:= . x 2, y 3

Out[71]= 108
2

5

Optimization
There  are  numerous  methods  for  finding  extreme  values  of  multivariate  functions.  It  is  certainly
possible  to  mimic  the  basic  techniques  presented  in  a  standard  calculus  course,  with  Mathematica
doing the  heavy lifting when the algebra gets tough.  We outline such an approach in this  section.
There  are  also  the  built-in commands  Maximize,  Minimize,  NMaximize,  NMinimize,  FindMaxi
mum,  and  FindMinimum,  which  can  be  extremely  useful,  but  which  also  have  inherent
limitations.  We’ll  begin  with  these  built-in  commands,  and  then  discuss  the  traditional  approach
using critical points and second derivatives.

The commands Maximize, Minimize, NMaximize, and NMinimize (first introduced in Section 5.6

on page  212)  all  use  the  same  syntax;  understand  one  and you  understand  them all.  In  the  most
simple setting,  where your  function is  not  overly complicated and happens  to  have a  single extre-
mum in its largest natural domain, these commands make light work of optimization:

In[72]:= Maximize 85 16 x 4 x2 4 y 4 y2 40 z 4 z2, x, y, z

Out[72]= 32, x 2, y
1

2
, z 5

If an extreme value does not exist, you can expect to see this sort of thing:

In[73]:= Minimize 85 16 x 4 x2 4 y 4 y2 40 z 4 z2, x, y, z

Minimize::natt : The minimum is not attained at any point satisfying the given constraints.

Out[73]= , x , y
33

10
, z

8

5

These commands attempt to find global  extrema. They can be adapted to hunt for local  extrema by
adding constraints. Simply use a list as the first argument, where the second member of the list is an
equation or inequality (or any logical combination of these):

In[74]:= f 12 y3 4 x2 10 x y;

Minimize f, 1 x 1 && 1 y 1 , x, y

Out[75]= 18, x 1, y 1
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Here  the  minimum  occurs  at  a  corner  of  the  square  region.  Below  we  search  in  two  concentric
circular regions centered at  the origin. Since the  same  answer  is  reached in two different  concentric
regions, we are assured that the minimum occurs in the interior of each region (not on the bound-
ary). We have found, or at least approximated, a local minimum for f :

In[76]:= NMinimize f, x2 y2 1 , x, y

Out[76]= 0.251173, x 0.434028, y 0.347222

In[77]:= NMinimize f, x2 y2 1 2 , x, y

Out[77]= 0.251173, x 0.434028, y 0.347222

Unfortunately,  Minimize  is  unable  to  give  us  an  exact  numerical  solution.  Rather,  it  presents  the
three numbers in the output as roots of sixth degree polynomials.

In[78]:= Minimize f, x2 y2 1 2 , x, y

Out[78]= Root 76 902125 319355960 1 238172822 12

46 171432 13 3 783476 14 2441664 15 236196 16 &, 1 ,

x Root 25 180 1 92 12 1080 13 832 14 1440 15 1296 16 &, 2 ,

y Root 25 232 12 288 13 184 14 576 15 1296 16 &, 1

We’ll see shortly that traditional methods can be used to determine that the actual local minimum

occurs at 125

288
, 25

72
.  Our point here  is  to  state  plainly that  while commands such as Minimize  may

sound  like  a  panacea  for  any  optimization  exercise,  they  can  in  fact  be  subtle  to  use  and  produce
output that is difficult to interpret. Worse yet, they can fail completely: 

In[79]:= Minimize Sin x y , x2 y2 1 , x, y

Out[79]= Minimize Sin x y , x2 y2 1 , x, y

They also return only one extremum even in cases where there are two or more:

In[80]:= Minimize x y, x2 y2 1 , x, y

Out[80]=
1

2
, x

1

2
, y

1

2

In[81]:= x y . x
1

2
, y

1

2

Out[81]=
1

2
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It  is  for  these  reasons  that  you  must  always  be  ready  with  plan  B.  Now  don’t  misunderstand  us;
Minimize and NMinimize are powerful and versatile tools. In fact, they border on the amazing. But
they simply  cannot be  expected to  work  flawlessly  in every  situation;  such is  the variety  and rich-
ness of the universe of mathematical functions. There are option settings for NMinimize that allow
you to specify the method it uses. Subtle details of this sort are essential if you plan to make exten-
sive use of these commands.

If  your  goal  is  to  find  all  extrema  for  a  differentiable  function (as  it  often is  in  a  calculus  course),
your  first  line  of  defense  in  constructing  plan  B  comes  right  out  of  your  calculus  textbook.  The
critical points for a function are those points where the first partials are both zero (i.e., the gradient of
the function is the zero vector),  or where one or both partials do not exist.  If  a function assumes a
relative minimum or maximum value in the interior of its domain, it does so at a critical point.

It is often possible to find critical points with Solve, NSolve, or Reduce. The setting here is just as it
was in Section 4.9, where we used these commands to solve systems of equations. Recall that Solve
and  NSolve  are  designed  primarily  to  solve  polynomial  equations,  while  Reduce  can  sometimes
solve more  general  classes  of  equations.  Here’s  an  example  where  we  use  Solve  to  find the  critical
points of a polynomial:

In[82]:= f 12 y3 4 x2 10 x y;

crPts Solve x f 0, y f 0 , x, y

Out[83]= x 0, y 0 , x
125

288
, y

25

72

In any of these solving commands you may use as the first argument either a list of equations, or an
equation of lists. For instance, this input will also work:

In[84]:= Solve x f, y f 0, 0 , x, y

Out[84]= x 0, y 0 , x
125

288
, y

25

72

You may be able to determine whether f  has a relative minimum or maximum or saddle at a particu-

lar critical point in a purely algebraic fashion by examining the discriminant  and the second partials
evaluated at this critical point. Recall that the discriminant of f  is the expression

f x,x f y,y f x,y f
2
.

The standard test to determine the status of the critical point x, y  is as follows:

If f 0 and x,x f 0, then x, y  is a relative minimum.

If f 0 and x,x f 0, then x, y  is a relative maximum.

If f 0, then x, y  is a saddle point.

If f 0, then the test is inconclusive.
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Let’s carry out this test for the two critical points found in our previous example.

In[85]:= x,x f y,y f x,y f
2

. crPts N

Out[85]= 100., 100.

The first  critical point,  0, 0 ,  is  therefore a  saddle point,  while the  second is  either a  maximum or
minimum. Which is it?

In[86]:= x,x f . crPts 2 N

Out[86]= 8.

The positive value indicates that there is upward concavity in the x direction at this point. Since this
point is an extreme value, it must be a minimum. A ContourPlot shows both critical points clearly,
confirming this analysis:

In[87]:= ContourPlot f, x, 1, 1 , y, 1, 1 ,

Epilog PointSize .02 , Red, Point x, y . crPts

Out[87]=

Finally, we can evaluate f  at the critical points as follows:

In[88]:= f . crPts

Out[88]= 0,
15 625

62 208

In this example we used Solve to find the critical points, but Reduce could have been used instead:

In[89]:= Reduce x f, y f 0, 0 , x, y

Out[89]= x 0 x
125

288
&& y

4 x

5

A word about Reduce  is  in order. It  is  very convenient to use  Reduce  in cases  where you are only
interested  in  real  (as  opposed  to  complex)  solutions  to  equations;  simply  add  the  third  argument
Reals.  As  this  is  usually  the  situation  in  calculus  courses,  Reduce  may  be  your  first  choice  as  a
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solver.  On the  flip  side,  Reduce  does  not  (indeed,  in  general  it  cannot,  as  we  will  see  in the  next
example)  return  output  in the  form of replacement rules.  And we  like replacement rules.  They are
enormously  convenient  when  they  are  produced  programmatically,  so  you  do  not  have  to  type
them. In cases where Reduce produces reasonably simple output, a call to ToRules will convert the

output into replacement rules. Just beware that an equation such as y 4 x
5

 will be converted to the

rule  y 4 x

5
,  which  means  that  replacements  should  be  made  with  ReplaceRepeated  (//.)  rather

than ReplaceAll (/.):

In[90]:= ToRules

Out[90]= x 0, y
4 x

5
, x

125

288
, y

4 x

5

In[91]:= x, y .

Out[91]= 0,
4 x

5
,

125

288
,

4 x

5

In[92]:= x, y .

Out[92]= 0, 0 ,
125

288
,

25

72

Here  is  a  second  example.  We  identify  critical  points  using  Reduce  rather  than  Solve,  as  Solve
simply will not work in this case. It is important to point out something that is rarely emphasized in
calculus texts: the set of critical points may be far more complex than a few isolated points (like the
two critical points we found in the previous example). For instance:

In[93]:= f Sin x Cos y ;

Short Reduce x f 0, y f 0 , x, y , Reals , 10

Out[94]//Short=

C 1 Integers && x 0 && y
2

2 C 1 y
2

2 C 1

1 1 1 C 1 0 && C 1 C 2 Integers &&

x
1

2
4 C 1 && y ArcCos

4 C 1

2 x
2 C 2

y ArcCos
4 C 1

2 x
2 C 2 x

1

2
4 C 1 &&

y ArcCos
4 C 1

2 x
2 C 2 y ArcCos

4 C 1

2 x
2 C 2
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There are five solutions, and only the first and last are shown (since we wrapped the input above in
Short each of the middle three are indicated by <<1>>). Even the abbreviated output is a bit intimi-
dating.  Note  that  there  are  two  constants,  C[1]  and  C[2],  that  are  permitted  to  assume  integer
values.  Reduce  has  found  an  infinite  family  of  points  and  curves,  parameterized  by  these  two
constants. If you are only concerned with critical points within a bounded domain the output can be
greatly  simplified,  often  with  such  parameters  removed.  Below we  include in  the  list  of  equations
the bounds on both x and y. The constants are no longer needed.

In[95]:= f Sin x Cos y ;

Reduce x f 0, y f 0, 6 x 6, 3 y 3 , x, y , Reals

Out[96]= 6 x
2

&& y ArcCos
2 x

y ArcCos
2 x

6 x
1

2
Sec 3 && y ArcCos

2 x
y ArcCos

2 x

1

2
Sec 3 x 6 && y ArcCos

2 x
y ArcCos

2 x

2
x 6 && y ArcCos

2 x
y ArcCos

2 x

6 x
3

2
Sec 3 && y ArcCos

3

2 x
y ArcCos

3

2 x

6 x
3

2
&& y ArcCos

3

2 x
y ArcCos

3

2 x

3

2
x 6 && y ArcCos

3

2 x
y ArcCos

3

2 x

3

2
Sec 3 x 6 && y ArcCos

3

2 x
y ArcCos

3

2 x

x 0 && y
2

y
2

Okay, this is still rather intimidating. But be patient; the output rewards careful reading. Recall that
&&  means  “and”  and ||  means  “or.”  The very  last  line shows  two discrete  critical  points,  at  0,

2

and 0,
2

. Everything else shows a bounded domain on x, and y as a function of x on this domain.

In other words, the other critical points are comprised of curves.

Let’s embark on a brief visual investigation. In the following graphic, the solid mesh lines are curves
where  the  partial  derivative  with  respect  to  x  is  zero,  and  dashed mesh  lines  are  curves  where  the
partial derivative with respect to y is zero. Critical points are points where both partials are simultane-

ously  zero.  These  can  be  discrete  points  (where  the  solid  and  dashed  lines  cross),  or  curves  (where
they coincide). This function has both types.
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In[97]:= fx, fy x f, y f ;

In[98]:= Plot3D Sin x Cos y , x, 6, 6 , y, 3, 3 , BoxRatios Automatic,

MeshFunctions Function x, y , fx , Function x, y , fy ,

MeshStyle Blue, Directive Thick, Dotted , Mesh 0 , 0 , MaxRecursion 3,

Boxed False, Axes True, True, False , ViewPoint .1, 1, 3

Out[98]=

Do you see the two discrete critical points that we identified earlier? They appear to be saddles. We
confirm this below:

In[99]:= x,x f y,y f x,y f
2 . x 0, y 2 , x 0, y 2

Out[99]= 1, 1

We note that for this function, Maximize does not produce any output, while NMaximize reports,
as  always,  one maximum (even though there  are in  fact  infinitely many on this  domain). Clearly,
the approach we applied here using Reduce is far more comprehensive.

In  cases  where  even  Reduce  cannot  find  a  critical  point,  one  has  the  commands  FindMaximum
and FindMinimum. Like the command FindRoot (introduced in Section 4.7 on page 184), these are
your  weapons  of  last  resort.  They  require  an  initial  guess  for  each  variable,  and  using  those  as
starting values they hone in on a single extremum. Moreover, they are numerical tools; the solution
they provide is only approximate.

Despite these limitations FindMaximum  and FindMinimum  can be highly effective at refining an
approximate guess. They are also fast and extremely robust. Use them when other methods fail. One
simple means of using these commands is to start with a ContourPlot, and use it to identify a local
extremum. Then, using the approximate coordinates of the extremum as your  initial guess,  invoke
FindMaximum  or FindMinimum. Here’s an example where we use this technique to approximate
some relative extrema for a rather nasty function:
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In[100]:= Clear f ;

f Sin x y Cos
5 x

y2 1
Sin

3 y

x2 1
;

ContourPlot f, x, 2, 2 , y, 2, 2

Out[102]=

There appears  to be a tiny island near 1, 1 ,  suggesting that f  assumes a relative maximum value

there. Now that we have it in our sights, let’s zero in on it:

In[103]:= FindMaximum f, x, 1 , y, 1

Out[103]= 1.51106, x 0.740375, y 0.529412

Similarly, there appears to be a relative minimum near 1, 1 ; let’s zero in on it:

In[104]:= FindMinimum f, x, 1 , y, 1

Out[104]= 0.551724, x 1.30697, y 1.09308

Outstanding!

Constrained Optimization
The technique of  Lagrange multipliers  is  easily  implemented in Mathematica.  Set  things up  so that
the function you wish to optimize is called f , while the constraint is of the form g 0. We wish to

solve  the  system  f g,  for  some  real  constant  ,  together  with  the  constraint  equation  g 0.

This is easily accomplished using the grad command defined on page 282. Here’s a simple example:

maximize the quantity 4 xy under the constraint that 4 x2 y2 8.

In[105]:= Clear f, g, x, y, ;

f 4 x y;

g 4 x2 y2 8;
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In[108]:= Reduce grad f g, x, y, 0, 0, 0 , x, y, , Reals

Out[108]= x 1 && y 2 y 2 x 1 && y 2 y 2 &&
y

2 x

This  single  Reduce  input  solves  the  system,  as  the  three  partial  derivatives  of  the  function
L x, y, f x, y g x, y  are  zero  precisely  when  f g  and  g 0.  We  next  convert  this

solution to replacement rules, and evaluate the function at the solution:

In[109]:= sols ToRules

Out[109]= x 1, y 2,
y

2 x
, x 1, y 2,

y

2 x
,

x 1, y 2,
y

2 x
, x 1, y 2,

y

2 x

In[110]:= x, y . sols

Out[110]= 1, 2 , 1, 2 , 1, 2 , 1, 2

In[111]:= f . sols

Out[111]= 8, 8, 8, 8

Note that the Maximize, Minimize, NMaximize, and NMinimize commands will do this all in one
go, but they will only find a single solution. If that’s all you need, there is no easier way to get there:

In[112]:= Maximize f, g 0 , x, y

Out[112]= 8, x 1, y 2

Regardless which approach is taken, a ContourPlot provides a visual verification. One could make a
ContourPlot  of  f ,  and  a  second  ContourPlot  with  the  first  argument  g 0,  then  display  them

together with Show.  Below we take a different approach,  making a single plot  with a mesh line to
display the constraint curve. The solutions are shown as red dots:

In[113]:= ContourPlot f, x, 2, 2 , y, 3, 3 , Mesh 0 ,

MeshFunctions Function x, y , g , MeshStyle Directive Thick, Yellow ,

Epilog Red, PointSize .02 , Point x, y . sols
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Out[113]=

Integration of Functions of Two or More Variables
In practice double,  triple,  in fact all  multiple  integrals are evaluated as iterated  integrals.  Evaluating

iterated integrals is easy; you use the same Integrate command (from Section 5.10), adding another

iterator (for definite integrals) or another variable (for indefinite integrals):

In[114]:= Integrate 5 x2 y2, y, 1, 3 , x, 0, 2

Out[114]=
28

9

In[115]:= Integrate 5 x2 y2, y, x

Out[115]= 5 x y
x3 y3

9

In  the  examples  above  we  integrated  first  with  respect  to  x,  then  with  respect  to  y.  That  is,  the

variables  are  specified  within  Integrate  in  the  same  order  that  the  integral  signs  are  written  in
standard mathematical notation. The palette version of the Integrate  command makes the order of
integration more transparent. First type and highlight the function you wish to integrate, then push
the appropriate integration button on the BasicMathInput  palette and fill in the placeholders for the
innermost  integral,  using  the   key to move from one placeholder to the next.  Now highlight the
entire expression and push the integration button a second time, fill in the placeholders, and enter:

In[116]:=
1

3

0

2

5 x2 y2 x y

Out[116]=
28

9
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In[117]:= 5 x2 y2 x y

Out[117]= 5 x y
x3 y3

9

It  is  perfectly  acceptable  to  use  as  bounds  in  an  inner  integral  expressions  involving  variables
appearing  in  an  outer  integral.  For  double  integrals,  this  allows  integration  over  nonrectangular
regions in the plane. Here we integrate over the region bounded by the circle of radius two centered
at the origin:

In[118]:=
2

2

4 y2

4 y2

5 x2 y2 x y

Out[118]=
52

3

And here we integrate the function f x, y, z y z2  over the region bounded by a sphere of radius

two centered at the origin:

In[119]:=
2

2

4 z2

4 z2

4 y2 z2

4 y2 z2

y z2 x y z

Out[119]=
128

15

This last integral may take a minute or so to evaluate. A more sensible approach, even with a tool as
powerful as Mathematica, is  to use a spherical coordinate system. See the subsection “Integration in
Other Coordinate Systems” in Section 6.4, page 322, for details.

Finding Bounds of Integration and Plotting Regions in the Plane and in Space
While  Mathematica  makes  the  evaluation  of  most  integrals  a  snap,  you  still  have  to  set  up  those
integrals  in  the  first  place.  And  when  the  region  over  which  the  integration  takes  place  is  non-
rectangular,  this  can  be  a  subtle  and  challenging  enterprise  in  itself.  However,  if  the  region  in
question is  defined by  one or  more  inequalities,  the  command CylindricalDecomposition  will  do
this  work for  you.  For instance,  to find the bounds  used in the last  example for  integration over  a
spherical region of radius 2 centered at the origin, one may simply do this:

In[120]:= CylindricalDecomposition x2 y2 z2 4, z, y, x

Out[120]= 2 z 2 && 4 z2 y 4 z2 && 4 y2 z2 x 4 y2 z2
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Similarly, the circular region in the example preceding this one can be decomposed as follows:

In[121]:= CylindricalDecomposition x2 y2 4, y, x

Out[121]= 2 y 2 && 4 y2 x 4 y2

The  second  argument  to  CylindricalDecomposition  is  a  list  of  the  coordinate  variables,  and  the
order  in  which  they  are  listed  is  very  important.  It  should  match  the  order  in  which  the  integral
signs appear. To decompose complex regions, you may wish to experiment with the ordering to find
the one that  leads  to  the  most  simple  decomposition.  Also,  use  strict  inequalities  when describing
regions of integration, as this will often simplify the output.

As  useful  as  CylindricalDecomposition  is,  it  may  not  be  able  to  decompose  a  region  defined  by
inequalities  involving  transcendental  functions.  For  instance,  if  the  first  argument  is

sin x y 1 x2, it will not be able to find the numerical bounds for x. See Exercise 13.

You can also make a plot of  the region determined by your bounds of integration. This provides  a
visual confirmation for your choice of bounds. One produces the plots using RegionPlot  for planar
regions, and RegionPlot3D  for regions in space. Here, for instance is the circular region used in the
double  integral  above.  Note  that  the  first  argument  uses  the  bounds  of  the  inner  integral,  and  is
presented as an inequality (it makes no difference whether strict or non-strict inequalities are used).
The bounds of the outer integral are given implicitly via the iterator for y: 

In[122]:= RegionPlot 4 y2 x 4 y2 , x, 2, 2 , y, 2, 2

Out[122]=

And here  is  a  view of the  volume that  this  double integral represents.  We use  Plot3D  with both a
RegionFunction  setting  (to  show the  plot  of  the  integrand over  the  circular  region)  and a  Filling
setting (to  show a  translucent  solid  region under  the  graph of  the  integrand).  Note also  that  Plot
Range is needed to extend the image all the way down to the x-y plane.
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In[123]:= Plot3D 5 x2 y2, x, 2, 2 , y, 2, 2 , Mesh None, PlotRange 0, 5 ,

Filling Axis, RegionFunction Function x, y , 4 y2 x 4 y2

Out[123]=

The  setting  for  RegionFunction  could  be  stated  more  simply  as  Function[{x,y},Norm[{x,y}] 2] .
Similarly,  the  inequality  used  as  the  first  argument  to  RegionPlot  in  the  earlier  input  could  be
Norm[{x,y}] 2. We stuck here with the inequality suggested by the bounds of integration, precisely
to make sure those bounds produce an appropriate image.

Both RegionPlot  and RegionPlot3D  expect  an inequality,  or  a  logical combination of inequalities,
as  their  first  argument.  RegionPlot3D  demands  three  iterators,  one  for  each  coordinate  variable.
Here  we  use  RegionPlot3D  to  view  the  solid  spherical  region  used  for  the  triple  integral  example
given just prior to the start of this subsection. Note how we use a logical combination of the inequali-
ties corresponding to the bounds of the two inner integrals:

In[124]:= RegionPlot3D 4 z2 y 4 z2 && 4 y2 z2 x 4 y2 z2 ,

x, 2, 2 , y, 2, 2 , z, 2, 2

Out[124]=

Here  the  first  argument  to  RegionPlot3D  could  be  stated  more  simply  as  Norm[{x,y,z}] 2.  We
stuck here with the inequalities suggested by the bounds of integration, precisely to test  that these
bounds produce an appropriate image.
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Below we construct multiple cut-away views of this solid ball, with MeshFunction and MeshShad

ing  settings  applied  to  color  the  ball  according  the  value  of  the  integrand  y z2.  If  this  function

gives the density of the ball at the point x, y, z , for instance, then the triple integral gives the ball’s

mass.  Note  that  the  setting  BoxRatios Automatic  is  needed  to  give  all  axes  the  same  scale  (by
default RegionPlot3D will scale the axes in order to create a cubical bounding box).

In[125]:= GraphicsRow Table RegionPlot3D Norm x, y, z 2,

x, 2, rightSide , y, 2, 2 , z, 2, 2 , BoxRatios Automatic,

MeshFunctions Function x, y, z , y z2 , Mesh 10,

MeshShading Table ColorData "TemperatureMap" k , k, 0, 1, .1 ,

Lighting "Neutral", Axes False , rightSide, 2, 1, 0 , ImageSize 300

Out[125]=

Exercises 6.2
1. In this exercise you will explore the ColorFunction option for Plot3D. ColorFunction may be 

set to any pure function with three variables (one for each coordinate position). Pure functions 

are discussed in Section 8.4. By default, each of the input values for this function are scaled from 

the actual coordinate values to span the range from 0 to 1. In order to use the actual coordinate 
values, the additional option setting ColorFunctionScaling False must be added. Moreover 
the output of the ColorFunction must be a Hue, RGBColor, or other color directive (such as a 
named gradient like ColorData["StarryNightColors"]). The inputs to functions such as Hue 
should span the values from 0 to 1. In practice, this means that most “interesting” color func-
tions will have to be Rescaled before being suitable for input to Hue or whichever color render-
ing function you plan to use.

a. Make a Plot3D of the function sin x y  on the domain 2 x 2, 2 y 2 with the option 
setting ColorFunction (#1&). Repeat for (#2&) and (#3&). Note that by setting an explicit 
color function, the default Lighting setting switches to using white light only, so as not to 
interfere with your choice of color.

b. Make a Plot3D of the function sin x y x cos x y
2

y cos x y
2

 on the domain 2 x 2, 

2 y 2 with the option setting PlotRange All. Estimate the minimum and maximum 

values obtained by the function on this domain.
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c. Repeat the previous part, but this time plot the function 

Rescale[ Sin x y x Cos x y
2

y Cos x y
2

,{0,4}]. What do you notice about its minimum 

and maximum values?

d. The function above is suitable for input into a color rendering command such as Hue or 
ColorData["StarryNightColors"]. Let’s do it; enter the following input, and comment on the 
coloring. What this shows is that (with a little work) the graph of one function can be colored 
in according to the values of any other function.

In[126]:= Plot3D Sin x y , x, 2, 2 , y, 2, 2 , ColorFunctionScaling False,

ColorFunction Function x, y, z , ColorData "StarryNightColors"

Rescale Sin x y x Cos x y
2

y Cos x y
2

, 0, 4 , Mesh None

Out[126]=

e. The following output wraps the color rendering function in Glow, which means that it will 
not react with any Lighting. Can you see any difference from the last input?

In[127]:= Plot3D Sin x y , x, 2, 2 , y, 2, 2 , ColorFunctionScaling False,

ColorFunction Function x, y, z , Glow ColorData "StarryNightColors"

Rescale Sin x y x Cos x y
2

y Cos x y
2

, 0, 4 , Mesh None

Out[127]=

2. Use TabView to construct a dynamic display of a Plot3D object like the one shown below where 
MaxRecursion may be set to any of the values 0 to 3.
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0 1 2 3

3. Make a plot of the function f x, y x y

x2 y2  over the annular domain .1 x2 y2 1. Add 

Filling to the bottom of the bounding box. Repeat for f x, y x y2

x2 y2 . Comment on the behavior 

of these functions near the origin.

4. Make two images side by side, one showing a ContourPlot of your favorite function, and the 
other a Plot3D of that same function on the same domain. Use MeshFunctions to display level 
curves in the Plot3D. Use a specific Range of values for the Contours settings on the Contour
Plot, and use that same collection of values for Mesh settings on the Plot3D. This way you will 
synchronize the level curves being shown in each plot. Use a ColorFunction or MeshShading to 
apply "LakeColors" to your Plot3D.

5. Write a command called key that will make a graphical gradient key for a ContourPlot as shown 

on page 272. It should have the syntax structure key[{min,max},contours], where min and max 

denote the minimum and maximum function values in the plot, and contours is the number of 
contour regions in the plot.

6. Consider the function f x, y sin x2 y2  on the domain 2 x 2, 1 y 1. In this exercise 

you will explore several methods of illustrating cross-sections for this function. That is, you will 
set one of the coordinate variables equal to a constant. For instance, if x 1 this means geometri-
cally that you slice the graph of f  with the vertical plane x 1.

a. Make a Manipulate that will display a Plot of the cross-section y c for f , as c ranges from 1 

to 1. For those familiar with medical imaging, this is a bit like an MRI scan of the 3D plot of f .

b. Make a Manipulate that will display a Plot of the cross-section x c for f , as c ranges from 2 
to 2.

c. Make the Manipulate shown below that shows both of the cross-sections together with a 
Plot3D of f  with appropriate Mesh lines.
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y0

0.

z

y

z

7. Describe the set of critical points for the function f x, y sin x2 y2  on the domain 2 x 2 

and 1 y 1. Use Reduce with the second argument set to {y,x} and again with the second 

argument set to {x,y}. Is one output easier to interpret?

8. Consider the function f x, y x cos xy .

a. Show that f  has no critical points. Make a ContourPlot with MeshFunctions and Mesh 
settings to display the curves where the partial derivative with respect to x is zero, and those 
where the partial derivative with respect to y is zero. Confirm visually that these two sets of 

curves never cross.

b. Show that for any direction measured by the polar angle , and any real number r 0, the 
function f  has a point x0, y0  in its domain where the directional derivative in the direction of 

 exceeds r, and another point x1, y1  where the directional derivative in the direction of  is 

less than r. Essentially, the steepness of this function is unbounded in every direction, despite 
being defined on the entire plane, and having no relative minima, maxima, or saddle points.

9. Explain how to use ContourPlot3D to view the graph of any real-valued function of two vari-
ables, such as f x, y 2 x y on the domain 1 x 1, 1 y 1. How does this differ from using 

the Plot3D command to produce such a graph?

10. Maximize the quantity x1 3 y2 3 under the constraint that 40 x 50 y 10000.

11. Find all point(s) on the surface z x y closest to the point 0, 0, 3 . Make a ContourPlot3D of 

this surface, colored (via MeshShading) according to how close points are to 0, 0, 3 .

12. Consider the function f x, y 2 1 x2  defined over the unit disk in the x-y plane centered at 

the origin.

a. Make a Plot3D of f  over this circular region, and use Filling to display the solid under the 
graph of f  and above the x-y plane.

b. Find the volume of this solid.
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c. Make the following Manipulate, showing the graph from part a together with a movable 
square cross-section. If one first integrates with respect to y, the inner integral is equal to the 
area of this square cross-section.

x

13. Find the approximate value of the double integral of the function f x, y 2 x y over the region 

R in the x-y plane bounded by y sin x and y 1 x2. Make a three-dimensional sketch of the 

signed volume that this integral represents.

14. Use RegionPlot3D to view the solid torus z2 x2 y2 3
2

1. Use MeshShading to color 

the torus according to distance from the origin, with points closest to the origin appearing red, 
and the most distant points appearing blue. (The ColorData["TemperatureMap"] gradient is 
perfect for this.) Finally, display that portion of the surface with 2 x 4 and 0 y 4.

6.3 Parametric Curves and Surfaces

Parametric Curves in the Plane
A parametric  representation  of  a  curve  is  a  continuous  vector-valued  function  of  one  variable;  for
each  value  of  a  variable  t,  the  function  returns  a  vector  x t , y t  in  the  plane.  As  t  varies

continuously  through  an  interval,  the  vectors  trace  out  a  curve.  Since  a  vector  in  Mathematica  is
represented  as  a  List,  a  parametric  curve  can  be  defined  as  a  List  of  two  or  more  real-valued
functions. The first function represents the x coordinate, the second the y coordinate. Since there is

only one variable,  we  revert  to the  paradigm for  defining functions used in Chapters  3 through 5,
with an underscore after the independent variable on the left side, and using SetDelayed (:=).

In[1]:= s t : Cos t t, Sin t

You can now find your position in the plane for any value of t:
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In[2]:= s
4

Out[2]=
1

2 4
,

1

2

To plot a parametric function, use the command ParametricPlot:

In[3]:= ParametricPlot s t , t, 0, 10 , AspectRatio 1 2

Out[3]=
5 10 15 20 25 30

1.0

0.5

0.5

1.0

ParametricPlot  takes  two arguments.  The first  is  the function you wish to plot,  and the second is
an iterator  for the independent variable (t  in this  example). ParametricPlot  will  tend to give both
axes the same scale unless you explicitly tell it not to. Many curves, circles for instance, look better
that  way,  so  that’s  what  happens  by  default.  Be  aware  that  in  plots  like  the  one above where  one
axis is far longer than the other, an AspectRatio setting will be in order.

You need not  restrict  yourself  to  simple  functions.  ParametricPlot  works  well  on Piecewise  func-
tions, and even on interesting curves like this:

In[4]:= c t
0

t
Sin u2 u,

0

t
Cos u2 u ;

In[5]:= ParametricPlot c t , t, 10, 10

Out[5]=
0.5 0.5

1.0

0.5

0.5

1.0

Note that the definition of c t  above uses Set (=) rather than SetDelayed  (:=). This causes the
two integrals  on  the right  side of  the  definition to  be evaluated once,  when the c[t_]=  cell  is
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entered. It  is  the expressions that are the values  of these integrals  (they happen to be Fresnel
functions) that are assigned to c t , and that are then plotted. If SetDelayed  had been used in
defining c t , then the integrals would have to be worked out anew for each input value t  used
to  create  the  plot  (and  there  are  several  hundred  such  values).  It  would  have  slowed  the
process of plotting by several orders of magnitude.

While a ParametricPlot shows the set of points of the form x t , y t  as t  runs through all values in

an interval, it does not give any indication of which point goes with which input. Manipulate can
be harnessed to trace out a parametric curve, with a slider to control the independent variable. Here,
for  instance, is a standard parameterization  of  the  unit  circle.  Note  the  PlotRange setting  (which
keeps the plot range fixed as t varies), and the small but positive starting value 0.01 for the endpoint
t (one needs distinct starting and ending values for the independent variable in any ParametricPlot).

In[6]:= Manipulate Show

ParametricPlot Cos t0 , Sin t0 , t0, 0, t , PlotRange 1 ,

Graphics Arrow 0, 0 , Cos t , Sin t

,

t, 1. , 0.01, 2

Out[6]=

t

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

One can also define a custom parametric plotting command that will apply a  color gradient to the
curve, so that it will, for instance, start in green and gradually progress through the color gradient to
end in red (green for go, red for stop).  Here’s  a simple implementation, but you’ll  need to try it  in
order to see the colors on your monitor.
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In[7]:= ParametricPlot Cos t , Sin 3 t , t, 0, 2 , ColorFunction Hue .7 3 .3 &

Out[7]=

The  ColorFunction  accepts  any  or  all  of  three  arguments.  The  first  two  are  the  x  and  y

coordinates  of the parametric curve. The third (#3  used above) is  the independent variable t.
By default, the values of t will be scaled to run from 0 to 1 before being input to the ColorFunc
tion,  regardless  of  the  domain you  choose.  Hence the  option  setting above  produces a  color
gradient that starts at Hue[.3] (green) and ends at Hue[1.] (red). This same setting may be used

to  color  any  ParametricPlot  according  to  this  gradient.  Exercise  4  shows  how  to  color  a

parametric curve according to its curvature.

We  note  that  ParametricPlot  accepts  most  of  the  options  accepted  by  other  two-dimensional
plotting  commands  such  as  Plot.  The  PlotPoints  option,  for  example,  can  be  set  to  a  numerical
value (such as 100) if you see jagged segments where you suspect they should not be. However, the
adaptive algorithm employed by ParametricPlot  is  both speedy  and robust;  it  is  rare  to find cases
where it does anything less than an excellent job. The following Manipulate may help to convince
you of this:

In[8]:= Manipulate

ParametricPlot Cos t
1

2
Cos 7 t

1

2
Sin a t , Sin t

1

2
Sin 7 t

1

2
Cos b t ,

t, 0, 2 , Axes False, PlotRange 2 , a, 17 , 5, 25 , b, 12 , 5, 25
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Out[8]=

a

b

The derivative of the parametric function x t , y t is x ' t , y ' t . You can differentiate a parametric

function  just  as  you  did  a  single-variable  function  in  Chapter  5,  or  like  we  did  for  multivariable
functions in the previous section of this chapter, using :

In[9]:= D s t , t

Out[9]= 1 Sin t , Cos t

In[10]:= s ' t

Out[10]= 1 Sin t , Cos t

In[11]:= t s t

Out[11]= 1 Sin t , Cos t

Note that while the ParametricPlot of s t  has sharp corners (it is the first plot shown at the begin-
ning of this section), its derivative is defined everywhere. This can happen. The Manipulate  below

shows  the  derivative  vector  s ' t  with  its  tail  at  the  point  s t ,  as  t  varies.  When t  is  2  or  5 2,
sin t 1 and cos t 0, and so the derivative is the zero vector. This happens at the top of each sharp
corner in the plot.

In[12]:= Module s ,

s t t Cos t , Sin t ;

Manipulate Show

ParametricPlot s t0 , t0, 0, 10 , PlotRange 0, 10 , 2, 2 ,

Graphics Arrow s t , s t s ' t

,

t, 4.8 , 0, 10
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Out[12]=

t

2 4 6 8 10

2

1

1

2

If s t  represents the position of a particle at time t, then its velocity vector is s ' t , and its speed is the
magnitude of this vector. To compute speed, say at time t 3, you can do this:

In[13]:= Norm s' 3 N

Out[13]= 1.31063

You can even get a formula for speed as a function of t. Here we produce and Simplify the formula,
using the  optional  second argument for  Simplify  in  order  to  specify  that  t  is  permitted to  assume
only  real  values  (as  opposed  to  complex  values).  We  could  have  given  the  second  argument  as
Element[t,Reals].  The  infix  form  of  the  Element  command is  invoked  with  the   symbol,  which
can be found on the third row of small buttons on the BasicMathInput palette.

In[14]:= Simplify Norm s' t , t Reals

Out[14]= 2 2 Sin t

Note that this is consistent with the Manipulate above; speed is zero precisely when t  is 2, 5 2,
etc.

Unit tangent  vectors are constructed exactly as you would expect.  The use of Simplify  as above will
generally serve you well.

In[15]:= unitTangent s , t : Simplify
D s, t

Norm D s, t
, t Reals

In[16]:= s t t Cos t , Sin t ;

unitTangent s t , t

Out[17]=
1 Sin t

2
,

Cos t

2 2 Sin t

The unit tangent vector at a specific value of t can then be obtained via a simple replacement:
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In[18]:= unitTangent s t , t . t 1.2

Out[18]= 0.184338, 0.982863

Unit  normal  vectors  can  be  formed in  a  similar  way  (although FullSimplify  does  a  better  job  than
Simplify in this case):

In[19]:= unitNormal s , t : FullSimplify
D unitTangent s, t , t

Norm D unitTangent s, t , t
, t Reals

In[20]:= unitNormal s t , t

Out[20]=
Cos t

2 2 Sin t
,

1 Sin t

2

Even though neither the unit tangent nor the unit normal is defined when t 2 or t 5 2, the
following Manipulate  works  fine,  as  it  is  unlikely to sample  these  precise  values.  We define auxil-
iary commands ut and un so that unitTangent  and unitNormal only need to be called once (they
are slow, after all, since they use Simplify and FullSimplify, respectively, each time they are called).
The auxiliary commands ut and un are defined using Set (=). So they use the formulas  generated by
unitTangent  and unitNormal,  and simply replace the variable t  by whatever argument x  is speci-
fied. They are speedy!

In[21]:= Module s, ut, un, t ,

s t t Cos t , Sin t ;

ut x unitTangent s t , t . t x;

un x unitNormal s t , t . t x;

Manipulate Show

ParametricPlot s t , t, 0, 10 , PlotRange 0, 10 , 2, 2 ,

Graphics Blue, Arrow s t0 , s t0 ut t0 ,

Graphics Red, Arrow s t0 , s t0 un t0

,

t0, 6.8 , 0, 10

Out[21]=

t0

2 4 6 8 10

2

1

1

2
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Curvature is also a simple calculation. We use the Greek letter  (kappa) to denote this quantity. Find
 on the BasicMathInput palette, or type k .

In[22]:= s , t : FullSimplify
Norm D unitTangent s, t , t

Norm D s, t
, t Reals

In[23]:= s t , t

Out[23]=
1

2 2 2 Sin t

And so the radius of curvature  is  the reciprocal of this quantity,  2 2 2 sin t .  At the sharp corners

(when t  is 2, 5 2, etc.) the curvature is undefined, and the radius of curvature approaches zero.
The Manipulate  below shows the osculating circle  for any value of t.  This illustrates  that the radius
of curvature approaches zero very rapidly as t approaches 5 2.

In[24]:= Module s, un, curv, t ,

s t t Cos t , Sin t ;
un x unitNormal s t , t . t x;

curv x s t , t . t x;

Manipulate Show ParametricPlot s t , t, 0, 10 , PlotRange 4, 12 , 2, 6 ,

Graphics Gray, Circle s t0
1

curv t0
un t0 ,

1

curv t0
,

Graphics Red, Arrow s t0
1

curv t0
un t0 , s t0

, t0, 6.5 , 0, 10

Out[24]=

t0

5 10

2

2

4

6
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Parametric Curves in Space
Parametric  curves  in  three-space  are  just  like  parametric  curves  in  the  plane,  except  that  they  are
constructed as a list of three real-valued functions. The first function represents the x coordinate, the
second represents the y coordinate, and the third represents the z coordinate.

In[25]:= s t :
t2

50
Sin t ,

t2

50
Cos t , t

To plot a parametric function in space, use the command ParametricPlot3D:

In[26]:= ParametricPlot3D s t , t, 0, 8 , AxesLabel x, y, z

Out[26]=

10
5

0
5x

10

5
0

5
10

y

0

10

20

z

ParametricPlot3D  takes  two arguments.  The first  is  the  function you wish  to  plot  (a  List  of  three
coordinate  functions),  and  the  second  is  an  iterator  for  the  independent  variable.  We  added  an
AxesLabel  option  to  make  it  easy  to  identify  which  direction  is  which after  you  rotate  the  figure
with  your  mouse.  Many  of  the  other  options  for  the  other  3D  plotting  commands  are  applicable
here;  see  the  subsection  of  Section  6.2  called  “Options  for  3D  Plotting  Commands”  on  page  258.
One  can  also  use  MeshShading  or  ColorFunction  settings  in  exactly  the  same  manner  as  for  2D
parametric  plots.  For  example,  here  we  color  a  curve  according  to  the  value  of  the  independent
variable:
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In[27]:= ParametricPlot3D s t , t, 0, 8 ,

AxesLabel x, y, z , ColorFunction Hue .3 .7 3 &

Out[27]=

Differentiation,  integration,  unit  tangents,  unit  normals,  and  curvature  work  exactly  as  for  2D
parametric functions (see the previous subsection). In the case of three-space, however, there is a well
known alternate formula for curvature based on the cross-product. It is a simple matter to program a
command based on this formula:

In[28]:= curvature r , t : FullSimplify
Norm Cross r ' t , r '' t

Norm r' t 3
, t Reals

We may now calculate curvature for any function, at any point t in its domain:

In[29]:= curvature s,

Out[29]=
50 10 000 30000 2 2536 4 12 6 8

2500 4 2 4 3 2

In[30]:= curvature s, t

Out[30]= 50
10 000 30000 t2 2536 t4 12 t6 t8

2500 4 t2 t4 3
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Parametric Surfaces in Space
A surface in space  can be parameterized much like a  curve in space,  but rather  than using a single
independent variable t, we use a pair of independent variables u  and v. Whereas a parameterization
of  a  curve  in  space  is  a  continuous  function  from  an  interval  of  the  real  line  to  three-space,  a
parameterization of  a  surface is  a  continuous function from a rectangle  in the plane to three-space.
The image of each coordinate pair u, v  is a point in space, a 3-tuple x u, v , y u, v , z u, v , where x,

y, and z are real-valued coordinate functions.

Mathematica is instrumental in visualizing the amazing spectrum of surfaces that can be constructed
in  this  manner.  Here  is  an  example.  It  illustrates  that  just  as  a  parametrically  defined  curve  can
intersect itself (if the coordinate functions assume the same values at two or more distinct values of
t), so too can a parametrically defined surface intersect itself.  This surface is known as the Whitney
umbrella, named after the American mathematician Hassler Whitney (1907–1989).

In[31]:= Clear , u, v ;

u v, u, v2

Out[32]= u v, u, v2

In[33]:= ParametricPlot3D , u, 3, 3 , v, 2, 2

Out[33]=

The rectangular region in the u-v plane with 3 u 3 and 2 v 2 is mapped continuously via 

to the  surface in 3  shown above.  As  with parametric  curves,  the plot  does not show the domain,
but only the image of the domain after the parametric function is applied.

Here’s another example. We map a rectangle in the u-v plane to a torus:

In[34]:= Cos u 2 Cos v , Sin u 2 Cos v , Sin v ;
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In[35]:= ParametricPlot3D , u, 0, 2 , v, 0, 2

Out[35]=

For parametric  surfaces,  a  mesh function can accept up to five arguments.  In order,  the arguments
are x, y, z, u, and v. The first three are the coordinates in space of the surface, while the last two are

the  independent  variables.  The  default  setting  for  the  MeshFunctions  option  is  4 &, 5 & ,
meaning that the image under  of uniformly spaced rectangular grid lines on the domain rectangle
are shown. More information can be gained by using Mesh,  MeshFunctions,  and MeshShading  to
apply  a  color  gradient  according  to  increasing  values  of  one  of  the  independent  variables.  This  is
accomplished in exactly the same way as described in the subsection of Section 6.2 called “Options

for  3D  Plotting  Commands”  on  page  258.  Below  we  do  this  for  the  first  independent  variable,  u,
used in the torus.  The “seam” is  easily visible (on a color monitor) as the sharp boundary between
red and blue.

In[36]:= ParametricPlot3D , u, 0, 2 , v, 0, 2 , Mesh 10, MeshFunctions 4 & ,

MeshShading Table ColorData "TemperatureMap" k , k, 0, 1, .1 ,

Lighting "Neutral"

Out[36]=

Differentiation works just as with parameterized curves. Here is the partial derivative with respect to
v:

In[37]:= v

Out[37]= Cos u Sin v , Sin u Sin v , Cos v

It is easy to use the concept of a parametric surface to generate a surface of revolution. You may recall
surfaces  of  revolution  from  single-variable  calculus;  indeed,  in  Section  5.13  on  page  242  we  dis-
cussed the built-in command RevolutionPlot3D, which will plot the surface of revolution obtained
from revolving  the  function  z f x  about  the  z  axis.  However,  this  command  cannot  be  used  to
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rotate the graph of such a function about the x  axis. One may easily create a custom command for

this purpose as follows:

In[38]:= xRevolutionPlot3D f , x , xmin , xmax :
ParametricPlot3D x, f Cos , f Sin , x, xmin, xmax , , 0, 2

For example, here we rotate a parabola about the x axis:

In[39]:= f x : 1 x2;

GraphicsRow Plot f x , x, 1, 1 , xRevolutionPlot3D f x , x, 1, 1

Out[40]=

Exercises 6.3
1. Explain how to use ParametricPlot to view the graph of any real-valued function of a single 

variable, such as f x x2 1. How does this differ from using the Plot command to produce 

such a graph?

2. There are many different parameterizations of the same curve. A standard parameterization of the 
unit circle is cos t, sin t , where 0 t 2 . Verify that the parametric function 

sin 4 t sin 6 t

2 sin 5 t
, cos 4 t cos 6 t

2 sin 5 t
, where 0 t 2 , also parameterizes the unit circle for those values of t 

where it is defined (e.g. it is not defined at integer multiples of t 5).

3. Consider the vector-valued function r t 2 sin t , cos t , sin 2 t .

a. Superimpose a ParametricPlot3D of r t  with a ContourPlot3D of the surface z x y. Use the 
option Mesh None in your plot of the surface. What do you find?

b. Explain why the curve lies on the surface. Hint: you will need the double-angle formula for 
the sine function. If you have forgotten it, type TrigExpand[Sin[2t]].

4. Use ColorFunction to color a ParametricPlot of the function t, t2
 on the domain 2 t 2 

according to its curvature with the "TemperatureMap" color gradient. While this method pro-
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duces continuous color transitions (as opposed to the discrete color values produced when using
MeshFunctions  for this purpose),  it  requires your knowing the maximum and minimum curva-
ture values for your specific function on your specific domain.

5. Use MeshShading to shade a ParametricPlot3D of the torus,

 u, v cos u cos v 2 , sin u cos v 2 , sin v  

where  each  independent  variable  ranges  from  0  to  2 ,  according  to  values  of  the  independent
variable  v.  Use  the  color  gradient  ColorData["TemperatureMap"]  with  ten  gradations.  Use  the
resulting graphic to identify the “seam” in the torus created by this variable.

6.4 Other Coordinate Systems

Polar Coordinates

Conversion to and from Polar Coordinates
A point in polar coordinates is represented as an ordered pair r, , where r  is the distance from the
point  to  the  origin,  and the  angle   is  measured  in  radians,  counterclockwise,  from the  positive  x
axis to the segment connecting the origin to the point.

To  convert  between  polar  and  Cartesian  coordinates,  one  makes  use  of  the  following triangle  and
some basic trigonometry:

x

y
r

So in converting from polar to Cartesian coordinates, one uses the formulas x r cos  and y r sin .

In converting from Cartesian to polar coordinates, one uses the formulas r x2 y2 , and so long

as x 0, tan y x. This last equation, when solved for , can be expressed as follows:

arctan y x x 0

arctan y x x 0 and y 0

arctan y x x 0 and y 0

2 x 0 and y 0

2 x 0 and y 0
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This  expression  for   is  clearly  a  bit  messy.  The  formula  above  will  produce  a  value  of   with
.  Mathematica  makes  the  calculation  of   much  easier  with  its  ArcTan  command.  The

ArcTan command usually takes a single number as its argument, and returns a value between 2
and  2,  the  arc  tangent  of  that  number.  But  you  can  also  feed  it  an  x-y  pair.  ArcTan[x, y]  will

return  the  polar  angle   for  the  point  with  Cartesian  coordinates  x, y ,  with  .  That  is,  it

will  essentially  invoke  the  complex  formula  above.  So  life  is  easy  after  all:  in  converting  from
Cartesian to polar coordinates, ArcTan[x, y]. For instance:

In[1]:= ArcTan 1, 1 , ArcTan 0, 1 , ArcTan 1, 1 , ArcTan 1, 1

Out[1]=
4

,
2

,
3

4
,

3

4

It is now a simple matter to automate the conversion process by creating the following commands.
Note that you can type  from the keyboard via the key sequence th . It is also available on the
BasicMathInput palette.

In[2]:= toPolar x , y : Norm x, y , ArcTan x, y Simplify

In[3]:= toCartesian r , : r Cos , r Sin Simplify

Here are some examples:

In[4]:= toPolar 1, 3

Out[4]= 2,
2

3

In[5]:= toCartesian 10,
12

Out[5]=

5 1 3

2
,

5 1 3

2

Plotting in Polar Coordinates
The built-in command PolarPlot  can  be  used  to  view  the  graph of  the  polar  function r f .  For

example:
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In[6]:= PolarPlot
1

1 Sin
, ,

5

4
,

4

Out[6]=

2 1 1 2
0.5

0.5

1.0

1.5

2.0

In[7]:= PolarPlot Sin 2 , , 0, 10 , Axes False

Out[7]=

Like Plot,  PolarPlot  will  accept  a  list  of  functions as  its  first  argument  (so  that  multiple  functions
can be simultaneously plotted). It accepts most of the same options accepted by Plot, so you will be
pleased to find that you’re already an expert in its usage. For example:

In[8]:= PolarPlot , , , 0, 4 , Axes False,

PlotStyle Orange, Directive Blue, Dashed

Out[8]=
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Parametric Plotting in Polar Coordinates
There’s no built-in command for this, but it’s easy to write the command yourself. If r and  are each

functions  of  the  parameter  t,  then  x r cos  and  y r sin  are  also  functions  of  t,  and  so  can  be

plotted using ParametricPlot. Here’s how we formalize this:

In[9]:= polarParametricPlot r , , args : ParametricPlot r Cos , r Sin , args

Put two  underscores  after  args  on the  left  side  of  the  definition (two underscores  means  that  args
represents  one  or  more  arguments,  separated  by  commas).  In  this  case  args  stands  for  the  required
iterator for the independent variable and for any options that might be added. Here’s an example:

In[10]:= Clear r, , t ;

r t : t Sin t ;

t : t

In[13]:= polarParametricPlot r t , t , t, 0, , Axes False

Out[13]=

Cylindrical and Spherical Coordinates

Conversion to and from Cartesian Coordinates
When translating  from one coordinate system  to  another  it  is  imperative  that  you understand the
geometry  and  trigonometry  underlying  the  translation.  Otherwise,  you  will  be  placing  your  faith
entirely in the computer,  never a  good idea. However,  it  would be nice to be able to automate the
process, or to be able to ask Mathematica for a conversion formula that you might have forgotten. To
automate the translation process, you will need to load a package:

In[14]:= Needs "VectorAnalysis`"

Now you will have access to the commands CoordinatesToCartesian and CoordinatesFromCarte
sian.  Each of  these  commands  takes  two  arguments.  The  first  is  the  point  whose  coordinates  you
want to translate, and the second is the name of the coordinate system to or from which the transla-
tion should occur:
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In[15]:= CoordinatesFromCartesian 2 , 2 , 3 , Cylindrical

Out[15]= 2,
3

4
, 3

In[16]:= CoordinatesToCartesian 2,
3

4
, 3 , Cylindrical

Out[16]= 2 , 2 , 3

Working  with  spherical  coordinates  in  this  package  demands  that  you  pay  careful  attention  to
Mathematica’s  conventions  for  this  coordinate  system.  By  default,  nonzero  points  expressed  in
spherical coordinates are of the form , , , where  is the distance from the point to the origin, 

is the angle from the vector determined by the point to the positive z axis, and  is the angle used in

polar and cylindrical coordinates. The second and third coordinate positions are transposed in many
standard calculus texts, so beware!

In[17]:= CoordinatesFromCartesian 1, 0, 1 , Spherical

Out[17]= 2 ,
4

, 0

Best of all, you can use these conversion commands to help you remember the conversion formulas:

In[18]:= Clear , , ;

CoordinatesToCartesian , , , Spherical

Out[19]= Cos Sin , Sin Sin , Cos

In[20]:= Clear x, y, z ;

CoordinatesFromCartesian x, y, z , Spherical

Out[21]= x2 y2 z2 , ArcCos
z

x2 y2 z2
, ArcTan x, y

If you are not familiar with the ArcTan[x, y]  convention, see the subsection “Polar Coordinates” at
the beginning of this section on page 314.

It  is  worth  noting  that  the  VectorAnalysis  package  supports  more  than  a  dozen  coordinate
systems. Cartesian, cylindrical, and spherical are simply the most common. For more informa-
tion, type “vector analysis package” into the search field in the Documentation Center.
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Plotting in Cylindrical Coordinates
Suppose  you  have  a  function  given  in  cylindrical  coordinates,  that  is,  where  z  is  expressed  as  a

function of the radius r  and polar angle . The command RevolutionPlot3D can be used to produce

the graph of such a function. It works much like Plot3D: the first argument is the expression for z in

the variables r and , and the second and third arguments are iterators for r and , respectively.

In[22]:= RevolutionPlot3D , r, 0, 3 , , 0, 2 , BoxRatios 1

Out[22]=

Here  we  plot  the  paraboloid  f x, y x2 y2,  shown  over  a  circular  domain of  radius  2,  with  polar

angle  between 0 and 3 2:

In[23]:= RevolutionPlot3D r2, r, 0, 2 , , 0, 3 2 ,

BoxRatios 1, 1, 2 , Boxed False, Axes False

Out[23]=
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Parametric Plotting in Cylindrical Coordinates
If  r,  ,  and  z  are  each parameterized  by  a  variable  such  as  t,  you  may  wish  to  plot  the  curve  that

results  from the parameterization. While there is  no built-in command for this,  you can create the
command parametricCylindricalPlot3D as follows:

In[24]:= parametricCylindricalPlot3D r , , z , args :

ParametricPlot3D r Cos , r Sin , z , args

This  command simply  invokes  ParametricPlot3D  after  converting the  arguments  from cylindrical
to Cartesian coordinates. Be sure to put two underscores after args on the left side of the defining 
equation; two underscores mean that args  stands for a sequence of one or more  arguments. In this 
case, args represents the required iterator for the independent variable t and any options you might 

add—this will allow you to use any of the options allowed by ParametricPlot3D.

Here is  an example of a curve that resides along the cylinder whose equation in cylindrical coordi-
nates is r 1:

In[25]:= parametricCylindricalPlot3D 1, t, Cos 20 t , t, 0, 2 , Boxed False, Axes False

Out[25]=

Plotting in Spherical Coordinates
If, in spherical coordinates,  is a function of  and , you can produce a plot of this function with

the command SphericalPlot3D. Using this command is much like using Plot3D—the first argument
is  the  expression  for  the  radius   given  in  terms  of   and  .  The  second  and  third  arguments  are

iterators for  and ,  respectively (note that ,  the angle from the positive z  axis,  comes first).  Here

are two hemispheres, each with the equation 2:
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In[26]:= SphericalPlot3D 2, , 0, 2 , , 0, 2

Out[26]=

In[27]:= SphericalPlot3D 2, , 0, , , 0,

Out[27]=

And here is a plot of the surface with the simple equation :

In[28]:= SphericalPlot3D , , 0, , , 0, 7 2 , Boxed False, Axes False

Out[28]=

Most of the options that can be used with the command Plot3D will also work for SphericalPlot3D.
A discussion of these options can be found in the subsection “Options for 3D Plotting Commands”
of Section 6.2 on page 258. 
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Parametric Plotting in Spherical Coordinates
If  and  and  are each parameterized by a variable such as t, you may wish to plot the curve that

results from this parameterization. While there is  no built-in command for this,  you can create the
command parametricSphericalPlot3D as follows:

In[29]:= parametricSphericalPlot3D , , , args :

ParametricPlot3D Sin Cos , Sin Sin , Cos , args

This command simply invokes ParametricPlot3D  after converting the arguments from spherical to
Cartesian coordinates. Be sure to put two underscores after args on the left side of the defining 
equation; two underscores mean that args  stands for a sequence of one or more  arguments. In this 
case,  args represents the required iterator for the independent variable t  and any options you might 

add—this will allow you to use any of the options allowed by ParametricPlot3D.

Here is an example of a curve that resides on the sphere whose equation in spherical coordinates is
1:

In[30]:= parametricSphericalPlot3D 1, t, 20 t , t, 0, , Boxed False, Axes False

Out[30]=

Integration in Other Coordinate Systems
No new Mathematica commands are  needed to evaluate integrals in other coordinate systems.  You
simply need to know the underlying conversion formulas in order to set up such an integral.

For  example,  we  evaluated  the  double  integral  of  the  function  f x, y 5 x2 y2  over  the  disk of

radius  2  centered  at  the  origin  back  in  the  subsection  “Integration  of  Functions  of  Two  or  More

Variables” of Section 6.2 on page 293. This is more easily handled in polar coordinates. We convert
the integrand into polar coordinates as follows:
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In[31]:= Clear x, y, r, ;

5 x2 y2 . x r Cos , y r Sin

Out[32]= 5 r4 Cos 2 Sin 2

We  can  now  integrate, replacing  x y with r r . Since the region of integration  is  a  disk,  the

bounds of integration are easily described in polar coordinates: 0 r 2 and 0 2 . 

In[33]:=
0

2

0

2
r r

Out[33]=
52

3

And  how  about  the  triple  integral  of  the  function  f x, y, z y z2  over  the  region  bounded  by  a

sphere of radius two centered at the origin? We did this one in Cartesian coordinates earlier as well.
We accomplish  the  same  result  in  spherical  coordinates  as  follows.  We  first  convert  the  integrand
into spherical coordinates. Now what were those conversion formulas?

In[34]:= Needs "VectorAnalysis`"

In[35]:= Clear x, y, z, , , ;

CoordinatesToCartesian , , , Spherical

Out[36]= Cos Sin , Sin Sin , Cos

We can make replacement rules from these conversions like so:

In[37]:= Thread x, y, z

Out[37]= x Cos Sin , y Sin Sin , z Cos

The Thread command is used here to “thread” Rule ( ) over the lists of variables and conver-
sion  expressions.  The  FullForm  of  the  input  above  is  Thread[Rule[List[x, y, z], List[ ]]].
Thread has the effect of distributing Rule over the lists, producing a list of rules rather than a
rule  of  lists.  So  the  output  has  the  form  List[Rule[x, ], Rule[y, ],Rule[z, ]].  Thread  is

discussed in Section 8.4 on page 410.

Here is the converted integrand:

In[38]:= y z2 .

Out[38]=
2 Cos 2 Sin Sin
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And now we integrate, replacing x y z  with 2 sin . Since we wish to integrate over  a

sphere of radius 2 centered at the origin, we choose as our bounds of integration 0 2, 0 ,
and 0 2 . The result agrees with our earlier output, but it evaluates far more quickly due to the
more simple bounds of integration.

In[39]:=
0

2

0 0

2
2 Sin

Out[39]=
128

15

Exercises 6.4
1. Make a Manipulate with two controllers that displays a graph of the polar function 

r f sin n , where n is allowed to vary from .01 to 3, and the variable  assumes values from 

0 to length, where length is permitted to vary from 2  to 100 . The resulting curves are known as 
roses.

2. Explain how to use ParametricPlot to produce the same output as that produced by PolarPlot 
to view the graph of the polar function r f . Test your solution on the function f .

3. Explain how to use ParametricPlot to produce the graph of the inverse polar function f r . 

Carry this out on the function f r r2 2 r 1 as r goes from 0 to 2.

4. Make a Manipulate to view various PolarPlots of the superformula with polar equation 

r cos m

4

n2
sin m

4

n3
1

n1 . Use sliders that allow m, n1, n2, and n3 to range from 1 to 20. 

Restrict m to assume only integer values in this range.

5. A homotopy between two surfaces is a smooth deformation from one surface to the other gov-
erned by a single real parameter t ranging from 0 to 1. Make a Manipulate that illustrates the 
homotopy from the Roman surface (t 0) to the Boy surface t 1  given by:

x 2 cos 2 u cos2 v cos u sin 2 v

2 t 2 sin 3 u sin 2 v
,

y 2 sin 2 u cos2 v sin u sin 2 v

2 t 2 sin 3 u sin 2 v
,

z 3 cos2 v

2 t 2 sin 3 u sin 2 v
,

where 
2

u
2
 and 0 v .

324 Multivariable Calculus



6.5 Vector Fields

Defining a Vector Field
Recall that a parameterized curve is a vector-valued function of one variable. That is, it’s a function

taking 2  or  3.  A  vector  field  is  a  vector-valued  function of  two  or  more  variables.  It  is  a

function taking 2 2 or 3 3 (or in general: n n). You define a vector field exactly as you
might expect:

In[1]:= Clear f, x, y ;

f x4 y4 6 x2 y2 1, 4 x3 y 4 x y3

Out[2]= 1 x4 6 x2 y2 y4, 4 x3 y 4 x y3

A three-dimensional vector field has three coordinate functions:

In[3]:= Clear g, x, y, z ;

g y z, z x, x y

Out[4]= y z, x z, x y

Plotting a Two-Dimensional Vector Field
You will need to load the VectorFieldPlots package:

In[5]:= Needs "VectorFieldPlots`"

You now have access to the commands VectorFieldPlot and VectorFieldPlot3D:

In[6]:= VectorFieldPlot y, x , x, 1, 1 , y, 1, 1

Out[6]=
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The first argument to VectorFieldPlot is the vector field to be plotted. It is followed by two iterators,
one for each of the two coordinate variables. Each side of the rectangular domain is subdivided into
15  equal  pieces,  and  at  each of  the  15 15 225  points  of  the  resulting  grid  the  tail  of  a  vector  is

placed, the value of the vector field at that point. The lengths of the vectors are scaled so that even
the longest  vectors  will  not overlap one another.  You can change the  number of  vectors displayed
with the PlotPoints option. Set it to a positive integer such as 10 to view a 10 10 display. Set it to a

list  of  two such integers  such as  {10, 5}  to  view ten columns  and five  rows  of  vectors. Lower Plot
Points  settings  will  speed  up  the  evaluation  time,  and  in  some  cases,  they  can  produce  a  more
readable image. Note that by default the same scale is given to each axis.

In[7]:= GraphicsRow

VectorFieldPlot y, x , x, 1, 1 , y, 0, 1 , PlotPoints 10 ,

VectorFieldPlot y, x , x, 1, 1 , y, 0, 1 , PlotPoints 10, 5

, Dividers All

Out[7]=

A  related  and  sometimes  useful  command  is  GradientFieldPlot.  The  syntax  for  this  command  is
identical to that of Plot3D and ContourPlot. It will essentially apply VectorFieldPlot to the gradient
of the function given as the first argument. Below we superimpose a ContourPlot with a Gradient
FieldPlot  for  the function f x, y xy.  The  gradient of  this  function is  y, x ,  precisely  the  field we

plotted earlier. Note that the gradient vector for any point is orthogonal to the level curve through
that point. The gradient points in the direction of steepest ascent.
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In[8]:= Show

ContourPlot x y, x, 1, 1 , y, 1, 1 , Contours 20 ,

GradientFieldPlot x y, x, 1, 1 , y, 1, 1 , PlotPoints 10

Out[8]=

Note also that it  is important to list the ContourPlot  first  to create this graphic. Had it been listed
second, the contour plot would be overlaid on top of the vector field plot, and so would obscure it.

The command VectorFieldPlot3D  is used to plot three-dimensional vector fields. By default, arrow-
heads are not drawn. The option setting VectorHeads True can be used to add arrowheads.

In[9]:= GraphicsRow

VectorFieldPlot3D x, y, z , x, 1, 1 , y, 1, 1 , z, 1, 1 ,

VectorFieldPlot3D x, y, z ,

x, 1, 1 , y, 1, 1 , z, 1, 1 , VectorHeads True

, ImageSize 260

Out[9]=

By default, there are seven vectors drawn in each coordinate direction, for a total of 73 343 vectors
in the  plot.  As  before,  this  behavior can be modified via the PlotPoints  option.  And as  you might
expect, there is a GradientFieldPlot3D  command, whose syntax precisely matches that of Contour
Plot3D.  It can be used to plot the gradient field for a real-valued function of three variables.  Below

we show the  gradient field for  the function f x, y, z x2 y z,  and on the right we add three level
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surfaces  for  this  function  as  well.  Again,  the  gradient  vectors  are  orthogonal  to  the  level  surfaces,
and point in the direction of steepest ascent.

In[10]:= GraphicsRow

GradientFieldPlot3D x2 y z, x, 0, 1 ,

y, 0, 1 , z, 0, 1 , PlotPoints 4, VectorHeads True ,

Show

GradientFieldPlot3D x2 y z, x, 0, 1 , y, 0, 1 , z, 0, 1 , PlotPoints 4 ,

ContourPlot3D x2 y z, x, 0, 1 , y, 0, 1 , z, 0, 1 ,

Contours 3, Mesh None, ContourStyle Opacity .8

, ImageSize 260

Out[10]=

Divergence and Curl of a Three-Dimensional Vector Field
The  divergence  of  a  three-dimensional  vector  field  f x, y, z f1 x, y, z i f2 x, y, z j f3 x, y, z k  is

the real-valued function

div f x, y, z x f1 y f2 z f3.

The curl of f  is the three-dimensional vector field

curl f x, y, z y f3 z f2 i z f1 x f3 j x f2 y f1 k.

The  easiest  way  to  compute  divergence  and  curl  with  Mathematica  is  to  load  the  VectorAnalysis
package, which gives you access to the Div and Curl commands.

In[11]:= Needs "VectorAnalysis`"

If you will be working in a single coordinate system, say in Cartesian coordinates, go ahead and set
the  coordinate  system  and  name  the  coordinate  variables.  This  should  be  done  once.  The  default
coordinate system is Cartesian, but the default coordinate variable names are Xx, Yy, and Zz, which
may not be your first choice. Here we set the coordinate variable names to be x, y, and z:
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In[12]:= SetCoordinates Cartesian x, y, z

Out[12]= Cartesian x, y, z

You are now ready to calculate:

In[13]:= Div x2 y, z, x y z

Out[13]= 3 x y

In[14]:= Curl x2 y, z, x y z

Out[14]= 1 x z, y z, x2

If you will be doing calculations in other coordinate systems, you simply set the coordinate system and
the  coordinate  variable  names  you  would  like  to  use.  Typical  choices  are  Cartesian[x, y, z],  as  we
used  above,  or  Cylindrical[r, , z],  or  Spherical[ , , ].  The  commands  Div  and  Curl  will  accept  a
coordinate system specification as an optional second argument.

In[15]:= Div r2 z, , z , Cylindrical r, , z

Out[15]=
1 r 3 r2 z

r

In[16]:= Curl r2 z, , z , Cylindrical r, , z

Out[16]= 0, r2,
r

Exercises 6.5
1. The option setting ScaleFactor None may be added to VectorFieldPlot input to turn off the 

automatic scaling of vectors. While the vector fields are then drawn with perfect accuracy, the 
vectors may overlap one another. This exercise will illustrate that overlapping vectors can be 
confusing to view. This is why the default settings include vector scaling that prevents overlap-
ping vectors.

a. Sketch the vector field F x, y y, x , without vector scaling.

b. Show that for this field, the head of every vector lies on the line y x.

2. Use Mathematica to verify that the divergence of the curl of any vector field is zero.
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6.6 Line Integrals and Surface Integrals

Line Integrals
Here is  a  parameterization of  a  curve  r t  that  joins the  point  1, 1  to  the  point  2, 2  as  t  runs

from 1 to 2:

In[1]:= Clear r, x, y, t ;

x t : t;

y t : t3 t2 t;

r t : x t , y t

In[5]:= curve ParametricPlot r t , t, 1, 2

Out[5]=

1.0 0.5 0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

1.5

2.0

Here is a vector field in the plane:

In[6]:= Clear f ;

f x , y : x4 y4 6 x2 y2 1, 4 x3 y 4 x y3

And here we superimpose a plot of the vector field with a plot of the curve:

In[8]:= Needs "VectorFieldPlots`"

In[9]:= Show VectorFieldPlot f x, y , x, 1, 2 , y, 1, 2 , PlotPoints 10 , curve

Out[9]=
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The calculation of the line integral f r is straightforward. Here is the integrand:

In[10]:= f x t , y t .r ' t Simplify

Out[10]= 1 4 t4 16 t5 12 t6 40 t7 41 t8 64 t9 18 t10 40 t11 11 t12

And here is the integral:

In[11]:=
1

2
t

Out[11]=
54 102

5005

In[12]:= N

Out[12]= 10.8096

Line  integrals  in  three  or  more  dimensions  are  just  as  easy  to  evaluate.  Plots  for  three dimensions
will require the commands ParametricPlot3D and VectorFieldPlot3D.

Surface Integrals
Here is a surface:

In[13]:= Clear , u, v, x, y, z ;

x u , v : 1 v2 Sin u ;

y u , v : 1 v2 Sin 2 u ;

z u , v : v;

u , v : x u, v , y u, v , z u, v

In[18]:= surface ParametricPlot3D u, v , u, 0, 2 ,

v, 1, 1 , Mesh None, PlotStyle Opacity .8

Out[18]=
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And here is a three-dimensional vector field:

In[19]:= Clear f ;

f x , y , z : 2 x, 2 x y,
1

z

In[21]:= Needs "VectorFieldPlots`"

In[22]:= Show VectorFieldPlot3D f x, y, z ,

x, 1, 1 , y, 1, 1 , z, 1, 1 , PlotPoints 8 , surface

Out[22]=

The  surface  integral  can  be  evaluated  with  ease.  Here  is  the  integrand.  Be  sure  to  use  the  cross
product  ( )  and  not  the  (larger)  multiplication  operator  (×)  when  pulling  that  symbol  from  the
BasicMathInput palette.

In[23]:= f x u, v , y u, v , z u, v . u u, v v u, v

Out[23]= 2 1 v2 2 Cos 2 u 2 v2 Cos 2 u Sin u 2 1 v2 2
Cos u v2 Cos u Sin u Sin 2 u

1

v
4 v Cos 2 u Sin u 4 v3 Cos 2 u Sin u 2 v Cos u Sin 2 u 2 v3 Cos u Sin 2 u

In[24]:= Simplify

Out[24]= 1 v2 Sin u

2 6 4 v2 Cos 2 u 1 v2 2
Sin u Sin 3 u 2 v2 Sin 3 u v4 Sin 3 u

And here we evaluate the integral:

In[25]:=
1

1

0

2

u v

Out[25]=
32

35
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Exercises 6.6

1. Consider the vector field F x, y y,x

x2 y2
.

a. Plot this vector field on the domain 2 x 2, 2 y 2.

b. Let r t t, t . Sketch this curve for 0 t 2, and superimpose it with the plot above.

c. Evaluate the line integral F r for 0 t 2.

d. Let r t t, t3 t2 t . Sketch this curve for 0 t 2, and superimpose it with the plot from 

part a.

e. Evaluate the line integral F r for 0 t 2.

2. Consider the vector field F x, y cos y cos x cos y , x cos x cos y sin y .

a. Show that this is a gradient field, and superimpose its plot with a contour plot of its potential 
function on the domain 2 x 2, 2 y 2.

b. Evaluate the line integral F r for any curve r t  from 2, 0  to 2, 0 .
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7
Linear Algebra

7.1 Matrices

Entering Matrices
Traditionally,  matrices  are  denoted  by  capital  letters,  but  in  Mathematica  you  will  want  to  use
lowercase letters,  since capitals are reserved for built-in functions. If you really can’t live in a world
where matrices are denoted by lowercase letters,  you can use uppercase letters  provided you do not
use those letters that are the names of built-in commands or constants: C, D, E, I, K, N, and O.

To enter a matrix in Mathematica first type the name of your matrix followed by an equal sign. Then
select Table/Matrix   New… in the Insert  menu. A dialogue box will appear.  Select Matrix  and enter
the correct number of rows and columns, then click OK. A matrix of the appropriate dimensions will
appear in a fresh input cell with a placeholder for each entry. Click on the first placeholder and type
a value, and then use the  key to move to the next entry. Enter the cell when you have finished:

In[1]:= mat1

2 3 4 5 6 7

1 1 1 1 1 1

4 5 4 5 4 5

11 2 2 2 2 2

0 0 0 0 0 1

Out[1]= 2, 3, 4, 5, 6, 7 , 1, 1, 1, 1, 1, 1 , 4, 5, 4, 5, 4, 5 , 11, 2, 2, 2, 2, 2 , 0, 0, 0, 0, 0, 1

Look  carefully  at  the  output  above.  Mathematica  thinks  of  a  matrix  as  a  list  of  lists.  Each  row  is
enclosed in curly brackets with entries separated by commas, the rows are separated by commas, and
the entire matrix is enclosed in curly brackets. You can enter a matrix in this form also, but it can be
a little messy:

In[2]:= mat2 1, 2, 3 , 3, 4, 5 , 5, 6, 7

Out[2]= 1, 2, 3 , 3, 4, 5 , 5, 6, 7

The command MatrixForm  will  produce a nicely formatted rectangular array with brackets on the
sides. It  is  best  not to use  the MatrixForm  command when defining a matrix,  as it  would then be
impossible to perform some operations. It is better to simply request that the output be in Matrix
Form whenever you want a nice look at your matrix:



In[3]:= mat2 MatrixForm

Out[3]//MatrixForm=

1 2 3

3 4 5

5 6 7

You  can  request  that  Mathematica  output  every  matrix  in  MatrixForm  by  typing  the  following
command at the beginning of a session:

In[4]:= $Post : If MatrixQ , MatrixForm , &

In[5]:= mat1

Out[5]//MatrixForm=

2 3 4 5 6 7

1 1 1 1 1 1

4 5 4 5 4 5

11 2 2 2 2 2

0 0 0 0 0 1

In order to avoid confusion we will continue to affix //MatrixForm to all our inputs in this chapter.

$Post  is a global variable whose value, if  set, is a function that will be
applied to every output  generated in the current session. The simplest
setting would be something like $Post:=MatrixForm , which would put
every  output  cell  into  MatrixForm.  This  would  work  if  every  output
were  a  matrix,  but  it  would produce  unwanted behavior  if  nonmatrix
output were generated. Hence the rather intimidating setting above.

The  command  If[MatrixQ[#], MatrixForm[#], #]&  is  an  example of
something called a  pure function.  It  looks rather  fancy and cryptic, but
the idea of a pure function is quite simple, and from the perspective of
programming, is also quite elegant. In order to understand the working
of a pure function, you need to understand the two symbols #  and &.
The symbol # represents the argument of the function, and the symbol
& is used to separate the definition of the function from the argument.
So,  for  instance,  the  input  2&[3]  would  produce  the  output  9.  In
essence, we have created a function whose name 2& reveals precisely

what it does. See Section 8.4 for a discussion of pure functions.

In  the  If[MatrixQ[#], MatrixForm[#], #]&  example  above,  things  are
only  a  little  more  complicated.  Understand  first  that  the  argument  #
will represent an output generated in the current session. The effect of
the  function  will  be  to  put  matrix  output  into  MatrixForm,  but  to
leave  nonmatrix  output  alone.  This  is  accomplished  with  the  If
command,  which  takes  three  arguments.  The  first  is  a  condition.  The
second is what is returned if the condition is true. The third is what is
returned  if  the  condition  is  false.  The  condition  is  checked  with  the
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MatrixQ command. MatrixQ[x] returns True if x is a matrix and False
otherwise.

Mathematica  is  happy  to  report  the  dimensions  of  your  matrix.  When  fed  a  matrix  as  input,  the
Dimensions  command  returns  a  list  containing  the  number  of  rows  and  columns  in  the  matrix,
respectively:

In[6]:= Dimensions mat1

Out[6]= 5, 6

There  are  several  commands  that  produce  matrices  quickly.  To  get  a  3 5  matrix  with  random
integer entries between 0 and 50, type:

In[7]:= RandomInteger 50, 3, 5 MatrixForm

Out[7]//MatrixForm=

40 2 41 39 33

19 44 44 1 10

30 36 8 42 21

The  familiar  Table  command  is  easy  to  use.  The  next  command  gives  a  5 5  matrix  whose  i, jth

entry is i 2 j:

In[8]:= Table i 2 j, i, 5 , j, 5 MatrixForm

Out[8]//MatrixForm=

3 5 7 9 11

4 6 8 10 12

5 7 9 11 13

6 8 10 12 14

7 9 11 13 15

The iterators can be set to start at values other than 1:

In[9]:= Table i 2 j, i, 2, 3 , j, 0, 2 MatrixForm

Out[9]//MatrixForm=

2 0 2

1 1 3

0 2 4

1 3 5

2 4 6

3 5 7
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To get a 3 4 zero matrix you can type this:

In[10]:= Table 0, 3 , 4 MatrixForm

Out[10]//MatrixForm=

0 0 0 0

0 0 0 0

0 0 0 0

You can also produce a zero matrix by using Table/Matrix  New… in the Insert menu. Just check the
Fill with 0 box. Yet another way is to use the command ConstantArray, like this:

In[11]:= ConstantArray , 3, 5 MatrixForm

Out[11]//MatrixForm=

We  can  produce  a  4 4 lower  triangular matrix with entries on and below the  diagonal  equal to

i 2 j, and above the diagonal equal to 0, by typing:

In[12]:= Table If i j, i 2 j, 0 , i, 4 , j, 4 MatrixForm

Out[12]//MatrixForm=

3 0 0 0

4 6 0 0

5 7 9 0

6 8 10 12

The If command takes three arguments. The first is a condition or predicate, i.e., an expression that
evaluates  to either True  or  False.  The second is  the  expression to evaluate if  the condition is  true.
The third is the expression to evaluate if the condition is false. If is discussed in Section 8.5.

The Array  command works  much like the  Table  command but  uses  a  function (either built-in  or
user-defined)  rather  than  an  expression  to  compute  the  entries.  For  a  function  f  that  takes  two

arguments,  the  command  Array[f , m, n ]  gives  the  m n  matrix  whose  i, jth  entry  is  f i, j .  For

example, using the built-in function Min for f  produces a matrix where each entry is the minimum

of the row number and column number of that entry’s position:

In[13]:= Array Min, 4, 5 MatrixForm

Out[13]//MatrixForm=

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4
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 Here is a second example, this time with a user-defined function:

In[14]:= Clear f ;

f i , j : i3 j2;

Array f, 2, 3 MatrixForm

Out[16]//MatrixForm=

2 5 10

9 12 17

We can use  the  Array  command to  produce  a general  3 4  matrix  whose  i, jth entry  (the entry  in

row i and column j) is aij.

In[17]:= Clear a, mat ;

mat Array a &, 3, 4 ; mat MatrixForm

Out[18]//MatrixForm=

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

The command below gives the identity matrix.

In[19]:= IdentityMatrix 4 MatrixForm

Out[19]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

This  can also be accomplished using Table/Matrix   New…  in the  Insert  menu by  checking the Fill
with 0 and Fill Diagonal with 1 boxes.

The following command gives a diagonal matrix with the enclosed list on the diagonal:

In[20]:= DiagonalMatrix a, b, c, d MatrixForm

Out[20]//MatrixForm=

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

We can also use DiagonalMatrix to create a superdiagonal matrix.
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In[21]:= DiagonalMatrix a, b, c , 1 MatrixForm

Out[21]//MatrixForm=

0 a 0 0

0 0 b 0

0 0 0 c

0 0 0 0

Or a subdiagonal matrix:

In[22]:= DiagonalMatrix a, b, c , 1 MatrixForm

Out[22]//MatrixForm=

0 0 0 0

a 0 0 0

0 b 0 0

0 0 c 0

Editing Matrices
It is a simple matter to add another row or column to an existing matrix. Start with either a matrix
generated by the Table/Matrix  New… dialogue box, or any MatrixForm output. To add a row, click
on the matrix just above where you want a new row to appear and press the key combination .
A row of  placeholders  will  appear.  To add a new column, click on the matrix where you want the
new column to appear. Press the key combination ,  and a column of placeholders will appear. If
the original matrix appeared in a MatrixForm output cell, the modified matrix will appear in a new
input cell. You can also use the Table/Matrix  menu for these tasks: look in the submenu for Add Row
and Add Column:

In[23]:= mat1

2 3 4 5 6 7

1 1 1 1 1 1

4 5 4 5 4 5

11 2 2 2 2 2

0 0 0 0 0 1

;

To form  a  new  matrix  from existing  matrices  we  use  the  command ArrayFlatten.  This  command
allows  us  to  use  entire  matrices  as  if  they  are  individual  entries  in  a  matrix.  Thus  the  following
command will stack the matrices mat1 and mat2 on top of each other. We use curly brackets, {}, to
indicate that each matrix should be treated as a row in the new matrix and then “flattened” into a
single matrix. This command will only return a matrix if the input matrices have the same number
of columns.
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In[24]:= mat1 RandomInteger 9, 3, 4 ;

mat1 MatrixForm

Out[25]//MatrixForm=

8 1 7 7

6 9 5 6

0 8 0 7

In[26]:= mat2 RandomInteger 9, 3, 4 ;

mat2 MatrixForm

Out[27]//MatrixForm=

0 3 3 6

9 2 8 1

7 7 8 9

In[28]:= ArrayFlatten mat1 , mat2 MatrixForm

Out[28]//MatrixForm=

8 1 7 7

6 9 5 6

0 8 0 7

0 3 3 6

9 2 8 1

7 7 8 9

To form the matrix consisting of mat1 and mat2 side by side we use curly brackets to indicate that
the individual matrices should form a single row.

In[29]:= ArrayFlatten mat1, mat2 MatrixForm

Out[29]//MatrixForm=

8 1 7 7 0 3 3 6

6 9 5 6 9 2 8 1

0 8 0 7 7 7 8 9

One  can  also  form  a  block  matrix.  Below  we  have  a  matrix  comprised  of  four  blocks,  where  mat1
appears  in  the  upper  left  position,  and  mat2  appears  in  the  lower  right  position.  The  remaining
positions are comprised entirely of zeros.
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In[30]:= bm ArrayFlatten mat1, 0 , 0, mat2 ;

bm MatrixForm

Out[31]//MatrixForm=

8 1 7 7 0 0 0 0

6 9 5 6 0 0 0 0

0 8 0 7 0 0 0 0

0 0 0 0 0 3 3 6

0 0 0 0 9 2 8 1

0 0 0 0 7 7 8 9

Using Grid instead of MatrixForm, we can make the blocks easily visible:

In[32]:= Grid bm, Dividers 5 True , 4 True , Frame True

Out[32]=

8 1 7 7 0 0 0 0

6 9 5 6 0 0 0 0

0 8 0 7 0 0 0 0

0 0 0 0 0 3 3 6

0 0 0 0 9 2 8 1

0 0 0 0 7 7 8 9

The Take  command can be used to extract  submatrices  of  a given matrix.  We’ll  use  a  general 5 5
matrix to get a good look at what is happening:

In[33]:= Clear a, mat ;
mat Array a &, 5, 5 ; mat MatrixForm

Out[34]//MatrixForm=

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

Take  can be used  with  2 or  3 arguments.  The first  argument is  the matrix name,  the second indi-
cates  which  rows  are  desired,  the  optional  third  argument  indicates  the  columns.  The  following
command will return the first three rows of the matrix mat:

In[35]:= Take mat, 3 MatrixForm

Out[35]//MatrixForm=

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5
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This command will return the last two rows:

In[36]:= Take mat, 2 MatrixForm

Out[36]//MatrixForm=

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

To get rows 2 through 4 we use a list:

In[37]:= Take mat, 2, 4 MatrixForm

Out[37]//MatrixForm=

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5

If we want every other row we can enter:

In[38]:= Take mat, 1, 1, 2 MatrixForm

Out[38]//MatrixForm=

a1,1 a1,2 a1,3 a1,4 a1,5

a3,1 a3,2 a3,3 a3,4 a3,5

a5,1 a5,2 a5,3 a5,4 a5,5

The  list  1, 1, 2  above  indicates  that  we  want  to  start  at  the  first  row,  end  at  the  last  row,  and
increase the index of the selected rows by 2. In a matrix with 5 rows you could equivalently use the
list 1, 5, 2 .

If we use 3 arguments we can select rows and columns. 

In[39]:= Take mat, 2, 4 MatrixForm

Out[39]//MatrixForm=

a1,2 a1,3 a1,4 a1,5

a2,2 a2,3 a2,4 a2,5

So to extract columns we use All for the second entry. To get the last 3 columns enter:

In[40]:= Take mat, All, 3 MatrixForm

Out[40]//MatrixForm=

a1,3 a1,4 a1,5

a2,3 a2,4 a2,5

a3,3 a3,4 a3,5

a4,3 a4,4 a4,5

a5,3 a5,4 a5,5
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We can extract a submatrix by indicating a range of values for the rows and columns in lists, 

In[41]:= Take mat, 2, 4 , 3, 5 MatrixForm

Out[41]//MatrixForm=

a2,3 a2,4 a2,5

a3,3 a3,4 a3,5

a4,3 a4,4 a4,5

Or we could ask for  the submatrix consisting of only the first  and fourth rows and the second and
fourth columns.

In[42]:= Take mat, 1, 4, 3 , 2, 4, 2 MatrixForm

Out[42]//MatrixForm=

a1,2 a1,4

a4,2 a4,4

The Span command is an alternative to Take. The notation is similar and slightly more efficient. A
Span  is  indicated by  the  ;;  symbol.  The  name of  the  command is  not  needed.  The previous  Take
command is equivalent to the following using Span:

In[43]:= mat 1 ;; 4 ;; 3, 2 ;; 4 ;; 2 MatrixForm

Out[43]//MatrixForm=

a1,2 a1,4

a4,2 a4,4

Exercises 7.1
1. Use the Table command to enter a matrix with the integers 1 through 10 on the diagonal, 0 

below the diagonal, and 1 above the diagonal.

2. Consider the block matrix shown below. Write a custom command blockMatrix that will 
generate matrices of any size of this form. For instance, the output below should result from 
blockMatrix[5]//MatrixForm.
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 4 4 4 4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 5 5 5 5 5

7.2 Performing Gaussian Elimination

Referring to Parts of Matrices
Always remember that internally, Mathematica thinks of a matrix as a list of lists. So to refer to a part

of a  matrix we use  the same notation discussed in Section 3.11 on page 126.  The basic rule  is that

you use double square brackets to refer to individual items in a list:

In[1]:= mat1 MatrixForm

Out[1]//MatrixForm=

8 1 7 7

6 9 5 6

0 8 0 7

To get the second row, type:

In[2]:= mat1 2

Out[2]= 6, 9, 5, 6

Or use the  button found on the BasicMathInput  palette. We’ll do this for the remainder of the

chapter, since it looks a bit nicer:

In[3]:= mat1 2

Out[3]= 6, 9, 5, 6

To retrieve the entry in row 3, column 4, type:
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In[4]:= mat1 3,4

Out[4]= 7

To extract  a  single  column indicate  that you want all rows. For example, to get  the  third  column
type:

In[5]:= mat1 All,3

Out[5]= 7, 5, 0

Gaussian Elimination
A matrix is in reduced row echelon form if the first nonzero entry in each row is a 1 with only 0s above
and beneath it. Furthermore, the rows must be arranged so that if one row begins with more 0s than
another, then that row appears beneath the other. Any matrix can be put into reduced row echelon
form by performing successive elementary row operations: multiplying a row by a nonzero constant,
replacing a row by its sum with a multiple of another row, or interchanging two rows.

You can ask Mathematica  to find the reduced row echelon form of a matrix by using the command
RowReduce:

In[6]:= Clear mat ;

mat

1 1 4 25

2 1 0 7

3 0 1 1
;

RowReduce mat MatrixForm

Out[8]//MatrixForm=

1 0 0 2

0 1 0 3

0 0 1 5

You can also perform “manual” row reduction. Use mat i  to refer to the ith row of the matrix mat.

To replace the second row with the sum of the second row and 2 times the first row, type:

In[9]:= mat 2 mat 2 2 mat 1 ;

mat MatrixForm

Out[10]//MatrixForm=

1 1 4 25

0 1 8 43

3 0 1 1

The  first  line  performed  the  operation,  and  the  semicolon  suppressed  the  output;  the  second  line
asked Mathematica  to display the revised matrix in MatrixForm.  Next we can add 3 times the first
row to the third row, and the second row to the first row:
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In[11]:= mat 3 mat 3 3 mat 1 ;

mat 1 mat 1 mat 2 ;

mat MatrixForm

Out[13]//MatrixForm=

1 0 4 18

0 1 8 43

0 3 13 74

Now add 3 times the second row to the third row:

In[14]:= mat 3 mat 3 3 mat 2 ;

mat MatrixForm

Out[15]//MatrixForm=

1 0 4 18

0 1 8 43

0 0 11 55

Finally,  we  can  multiply  the  third  row  by  1

11
,  multiply  the  second row  by  1,  add  8  times  the

third row to the second row, and add 4 times the third row to the first row:

In[16]:= mat 3

1

11
mat 3 ;

mat 2 1 mat 2 ;

mat 2 mat 2 8 mat 3 ;

mat 1 mat 1 4 mat 3 ;

mat MatrixForm

Out[20]//MatrixForm=

1 0 0 2

0 1 0 3

0 0 1 5

Exercises 7.2

1.  Use row operations to write the matrix 
1 2

3 4
 as the product of an upper triangular matrix and 

an elementary matrix. An elementary matrix is a matrix that differs from the identity matrix by a 
single row operation.
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7.3 Matrix Operations
If two matrices have the same dimensions, we can compute their sum by adding the corresponding
entries  of  the  two  matrices.  In  Mathematica,  as  in  ordinary  mathematical  notation,  we  use  the  +
operator for matrix sums:

In[1]:= mat3

1 0 0

2 3 4

1 5 1
; mat4

2 2 3

0 0 1

5 5 5
;

mat3 mat4 MatrixForm

Out[2]//MatrixForm=

3 2 3

2 3 5

4 10 4

We can also find their difference:

In[3]:= mat3 mat4 MatrixForm

Out[3]//MatrixForm=

1 2 3

2 3 3

6 0 6

We can perform scalar multiplication:

In[4]:= 7 mat3 MatrixForm

Out[4]//MatrixForm=

7 0 0

14 21 28

7 35 7

And we can multiply matrices. The i, jth entry of the product of the matrix a with the matrix b is the

dot  product  of  the  ith  row  of  a  with  the  jth  column  of  b.  Multiplication  is  only  possible  if  the

number of columns of a is equal to the number of rows of b.

In Mathematica, use the dot (i.e., the period) as the multiplication operator for matrices:

In[5]:= mat3.mat4 MatrixForm

Out[5]//MatrixForm=

2 2 3

24 24 29

7 7 3

Be  careful  to  use  the  dot  to  perform  matrix  multiplication.  The  symbol  *  will  simply  multiply
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corresponding entries in the two matrices (not a standard matrix operation):

In[6]:= mat3 mat4 MatrixForm

Out[6]//MatrixForm=

2 0 0

0 0 4

5 25 5

The Transpose command will produce the transpose of a mat he matrix obtained by switching
the rows and columns of that matrix:

In[7]:= Transpose mat3 MatrixForm

Out[7]//MatrixForm=

1 2 1

0 3 5

0 4 1

To find a power of a matrix use the command MatrixPower. The first argument is the matrix, and
the second argument is the desired power:

In[8]:= MatrixPower mat3, 10 MatrixForm

Out[8]//MatrixForm=

1 0 0

10249364 36 166989 20 498728

7 834130 25 623410 15 668261

The inverse of a square matrix, if it exists, is the matrix whose product with the original matrix is the
identity matrix. A matrix that has an inverse is said to be nonsingular. You can find the inverse of a
nonsingular matrix with the Inverse command:

In[9]:= Inverse mat3 MatrixForm

Out[9]//MatrixForm=

1 0 0
2

23

1

23

4

23

13

23

5

23

3

23

It is a simple matter to check that the product of a matrix with its inverse is the identity:

In[10]:= .mat3 MatrixForm

Out[10]//MatrixForm=

1 0 0

0 1 0

0 0 1
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Note that the % in the last input represents the inverse of mat3 rather than the MatrixForm
of that inverse. This is  the reason for the cell  tag Out[73]//MatrixForm=.  If you refer to any such
output  cell  (with  %  or  %%,  for  instance),  Mathematica  will  use  the  output  generated  before
MatrixForm  was  applied.  In  other  words,  the  output  is  a  matrix,  it  is  only  displayed  in
MatrixForm. This makes it easy to incorporate MatrixForm output into new input.

The determinant of a square matrix is a number that is nonzero if and only if the matrix is nonsingu-
lar.  Determinants  are  notoriously  painful  to  compute  by  hand,  but  are  a  snap  with  Mathematica’s
Det command: 

In[11]:= Det mat3

Out[11]= 23

Any matrix operation can be performed either on a matrix whose entries are numeric, or on a matrix
whose entries are purely symbolic.  For example, you can find the formula for the determinant of a
general 3 3 matrix:

In[12]:= Clear a ; mat5 Array a &, 3, 3 ; mat5 MatrixForm

Out[12]//MatrixForm=

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

In[13]:= Det mat5

Out[13]= a1,3 a2,2 a3,1 a1,2 a2,3 a3,1 a1,3 a2,1 a3,2 a1,1 a2,3 a3,2 a1,2 a2,1 a3,3 a1,1 a2,2 a3,3

Notice how the determinant arises naturally in the inverse of a matrix. Here is the entry in the first
row and first column of the inverse of mat5:

In[14]:= Inverse mat5 1,1

Out[14]= a2,3 a3,2 a2,2 a3,3

a1,3 a2,2 a3,1 a1,2 a2,3 a3,1 a1,3 a2,1 a3,2 a1,1 a2,3 a3,2 a1,2 a2,1 a3,3 a1,1 a2,2 a3,3

Here is the same entry with the determinant replaced by the symbol det:

In[15]:= Inverse mat5 1,1 . Det mat5 det

Out[15]=
a2,3 a3,2 a2,2 a3,3

det

The trace of a matrix is the sum of the entries along the main diagonal. The trace of a matrix may be
calculated with the command Tr:
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In[16]:= Tr mat5

Out[16]= a1,1 a2,2 a3,3

Be careful,  there is  a command whose name is Trace,  but it  has nothing to do with linear algebra;
don’t use it to compute the trace of a matrix.

Exercises 7.3
1. Using the Dividers option to the Grid command, find a way to format a matrix with vertical bars 

on the sides instead of parentheses. It is handy to be able to do this when typesetting, as vertical 
bars are traditionally used to denote the determinant of the matrix they enclose. Use your result 
to typeset the following equation:

1 2

3 4
2.

2. Find the inverse of the matrix 

1 7 5 0

5 8 6 9

2 1 6 4

8 1 2 4

 by appending the identity matrix to this matrix and 

then using Gaussian elimination to find the inverse.

7.4 Minors and Cofactors
Another command to be wary  of is  Minors.  This  command computes  determinants of submatrices
but not according to the traditional definition of minors. Traditionally, if A is a square matrix then
the minor Mij  of entry aij  is the determinant of the submatrix that remains after the i th row and jth

column are deleted from A. M = (Mij  is the matrix of minors. But the command Minors will return a

matrix whose ijth entry is  the determinant of the submatrix that remains after the n i 1 st row

and n j 1 st  column are deleted from A.  Yes,  this  is  really confusing, but  see  if  you can see the

difference in the examples below. 

In[1]:= Clear a ; mat5 Array a &, 3, 3 ; mat5 MatrixForm

Out[1]//MatrixForm=

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3
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This is the matrix returned by the built in Minors command:

In[2]:= Minors mat5 MatrixForm

Out[2]//MatrixForm=

a1,2 a2,1 a1,1 a2,2 a1,3 a2,1 a1,1 a2,3 a1,3 a2,2 a1,2 a2,3

a1,2 a3,1 a1,1 a3,2 a1,3 a3,1 a1,1 a3,3 a1,3 a3,2 a1,2 a3,3

a2,2 a3,1 a2,1 a3,2 a2,3 a3,1 a2,1 a3,3 a2,3 a3,2 a2,2 a3,3

The custom command below will give us the traditional matrix of minors. Notice that the entries are
the “reverse” of the entries above. The Map command is discussed in Section 8.4.

In[3]:= minorsMatrix m List ?MatrixQ : Map Reverse, Minors m , 0, 1

In[4]:= minorsMatrix mat5 MatrixForm

Out[4]//MatrixForm=

a2,3 a3,2 a2,2 a3,3 a2,3 a3,1 a2,1 a3,3 a2,2 a3,1 a2,1 a3,2

a1,3 a3,2 a1,2 a3,3 a1,3 a3,1 a1,1 a3,3 a1,2 a3,1 a1,1 a3,2

a1,3 a2,2 a1,2 a2,3 a1,3 a2,1 a1,1 a2,3 a1,2 a2,1 a1,1 a2,2

To get a single minor, say M23  we can simply ask for that entry from the output of the minorsMa

trix command.

In[5]:= minorsMatrix mat5 2,3

Out[5]= a1,2 a3,1 a1,1 a3,2

The  matrix  of  cofactors  is  the  matrix  whose  ijth  entry  is  1 i j Mij. We  can  use  our  minorsMatrix

command to compute a matrix of cofactors.

In[6]:= cofactorsMatrix m List ?MatrixQ :

Table 1 i j, i, Length m , j, Length m minorsMatrix m

Notice that the * above will multiply the corresponding entries of the two matrices.

In[7]:= cofactorsMatrix mat5 MatrixForm

Out[7]//MatrixForm=

a2,3 a3,2 a2,2 a3,3 a2,3 a3,1 a2,1 a3,3 a2,2 a3,1 a2,1 a3,2

a1,3 a3,2 a1,2 a3,3 a1,3 a3,1 a1,1 a3,3 a1,2 a3,1 a1,1 a3,2

a1,3 a2,2 a1,2 a2,3 a1,3 a2,1 a1,1 a2,3 a1,2 a2,1 a1,1 a2,2

Finally, recall that the adjoint of a matrix is the transpose of its matrix of cofactors. There is a lovely

relationship between the inverse of a matrix and its adjoint: A 1 1

det A
adj A . Let’s use an example

to illustrate this fact.
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In[8]:= Clear mat ;

mat RandomInteger 9, 4, 4 ;

mat MatrixForm

Out[10]//MatrixForm=

8 1 2 9

6 0 9 8

7 9 5 7

8 0 2 6

In[11]:=
1

Det mat
Transpose cofactorsMatrix mat MatrixForm

Out[11]//MatrixForm=
171

803

35

803

19

803

281

803

7

803

39

803

90

803

85

1606

126

803

101

803

14

803

38

803

270

803

13

803

30

803

507

1606

Did we get the correct inverse?

In[12]:= .mat MatrixForm

Out[12]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

We did indeed!

Exercises 7.4

1. Find the adjoint of A

8 0 3 7

9 4 2 9

2 8 0 7

8 9 7 0

 using the determinant and the inverse of A, then check your 

answer using the cofactorsMatrix command. 

2. Write a command to find the determinant of a matrix by cofactor expansion along the first row.
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7.5 Working with Large Matrices
If you have a large matrix with only a few nonzero entries you can use the SparseArray  command
to  enter,  store,  and  work  with  the  matrix  efficiently.  To  create  a  SparseArray  simply  give  the
position and value for each nonzero entry of the matrix as follows:

In[1]:= s1 SparseArray 1, 1 a, 2, 3 b, 5, 2 c, 6, 7 d

Out[1]= SparseArray 4 , 6, 7

The output  from the SparseArray  command gives  us  the number of  nonzero entries  and then the
dimensions of the matrix we’ve created. We can use MatrixForm to get a look at this matrix.

In[2]:= s1 MatrixForm

Out[2]//MatrixForm=

a 0 0 0 0 0 0

0 0 b 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 0 0 0 0 d

Equivalently, we can enter a list of positions and a list of corresponding values.

In[3]:= s2 SparseArray 1, 1 , 2, 3 , 5, 2 , 6, 7 a, b, c, d

Out[3]= SparseArray 4 , 6, 7

In[4]:= s2 MatrixForm

Out[4]//MatrixForm=

a 0 0 0 0 0 0

0 0 b 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 0 0 0 0 d

SparseArray  will  create a  matrix that  fits  all  the  nonzero entries  we specify.  We can also specify a
matrix of a different size.

In[5]:= s3 SparseArray 1, 1 , 2, 3 , 5, 2 , 6, 7 a, b, c, d , 8, 10

Out[5]= SparseArray 4 , 8, 10
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In[6]:= s3 MatrixForm

Out[6]//MatrixForm=

a 0 0 0 0 0 0 0 0 0

0 0 b 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 d 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

We can create a SparseArray in which the unspecified entries have a value other than zero. 

In[7]:= s4 SparseArray 1, 1 a, 2, 3 b, 5, 2 c , 5, 5 , 2

Out[7]= SparseArray 3 , 5, 5 , 2

In[8]:= s4 MatrixForm

Out[8]//MatrixForm=

a 2 2 2 2

2 2 b 2 2

2 2 2 2 2

2 2 2 2 2

2 c 2 2 2

The Normal command will convert the output of SparseArray to the list form of a matrix.

In[9]:= Normal s4

Out[9]= a, 2, 2, 2, 2 , 2, 2, b, 2, 2 , 2, 2, 2, 2, 2 , 2, 2, 2, 2, 2 , 2, c, 2, 2, 2

We can use  Table  to help us  list  the nonzero entries  of  a large matrix.  For example the command
below creates a 16 by 12 matrix with 1s in positions 2, 3 , 4, 6 , 8, 9 , and 16, 12 .

In[10]:= s5 SparseArray Table 2i, 3 i 1, i, 4

Out[10]= SparseArray 4 , 16, 12

This large matrix makes a mess if we ask for a numerical output, but a picture can tell us a lot about
our matrix.
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In[11]:= MatrixPlot s5

Out[11]=

1 5 12

1

5

10

16

1 5 12

1

5

10

16

These plots will automatically color entries with larger values in a darker color.

In[12]:= s6 SparseArray Table 2i, 3 i i, i, 4

Out[12]= SparseArray 4 , 16, 12

In[13]:= MatrixPlot s6

Out[13]=

1 5 12

1

5

10

16

1 5 12

1

5

10

16

Sparse arrays can have more than two dimensions.

In[14]:= s7 SparseArray Table 2i, 3 i, i 1 i, i, 4

Out[14]= SparseArray 4 , 16, 12, 5

ArrayRules will return the positions and values we gave for a sparse array.

In[15]:= ArrayRules s7

Out[15]= 2, 3, 2 1, 4, 6, 3 2, 8, 9, 4 3, 16, 12, 5 4, , , 0

Band  can  be  used  with  SparseArray  to  give  a  matrix  in  which  a  single  value  is  present  in  each
position on a diagonal beginning at the given starting position.
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In[16]:= Clear b ;

SparseArray Band 3, 2 3, Band 1, 4 b , 6, 6

Out[17]= SparseArray 7 , 6, 6

In[18]:= MatrixForm

Out[18]//MatrixForm=

0 0 0 b 0 0

0 0 0 0 b 0

0 3 0 0 0 b

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

Or a band can be a list of values.

In[19]:= SparseArray Band 3, 2 2, 4, 6, 8 , 6, 6

Out[19]= SparseArray 4 , 6, 6

In[20]:= MatrixForm

Out[20]//MatrixForm=

0 0 0 0 0 0

0 0 0 0 0 0

0 2 0 0 0 0

0 0 4 0 0 0

0 0 0 6 0 0

0 0 0 0 8 0

Exercises 7.5
1.  Use SparseArray to create the following picture:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
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2. Use SparseArray to create the following matrix:

1 2 0 0 0 0 0 0 0 0 0 0

3 4 0 0 0 0 0 0 0 0 0 0

0 0 1 2 0 0 0 0 0 0 0 0

0 0 3 4 0 0 0 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 0 0

0 0 0 0 3 4 0 0 0 0 0 0

0 0 0 0 0 0 1 2 0 0 0 0

0 0 0 0 0 0 3 4 0 0 0 0

0 0 0 0 0 0 0 0 1 2 0 0

0 0 0 0 0 0 0 0 3 4 0 0

0 0 0 0 0 0 0 0 0 0 1 2

0 0 0 0 0 0 0 0 0 0 3 4

7.6 Solving Systems of Linear Equations

Nonhomogeneous Systems of Linear Equations
Suppose  we  want  to  solve  a  system  of  linear  equations  in  the  form  mx b,  where  m  is  the
coefficient  matrix,  x  is  a  column  vector  of  variables,  and  b  is  a  column  vector.  Such  a  system  is
called nonhomogeneous when b is a vector with at least one nonzero entry. Mathematica offers several
options  for  solving  such  a  system,  and  we  will  explore  each  in  turn.  In  this  first  example  m  is  a
nonsingular  matrix  and  the  system  has  a  unique  solution.  Enter  the  equation  mx b  by  typing
m.x b. Note how Mathematica interprets this equation:

In[1]:= Clear m, x, x1, x2, x3, x4, b ;

m

1 5 4 1

3 4 1 2

3 2 1 5

0 6 7 1

; x

x1

x2

x3

x4

; b

1

2

3

4

;

m.x b

Out[3]= x1 5 x2 4 x3 x4 , 3 x1 4 x2 x3 2 x4 ,

3 x1 2 x2 x3 5 x4 , 6 x2 7 x3 x4 1 , 2 , 3 , 4

We can interpret this as a list of four linear equations, each in four variables.

Just to be sure let’s check that m is nonsingular:

In[4]:= Det m

Out[4]= 35
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We now use the command ArrayFlatten to form the augmented matrix, and the command RowRe
duce to find the reduced row echelon form of the matrix. 

In[5]:= ArrayFlatten m, b MatrixForm

Out[5]//MatrixForm=

1 5 4 1 1

3 4 1 2 2

3 2 1 5 3

0 6 7 1 4

In[6]:= RowReduce MatrixForm

Out[6]//MatrixForm=

1 0 0 0 127

35

0 1 0 0 141

35

0 0 1 0 139

35

0 0 0 1 13

35

We conclude that x1
127

35
, x2

141

35
, x3

139

35
, x4

13

35
.

The command LinearSolve provides a quick means for solving systems that have a single solution: 

In[7]:= LinearSolve m, b

Out[7]=
127

35
,

141

35
,

139

35
,

13

35

We can also use the LinearSolve  command to form a function for matrix m  that can be applied to
any vector b.

In[8]:= Clear f ; f LinearSolve m

Out[8]= LinearSolveFunction 4, 4 ,

In[9]:= f b

Out[9]=
127

35
,

141

35
,

139

35
,

13

35

Or we can solve the system mx b  for x  by multiplying both sides on the left by m 1,  to get x

m 1 b.
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In[10]:= Inverse m .b

Out[10]=
127

35
,

141

35
,

139

35
,

13

35

Finally, we can use the command Solve to solve this system, just as in Section 4.9 on page 191. But
we have to be careful using Solve. When we use the Table/Matrix   New… dialogue box to create m,
x,  and b,  both mx  and b  are  lists  of  lists.  The Solve  command takes  a  list  of  equations  as  its  first
argument and a list of variables as its second argument—it unfortunately cannot accept lists of lists.
There is a simple solution: We will have to re-enter x  and b without using the Table/Matrix   New…
dialogue box,  expressing  each as  a  single  list.  If  we  do this,  the  equation m . x b  is  acceptable  as
input to the Solve command. Note how Mathematica interprets the equation m . x b as a single list
of equations when x and b are entered this way:

In[11]:= Clear x, b ; x x1, x2, x3, x4 ; b 1, 2, 3, 4 ; m.x b

Out[11]= x1 5 x2 4 x3 x4, 3 x1 4 x2 x3 2 x4,
3 x1 2 x2 x3 5 x4, 6 x2 7 x3 x4 1, 2, 3, 4

In[12]:= Solve m.x b, x

Out[12]= x1
127

35
, x2

141

35
, x3

139

35
, x4

13

35

An  inconsistent  system  of  equations  has  no  solutions.  If  we  use  the  Solve  command  on  such  a
system, the output will be an empty set of curly brackets:

In[13]:= Clear m, x, b ;

m

1 1 1

1 1 1

1 1 1
; x x1, x2, x3 ; b 1, 2, 1 ;

Solve m.x b, x

Out[15]=

However, if we row-reduce, we can see the inconsistency in the system:

In[16]:= ArrayFlatten m, Transpose b

Out[16]= 1, 1, 1, 1 , 1, 1, 1, 2 , 1, 1, 1, 1

In[17]:= RowReduce MatrixForm

Out[17]//MatrixForm=

1 0 0 0

0 1 1 0

0 0 0 1
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The last row represents the impossible equation 0 1.

If you use the LinearSolve command with an inconsistent system you will be told off:

In[18]:= LinearSolve m, b

LinearSolve::nosol : Linear equation encountered that has no solution.

Out[18]= LinearSolve 1, 1, 1 , 1, 1, 1 , 1, 1, 1 , 1, 2, 1

And if you try to find the inverse of m you will be told off again:

In[19]:= Inverse m .b

Inverse::sing : Matrix 1, 1, 1 , 1, 1, 1 , 1, 1, 1 is singular .

Out[19]= Inverse 1, 1, 1 , 1, 1, 1 , 1, 1, 1 . 1, 2, 1

The remaining possibility for a system of equations is that there are an infinite number of solutions.
The Solve  command nicely displays the solution set  in this situation. The warning message can be
safely ignored in this case:

In[20]:= Clear m, x, b ;

m

2 3 4

4 6 8

1 1 1
; x x1, x2, x3 ; b 8, 16, 1 ;

Solve m.x b, x

Solve::svars : Equations may not give solutions for all "solve" variables.

Out[22]= x1
11

5

7 x3

5
, x2

6

5

2 x3

5

Be  very  careful  when using  the  LinearSolve  command.  In  a  system  having  an  infinite  number  of
solutions it will return only one of them, giving no warning that there are others. In this example it
returns only the solution where x3 0: 

In[23]:= LinearSolve m, b

Out[23]=
11

5
,

6

5
, 0

Row reduction gives the solution with little possibility for confusion:

In[24]:= ArrayFlatten m, Transpose b

Out[24]= 2, 3, 4, 8 , 4, 6, 8, 16 , 1, 1, 1, 1
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In[25]:= RowReduce MatrixForm

Out[25]//MatrixForm=

1 0 7

5

11

5

0 1 2

5

6

5

0 0 0 0

Thus, for each real value assumed by x3, there is a solution with x1
11

5

7

5
x3, and x2

6

5

2

5
x3.

The moral is that you should be very careful using the command LinearSolve  unless you know you
have  a  nonsingular  matrix  and  hence  a  single  solution.  To  check  this,  you  can  use  the  Det  com-
mand, keeping in mind that a singular matrix has determinant zero. When in doubt it is best to use
row reduction and your knowledge of linear algebra to find the solution vectors.

Homogeneous Systems of Equations
A system of equations of the form mx 0, where m  is the coefficient matrix, x  is a column vector
of  variables,  and  0  is  the  zero  vector,  is  called  homogeneous.  Note  that  x 0  is  a  solution  to  any
homogeneous  system.  Now  suppose  m  is  a  square  matrix.  Recall  that  such  a  system  of  linear
equations  has  a  unique  solution  if  and  only  if  m  is  nonsingular.  Hence,  we  see  that  if  m  is
nonsingular, a  homogeneous system will have only the trivial  solution x 0,  while if  m  is  singular
the  system  will  have  an  infinite  number  of  solutions.  The  set  of  all  solutions  to  a  homogeneous
system is called the null space of m:

In[26]:= Clear m, x, b ;

m

0 2 2 4

1 0 1 3

2 3 1 1

2 1 3 2

; x

x1

x2

x3

x4

; b

0

0

0

0

; Det m

Out[27]= 0

In[28]:= RowReduce ArrayFlatten m, b MatrixForm

Out[28]//MatrixForm=

1 0 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 0

This  reduced  form of  the  augmented matrix  tells  us  that  x1 x3,  x2 x3,  and x4 0.  That  is,  any

vector of  the form t, t, t, 0 ,  where t  is  a  real  number,  is  a  solution,  and the vector 1, 1, 1, 0
forms a basis for the solution space. Bases are discussed in the next section of this chapter. 

The  command  NullSpace  gives  a  set  of  basis  vectors  for  the  solution  space  of  the  homogeneous
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equation mx 0:

In[29]:= NullSpace m

Out[29]= 1, 1, 1, 0

Using LinearSolve and NullSpace to Solve Nonhomogeneous Systems
We have seen that the LinearSolve command will only return one solution when a matrix equation
mx b  has  an  infinite  number  of  solutions.  This  can  be  confusing  at  first,  but  you  should
understand that there is a reason for its behavior. If you were to take the sum of the solution vector
provided by  LinearSolve  with  any  vector  in  the  null  space  of  m,  you  would  get  another  solution
vector. Moreover, every solution vector is of this form. Here’s an example:

In[30]:= Clear m, b ;

m

0 2 2 4

1 0 1 3

2 3 1 1
; b

2

0

0
;

In[32]:= LinearSolve m, b

Out[32]= 9 , 7 , 0 , 3

In[33]:= NullSpace m

Out[33]= 1, 1, 1, 0

This tells  us that there are an infinite number of solutions. For each real number t,  there is  a solu-
tion 9, 7, 0, 3 t 1, 1, 1, 0 .  In other words,  x1 9 t,  x2 7 t,  x3 t,  and x4 3.  This

is exactly what row reduction tells us, in slightly different language:

In[34]:= RowReduce ArrayFlatten m, b MatrixForm

Out[34]//MatrixForm=

1 0 1 0 9

0 1 1 0 7

0 0 0 1 3

Exercises 7.6
1. For which values of a will the following system of linear equations have no solutions, one 

solution, or an infinite number of solutions?

x 2 y 3 z 4

2 x y 5 z 2

4 x 3 y a2 z a 3
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2. Find the equation of the circle that contains the points 4, 3 , 4, 5 , and 2, 7 .

7.7 Vector Spaces

Span and Linear Independence
Suppose  we  are  given  a  set  v1, v2, v3, …, vn  of  vectors.  Any  vector  that  can  be  expressed  in  the

form a1 v1 a2 v2 a3 v3 an vn  is  said  to  be  in  the  span  of  the  vectors  v1, v2, v3, …, vn,  where

the coefficients ai are scalars.

We can determine whether a given vector b is in the span of the vectors v1, v2, v3, …, vn  by letting

m  be  the  matrix  whose columns are v1, v2, v3, …, vn,  and then determining whether the  equation

mx b has a solution. A solution x, if it exists, provides values for the scalars ai.

For example,  in real  three-space,  is  the vector b 1, 2, 3  in the span of the  vectors  v1 10, 4, 5 ,
v2 4, 4, 7 , and v3 8, 1, 0 ?

In[1]:= Clear v1, v2, v, b, m, c ;
v1 10, 4, 5 ;
v2 4, 4, 7 ;

v3 8, 1, 0 ;
b 1, 2, 3 ;

m Transpose v1, v2, v3 ;

c LinearSolve m, b

Out[7]=
3

2
,

9

14
,

10

7

 We can check that 3

2
v1

9

14
v2

10

7
v3 b.

In[8]:= c 1 v1 c 2 v2 c 3 v3

Out[8]= 1, 2, 3

A set of vectors v1, v2, v3, …, vn  is said to be linearly independent if every vector in their span can be

expressed in a unique way as a linear combination a1 v1 a2 v2 a3 v3 an vn.  Put another way,

this means that the only way to express the zero vector as such a linear combination is to have each
coefficient ai 0.  If  it  is  possible  to write  a1 v1 a2 v2 a3 v3 an vn 0  with  at  least  one of  the

ai 0, then the set of vectors v1, v2, v3, …, vn  is linearly dependent.

To  check  whether  a  set  of  vectors  v1, v2, v3, …, vn  is  linearly  independent,  let  m  be  the  matrix

whose  columns  are  v1, v2, v3, …, vn,  and  check  that  the  equation  mx 0  has  only  the  trivial

solution:
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In[9]:= NullSpace m

Out[9]=

Yes,  these  are  linearly independent  vectors.  Alternatively,  we  could  check  that  the  matrix  whose
rows  (or columns) are v1, v2, v3, …, vn, is nonsingular:

In[10]:= Det v1, v2, v3

Out[10]= 14

Bases
A basis for a vector space is a set of linearly independent vectors whose span includes every vector in
the vector space.  Given a spanning set of vectors v1, v2, v3, …, vn  for a vector space we can easily

obtain a  basis  for  that  space.  Form a  matrix  whose rows are the vectors  v1, v2, v3, …, vn,  and row-

reduce:

In[11]:= Clear v1, v2, v3, v4, m, a, b, c ;
v1 2, 1, 15, 10, 6 ;

v2 2, 5, 3, 2, 6 ;
v3 0, 5, 15, 10, 0 ;
v4 2, 6, 18, 8, 6 ;

m v1, v2, v3, v4 ;
RowReduce m MatrixForm

Out[17]//MatrixForm=

1 0 0 2 3

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

The nonzero rows  of  this  matrix form a basis  for  the  space spanned by the set  v1, v2, v3, v4 .  This

space is also called the row space of the matrix m.

We can also find a basis  consisting of  a  subset  of  the original vectors.  If  we row-reduce the matrix
whose  columns  are  the  vectors  v1, v2, v3, …, vn,  then  the  columns  containing  the  leading  1s  will

form a basis for the column space, and the corresponding columns from the original matrix will also
form a  basis  for  the  column  space.  (An  entry  in  a  row-reduced  matrix  is  called  a  leading  1  if  the
entry is a 1 and it has only zeros to its left.)
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In[18]:= Clear v1, v2, v3, v4, m ;
v1 2, 1, 15, 10, 6 ;
v2 2, 5, 3, 2, 6 ;

v3 0, 5, 15, 10, 0 ;
v4 2, 6, 18, 8, 6 ;

m Transpose v1, v2, v3, v4 ;

RowReduce m MatrixForm

Out[24]//MatrixForm=

1 0 5

6
0

0 1 5

6
0

0 0 0 1

0 0 0 0

0 0 0 0

The vectors 1 , 0 , 0 , 0 , 0 , 0, 1, 0, 0, 0 ,  and 0, 0, 1, 0, 0  form a basis  for the column space of
m.  The  vectors  from  the  same  columns  in  m  will  also  form  a  basis  for  the  column  space.  Hence
v1, v2, and v4  will form a basis for the space spanned by the set v1, v2, v3, v4 . We can confirm that

v1, v2, v4  is a linearly independent set:

In[25]:= NullSpace Transpose v1, v2, v4

Out[25]=

We see here an example of a general truth: a vector space may have many distinct bases. The num-
ber of  vectors in any basis  for that  vector space,  however,  will  always be the same. This  number is
called the dimension of the vector space.

Rank and Nullity
The  dimension  of  the  null  space  of  a  matrix  is  called  the  nullity  of  the  matrix.  We  can  find  the
nullity by using the Length command to count the vectors in a basis for the null space:

In[26]:= Length NullSpace m

Out[26]= 1

The rank  of  a  matrix  is  the  common dimension of  the  row space  and the  column space.  The rank
plus the nullity must equal the number of columns in a matrix.

In[27]:= MatrixRank m

Out[27]= 3
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Orthonormal Bases and the Gram–Schmidt Process
Given a set of vectors it is frequently desirable to find a collection of vectors with the same span that
have some special properties. 

In[28]:= Clear v1, v2, v3, u1, w1, w2, w3 ;
v1 2, 3, 4, 1, 0 ;

v2 1, 5, 6, 10, 3 ;
v3 7, 2, 1, 1, 1 ;

It is  easy to find a unit vector,  a vector whose length or norm is 1,  in the same direction as a given
vector. We simply need to divide each component by the norm of the vector. The command Normal
ize does this automatically.

In[32]:= Norm v1

Out[32]= 30

In[33]:= u1 Normalize v1

Out[33]=
2

15
,

3

10
, 2

2

15
,

1

30
, 0

In[34]:= Norm u1

Out[34]= 1

A collection of vectors is orthogonal if the vectors are mutually perpendicular, i.e., if the dot product
of every  pair  is  0.  The set  is  orthonormal if  in addition each vector has  norm 1.  Given a basis  for  a
vector space, we can use the Orthogonalize command to find an orthonormal basis. Orthogonalize
uses  the  Gram–Schmidt  process  unless  another  method is  specified  using  the  Method  option.  The
argument for the command Orthogonalize  is a list of linearly independent vectors. The output is a
list of mutually orthogonal unit vectors with the same span:

Before we apply Orthogonalize let’s check that our vectors are linearly independent:

In[35]:= NullSpace Transpose v1, v2, v3

Out[35]=

Good, we are free to proceed.
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In[36]:= w1, w2, w3 Orthogonalize v1, v2, v3 ;

w1, w2, w3 MatrixForm

Out[37]//MatrixForm=

2

15

3

10
2 2

15

1

30
0

4 6

1405

1

8430
4 2

4215

83

8430

30

281

5368

38274729
706 3

12758243

1489

38274729

1574

38274729
176 3

12758243

It is easy to check that any pair of these vectors is orthogonal. Just enter a list whose items are dot
products of every possible pair of distinct vectors. The output will be a list of zeros if the vectors in
each pair are orthogonal:

In[38]:= w1.w2, w2.w3, w3.w1

Out[38]= 0, 0, 0

And here we check that they are all unit vectors:

In[39]:= Norm w1 , Norm w2 , Norm w3

Out[39]= 1, 1, 1

The  familiar  concepts  of  vector  length and  the  angle  between  pairs  of  vectors  in  Euclidean vector
spaces can be generalized to other vector spaces that admit an inner product—a generalization of the
dot product. As with the dot product, two vectors whose inner product is zero are said to be orthogo-
nal. And a vector whose inner product with itself is 1 is said to be a unit vector.

For example,  consider the vector space P3  of  polynomials in the  variable x  of  degree at  most  three

with real coefficients. Given 2 polynomials p and q in P3 we can form their inner product using the

function f  defined below:

In[40]:= Clear f, p, q

In[41]:= f p , q :
1

1

p q x

Applying f  to the vector w1 below we see that w1
1

2
 is a unit vector in the inner product space P3.

In[42]:= Clear x, w1, w2, w3, w4 ;

w1
1

2
; w2 x; w3 x2; w4 x3;
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In[44]:= f w1, w1

Out[44]= 1

And we can see that the vectors w1 and w2 are orthogonal.

In[45]:= f w1, w2

Out[45]= 0

The Orthogonalize command can be applied in any inner-product space. The default inner product
for Orthogonalize  is  the dot product but  a  different inner product  function can be specified as an
optional second argument. 

In[46]:= v1, v2, v3, v4 Orthogonalize w1, w2, w3, w4 , f

Out[46]=
1

2
,

3

2
x,

3

2

5

2

1

3
x2 ,

5

2

7

2

3 x

5
x3

We  can  apply  the  inner  product  to  these  vectors  to  check  that  they  are  pairwise  orthogonal  unit
vectors. 

In[47]:= f v3, v3

Out[47]= 1

In[48]:= f v2, v3

Out[48]= 0

QR-Decomposition
The QR-Decomposition of a matrix is a factorization of a matrix with linearly independent column
vectors,  into a product  of  a  matrix  Q  that  has  orthonormal column vectors  and a matrix  R  that  is
invertible and upper triangular. The matrix Q  is obtained by applying the Gram–Schmidt process to
the column vectors of the matrix. The matrix R is then uniquely determined.

Consider the matrix m. 

In[49]:= m

1 0 0

1 2 0

0 1 3

;

In[50]:= Det m

Out[50]= 6
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In[51]:= q Transpose Orthogonalize Transpose m ;

MatrixForm q

Out[52]//MatrixForm=
1

2

1

3

1

6

1

2

1

3

1

6

0 1

3

2

3

In[53]:= r Inverse q .m;

MatrixForm r

Out[54]//MatrixForm=

2 2 0

0 3 3

0 0 6

In[55]:= q.r MatrixForm

Out[55]//MatrixForm=

1 0 0

1 2 0

0 1 3

The command QRDecomposition automates the process.

In[56]:= qr QRDecomposition m

Out[56]=
1

2
,

1

2
, 0 ,

1

3
,

1

3
,

1

3
,

1

6
,

1

6
,

2

3
,

2 , 2 , 0 , 0, 3 , 3 , 0, 0, 6

In[57]:= Map MatrixForm, qr

Out[57]=

1

2

1

2
0

1

3

1

3

1

3

1

6

1

6

2

3

,

2 2 0

0 3 3

0 0 6
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The  command  QRDecomposition  returns  2  matrices,  q  and  r,  where  qt r  is  equal  to  the  original

matrix. Notice that the first matrix in this list is the transpose of our matrix q above.

In[58]:= Transpose qr 1 .qr 2

Out[58]= 1, 0, 0 , 1, 2, 0 , 0, 1, 3

Exercises 7.7
1.a Find an orthonormal basis for the vector space spanned by the vectors v1 1, 2, 3 , 

v2 4, 5, 6 , v3 7, 7, 8  and use the result to show that the product of an orthonormal 

matrix with its transpose is the identity matrix. 

b. Explain why this makes sense.

7.8 Eigenvalues and Eigenvectors
Given an n n  matrix m,  the  nonzero vectors  vi  such that  mvi i vi  are  the eigenvectors  of m,  and

the  scalars  i  are  the  eigenvalues  of  m.  There  are  at  most  n  eigenvalues.  First  we  will  use  the

commands  Eigenvalues,  Eigenvectors,  and  Eigensystem  to  find  eigenvalues  and  eigenvectors.
Then we will walk through the process “manually.”

Finding Eigenvalues and Eigenvectors Automatically
Here is a simple matrix:

In[1]:= Clear m ;

m Array Min, 2, 2 ; m MatrixForm

Out[2]//MatrixForm=

1 1

1 2

To get the eigenvalues, type the following command (look for  in the BasicMathInput palette):

In[3]:= 1, 2 Eigenvalues m

Out[3]=
1

2
3 5 ,

1

2
3 5

For the eigenvectors, type:
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In[4]:= v1, v2 Eigenvectors m

Out[4]= 2
1

2
3 5 , 1 , 2

1

2
3 5 , 1

We find two eigenvalues and two eigenvectors. Let’s check that mv1 1 v1:

In[5]:= m.v1 Simplify

Out[5]=
1

2
1 5 ,

1

2
3 5

In[6]:= 1 v1 Simplify

Out[6]=
1

2
1 5 ,

1

2
3 5

In[7]:= m.v1 1 v1

Out[7]= True

You can easily check that mv2 2 v2 as well.

The  command  Eigensystem  gives  both  the  eigenvalues  and  the  eigenvectors.  The  output  is  a  list
whose first item is a list of eigenvalues and whose second item is a list of corresponding eigenvectors:

In[8]:= Eigensystem m

Out[8]=
1

2
3 5 ,

1

2
3 5 , 2

1

2
3 5 , 1 , 2

1

2
3 5 , 1

We can ask that the output of any of these commands be numerical approximations by replacing m
with N[m]:

In[9]:= Eigensystem N m

Out[9]= 2.61803, 0.381966 , 0.525731, 0.850651 , 0.850651, 0.525731

Even for a simple matrix with integer entries the eigenvalues can be quite complicated and involve
complex numbers:

In[10]:= Clear m ;

m Array Min, 3, 3 ; m MatrixForm

Out[11]//MatrixForm=

1 1 1

1 2 2

1 2 3
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In[12]:= Eigenvalues m

Out[12]= Root 1 5 1 6 12 13 &, 3 ,

Root 1 5 1 6 12 13 &, 2 , Root 1 5 1 6 12 13 &, 1

The eigenvalues here  are  returned as  Root  objects,  in this  case the  three  roots  of  the  characteristic

polynomial  1 5 x 6 x2 x3.  The  option  setting  Cubics True  will  permit  the  display  of  such
roots in terms of radicals.

In[13]:= Eigenvalues m, Cubics True

Out[13]= 2
72 3

3

2
9 3

1 3

7

2
9 3

1 3

32 3
,

2

7

2

2 3
1 3

3 9 3
1 3

1 3 7

2
9 3

1 3

2 32 3
,

2

7

2

2 3
1 3

3 9 3
1 3

1 3 7

2
9 3

1 3

2 32 3

There  is  a  similar  option  setting  for  quartics.  One  may  also  get  a  numerical  approximation  of  the
eigenvalues as follows:

In[14]:= Eigenvalues m N

Out[14]= 5.04892, 0.643104, 0.307979

For an n n matrix Mathematica will always return n eigenvalues even if they are not all distinct. The
eigenvalues  will  occur  in  the  same  frequency  as  the  roots  of  the  characteristic  polynomial  (as
explained  in  the  next  subsection).  Mathematica  will  also  output  n  eigenvectors.  If  there  are  fewer
than n  linearly independent eigenvectors, the output may contain one or more zero vectors.  These
zero vectors are there for bookkeeping only; actual eigenvectors are nonzero by definition:
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In[15]:= Clear m ;

m

2 1 0

0 2 0

0 0 0
;

Eigensystem m

Out[17]= 2, 2, 0 , 1, 0, 0 , 0, 0, 0 , 0, 0, 1

Finding Eigenvalues and Eigenvectors Manually
Even  though  Mathematica  can  produce  eigenvalues  and  eigenvectors  very  quickly,  it  is  still
sometimes enlightening to go through the process “manually.” To find the eigenvalues we first form
the  characteristic  polynomial,  which  is  the  determinant  of  the  matrix  I m,  where  m  is  a  square
matrix,  is an indeterminate, and I is the identity matrix of the same dimensions as m:

In[18]:= Clear m ;

m

2 1 0

1 2 0

0 0 3

;

c Det IdentityMatrix 3 m

Out[20]= 9 15 7 2 3

Then we find the roots of the characteristic polynomial:

In[21]:= Solve c 0,

Out[21]= 1 , 3 , 3

There are two eigenvalues 1 and 3. The eigenvalue 3 is reported twice because it occurs twice
as a root of the characteristic polynomial c. We can see this clearly by factoring c:

In[22]:= Factor c

Out[22]= 3 2 1

Of course,  most characteristic polynomials will  not factor so nicely. To find the eigenspace of each
eigenvalue i we will find the null space of the matrix i I m:

In[23]:= NullSpace 1 IdentityMatrix 3 m

Out[23]= 1, 1, 0

In[24]:= NullSpace 3 IdentityMatrix 3 m

Out[24]= 0, 0, 1 , 1, 1, 0

The  eigenspace  for  the  eigenvalue  1  has  one  basis  vector:  1, 1, 0 .  The  eigenspace  for  the
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eigenvalue 3 has two basis vectors: 0, 0, 1  and 1, 1, 0 .

Let’s have Mathematica check our work:

In[25]:= Eigensystem m

Out[25]= 3, 3, 1 , 0, 0, 1 , 1, 1, 0 , 1, 1, 0

Diagonalization
A square  matrix  m  is  diagonalizable  if  there  exists  a  diagonal  matrix  d  and  an  invertible  matrix  p

such  that  m pd p 1.  In  this  case,  the  expression  on  the  right  hand  side  is  called  a  Jordan

decomposition  or diagonalization  of m. An n n matrix is diagonalizable if and only if it has n linearly
independent  eigenvectors.  In  this  case  the  matrix  p  will  be  the  matrix  whose  columns  are  the

eigenvectors  of  m  and  the  matrix  d  will  have  the  eigenvalues  of  m  along the  diagonal  (and zeros
everywhere else):

We can use Eigensystem  to find the eigenvalues and eigenvectors and then form the matrices p and

d  ourselves  or  use  JordanDecomposition  and  have  Mathematica  compute  the  matrices  p  and  d.

Notice  that  the  matrices  we  get  by  each  method  are  slightly  different.  The  order  in  which  the
eigenvalues and eigenvectors are listed causes this difference.

In[26]:= Clear m, p, c, d ;

m

2 1 0

1 2 0

0 0 3
;

In[28]:= evals, evecs Eigensystem m

Out[28]= 3, 3, 1 , 0, 0, 1 , 1, 1, 0 , 1, 1, 0

In[29]:= d DiagonalMatrix evals ;

d MatrixForm

Out[30]//MatrixForm=

3 0 0

0 3 0

0 0 1

In[31]:= p Transpose evecs ;

p MatrixForm

Out[32]//MatrixForm=

0 1 1

0 1 1

1 0 0
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In[33]:= p.d.Inverse p MatrixForm

Out[33]//MatrixForm=

2 1 0

1 2 0

0 0 3

In[34]:= Clear p, d ;

p, d JordanDecomposition m

Out[35]= 1, 0, 1 , 1, 0, 1 , 0, 1, 0 , 1, 0, 0 , 0, 3, 0 , 0, 0, 3

In[36]:= Map MatrixForm,

Out[36]=

1 0 1

1 0 1

0 1 0

,

1 0 0

0 3 0

0 0 3

In[37]:= p.d.Inverse p MatrixForm

Out[37]//MatrixForm=

2 1 0

1 2 0

0 0 3

Exercises 7.8

1. Form the LU-decomposition of the matrix m

2 1 0

1 2 0

0 0 3

.

7.9 Visualizing Linear Transformations
A linear  transformation F  is  a  function from one vector  space  to  another  such that  for  all  vectors  u
and v  in the domain, F u v F u F v ,  and such that for  all  scalars k,  F k v k F v .  Once bases
have  been  specified  for  each  vector  space,  a  linear  transformation  F  can  be  represented  as
multiplication by a matrix m, so that F v m.v for all vectors v in the domain of F.

We can better understand a linear transformation by studying the effect it has on geometric figures

in its domain. Mathematica  can be used to visualize the effect of a linear transformation from 2  to
2  on a geometric object in the plane. We first produce a polygonal shape by specifying the coordi-

nates  of  its  vertices.  We  can  then  apply  a  linear  transformation  to  each  of  these  points  and  see
where they land. Examining the geometric changes tells us how the linear transformation behaves. 
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To produce a  figure on which to demonstrate transformations,  go to the Graphics  menu and select
New  Graphic.  Next,  bring  up  the  drawing  tools  via  Graphics Drawing  Tools,  and  select  the  line
segments  tool (push the appropriate  button, or  type the letter  s).  Now click on the graphic repeat-
edly to draw a picture, being careful not to click on any previous points (to close the loop) until you
are done. Don’t  get too fancy;  just  a  single closed loop is  all that  is  needed. For instance,  here is a
stunning portrait of our dog, Zoe:

Now click on the graphic so that the orange border is showing, copy it to the clipboard (Edit Copy)
and paste it into the following command:

In[1]:= dog First Cases , Line pts pts, Infinity

Out[1]= 0, 0 , 0.237841, 0.700376 , 0.145025, 0.981963 , 0.145025, 1.30109 ,

0.087015, 1.54514 , 0.063811, 2.08954 , 0.145025, 2.31481 ,
0.353861, 2.37112 , 0.214637, 2.1834 , 0.168229, 1.92058 ,

0.249443, 1.639 , 0.841145, 1.73286 , 1.32843, 1.67654 , 1.51406, 1.73286 ,
1.63008, 2.05199 , 1.7113, 2.22094 , 1.7113, 1.75163 , 1.7345, 1.65777 ,
1.83892, 1.65777 , 1.81571, 1.52636 , 2.03615, 1.24478 , 1.89693, 0.906873 ,

1.59528, 1.15091 , 1.60688, 0.3437 , 1.7461, 0.118431 , 1.7461, 0.00579624 ,
1.38644, 0.00579624 , 1.34003, 0.625287 , 0.643911, 0.644059 ,

0.400269, 0.212293 , 0.609105, 0.118431 , 0.620707, 0.00579624 , 0, 0

The details of how the Cases  command works are discussed in Section 8.8. But what  it produces is

simply the list of Zoe’s coordinates. Her picture is easily recovered from this coordinate list, either as
a Line or Polygon object:
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In[2]:= Graphics Line dog , Graphics Brown, Polygon dog

Out[2]= ,

If  when  constructing  a  graphic  you  invoke  the  line  segments  tool  more  than  once,  you  will
produce  a  graphic  with  more  than one  Line  object  in  it.  Things  are  a  bit  more  complicated
here.  In  such  cases  do  not  apply  First  to  the  Cases  input  above.  Cases  will  produce  a  list
containing multiple  lists  of points.  Give this  master list  a name (such as dog).  To display this
list,  instead  of  Graphics[Line[dog]],  use  Graphics[Map[Line,dog]]  (or  equivalently:
Graphics[Table[Line[s],{s,dog}]]).  To  multiply  the  matrix m  by  each  vertex  in  the  dog  lists,
we use Map[m.#&,dog,{2}]. This “maps” the Function[v,m.v]  over the dog list at the second

level. Map and Function  are described in detail in Section 8.4 on page 403. Finally, to display

the transformed image, put this all together to get: 

Graphics[{Brown, Map[Line, Map[m.#&, dog, {2}]]}]

You  will  probably  not  want  to  use  Polygon  to  render  an  image  made  from  multiple  Line
objects.

We  can  reflect  Zoe  about  the  y-axis  using  the  matrix  
1 0

0 1
.  We  simply  multiply  each  of  Zoe’s

coordinates  by  this  matrix,  then  make  a  Polygon  from  the  transformed  coordinates.  Both  the
original and transformed figures are shown below:

In[3]:= Graphics Brown, Polygon Table
1 0

0 1
.v, v, dog , Line dog ,

Axes True

Out[3]=

2 1 1 2

0.5

1.0

1.5

2.0

Here Zoe is reflected about the line y x, using the matrix 
0 1

1 0
:
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In[4]:= Graphics Brown, Polygon Table
0 1

1 0
.v, v, dog , Line dog ,

Axes True, PlotRange 3

Out[4]=
3 2 1 1 2 3

3

2

1

1

2

3

The most simple type of linear transformation is a dilation or contraction. The standard matrix for

this  type  of  transformation is  
c 0

0 c
.  If  0 c 1  we  have  a  contraction,  while  if  c 1,  we  have  a

dilation.  Using  Manipulate  we  allow c  to  vary  dynamically.  Below we  display  the  dilation matrix
together with the graphical output.  Toward this end, we introduce a displayMatrix  command that
will  round all  matrix  entries  to  two decimal places,  leave  room in front  of  each entry for  a  minus
sign, and generally make the matrix entries easy to read as the parameter c is manipulated.

In[5]:= displayMatrix m : MatrixForm

Map NumberForm Chop N , 10 3 , 3, 2 , NumberSigns " ", " " &, m, 2

The displayMatrix command utilizes both Map and Function, which are discussed in Section

8.4  on page 403,  in  order  to  operate  individually  on each matrix entry.  It  also  makes use  of

NumberForm, which is used to regulate the display of numbers, and Chop,  which is used to

round sufficiently small numbers to zero. NumberForm is discussed in Section 8.3.
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In[6]:= Manipulate

Labeled Graphics Brown, Polygon Table
c 0

0 c
.v, v, dog , Line dog ,

Axes True, PlotRange 10 , the label

c 0

0 c
displayMatrix, Right, Top ,

c, 2.75 , .2, 5

Out[6]=

c

10 5 5 10

10

5

5

10 2.75 0.00

0.00 2.75

We can rotate a figure in two dimensions through an angle  using the standard rotation matrix.

In[7]:= RotationMatrix MatrixForm

Out[7]//MatrixForm=

Cos Sin

Sin Cos

In[8]:= Manipulate

Labeled Graphics Brown, Polygon Table RotationMatrix .v, v, dog ,

Line dog , Axes True, PlotRange 4, PlotLabel "Bad Dog" ,

the label RotationMatrix displayMatrix, Right, Top , , .8 , 0, 2

Out[8]=

4 2 2 4

4

2

2

4

Bad Dog 0.70 0.72

0.72 0.70
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We can compose linear transformations by multiplying the individual matrices  for the transforma-
tions. Below we’ve combined a reflection about the x-axis with a dilation and a rotation.

In[9]:= Manipulate With m
1 0

0 1
.

c 0

0 c
.RotationMatrix ,

Labeled Graphics Brown, Polygon Table m.v, v, dog ,

Line dog , Axes True, PlotRange 10 ,

the label Row MatrixForm
1 0

0 1
, ".", displayMatrix

c 0

0 c
,

".", displayMatrix RotationMatrix , " ", displayMatrix m ,

Top , , 2 , 0, 2 , c, 2.5 , 1, 4

Out[9]=

c

1 0

0 1
.

2.50 0.00

0.00 2.50
.

0.42 0.91

0.91 0.42

1.04 2.27

2.27 1.04

10 5 5 10

10

5

5

10

In 3-dimensions, we can easily access any of the dozens of polyhedra available in the Polyhedron
Data  collection,  or  any  of  the  Geometry3D  objects  in  the  ExampleData  collection.  Here,  for
instance, is the space shuttle:

In[10]:= ExampleData "Geometry3D", "SpaceShuttle"

Out[10]=

We can easily extract its vertex coordinates as follows (to save space we display only the first few):
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In[11]:= vertices N ExampleData "Geometry3D", "SpaceShuttle" , "VertexData" ;

Take vertices, 10

Out[12]= 4.99949, 0.68171, 0.569242 , 4.99976, 0.491153, 0.805206 ,

5.34948, 0.470935, 0.566062 , 4.99976, 0.491153, 0.805206 ,
4.90671, 0.620194, 0.686502 , 4.99949, 0.68171, 0.569242 ,
5.29975, 0.147914, 0.811038 , 5.56803, 0.1192, 0.568687 ,

4.90671, 0.620194, 0.686502 , 5.56803, 0.1192, 0.568687

Collections of these vertices are assembled to make the polygonal faces. The first face, for instance, is
a triangle comprised of the first, second, and third vertices in the above list.

In[13]:= faces ExampleData "Geometry3D", "SpaceShuttle" , "PolygonData" ;

Take faces, 10

Out[14]= 1, 2, 3 , 4, 5, 6 , 3, 7, 8 , 1, 9, 2 , 7, 3, 2 ,
10, 11, 12 , 12, 4, 6 , 12, 11, 4 , 13, 14, 15 , 16, 17, 18

In total there are 310 vertices and 393 faces:

In[15]:= Length vertices , Length faces

Out[15]= 310, 393

We can reassemble this information into a three-dimensional graphic using GraphicsComplex, like
this:

In[16]:= Graphics3D EdgeForm , GraphicsComplex vertices, Polygon faces

Out[16]=

So, proceeding as in the two-dimensional case, we dynamically display the figure resulting from the
application of a linear transformation to each of the vertices of the figure above. For instance, below
we show the effect of composing rotations about each of the three coordinate axes, respectively:
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In[17]:= Manipulate

With m RotationMatrix , 1, 0, 0 .

RotationMatrix , 0, 1, 0 .RotationMatrix , 0, 0, 1 ,

vertices N ExampleData "Geometry3D", "SpaceShuttle" , "VertexData" ,

faces ExampleData "Geometry3D", "SpaceShuttle" , "PolygonData" ,

Labeled

Graphics3D

EdgeForm , GraphicsComplex Table m.v, v, vertices , Polygon faces ,

PlotRange 8 , displayMatrix m , Right, Top ,

, .5 , 0, 2 , , 0, 2 , , 0, 2

Out[17]= 1.00 0.00 0.00

0.00 0.88 0.48

0.00 0.48 0.88

Exercises 7.9
1. Draw a simple line drawing and construct a graph that demonstrates its reflection about the x-

axis.

2. One can apply matrix transformations to each vertex in any of the objects in the Polyhedron
Data collection.

a. Enter the input below to render a square gyrobicupola:

PolyhedronData "SquareGyrobicupola"

b. Extract the vertices and face indices for this polyhedron. Hint: A similar extraction was carried 
out in the text for the space shuttle. The syntax is slightly different here, however. The relevant 
properties are now called "VertexCoordinates" and "FaceIndices". Type PolyhedronData["
SquareGyrobicupola","Properties"] for a listing of all available properties.

c. How many vertices and faces are there in this example?

d. Construct a Manipulate that will enable you to rotate the polyhedron about any of the three 
coordinate axes.
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8
Programming

8.1 Introduction
When you put several commands together to accomplish some purpose beyond the capacity of any
one individually, you are programming.  Mathematica  is  intentionally designed for  this  purpose.  Like
anything else, getting good at programming takes practice. But it is also exceedingly handy to have
familiarity  with  commands  that  lend themselves  to  such  greater  enterprises.  We’ve  seen  plenty  of
Mathematica  in  the  first  seven  chapters;  in  this  chapter  we’ll  discuss  commands  that  are  especially
useful for programming. Keep in mind that we only have room here for a brief introduction to these
concepts. Entire books, much longer than this one, have been written on this subject. Think of this
chapter as a gentle introduction.

We begin in Section 8.2  with  some important  background material,  a  consideration of the  internal
form  of  any  and  every  Mathematica  expression.  Every  expression,  input,  output  (or  a  cell,  or  an
entire  notebook)  is  highly  structured.  Before  it  is  possible  to  operate  on  any  such  expression,  you
simply have to know what you are dealing with. You have to understand its structure.

Some of the most fundamental structures in Mathematica are the various types of numbers. These are
addressed  in  Section  8.3.  The  internal  forms  of  the  various  types  of  numbers  are  discussed,  along
with notions such as precision and accuracy. Mathematica  has the capacity to carry out calculations
to arbitrarily high precision. In this section we also discuss a myriad of possibilities for the display of
numbers.

Section 8.4 introduces the workhorses of functional programming, commands like Map and Function

and  MapThread.  Section  8.5  introduces  the  staples  of  procedural  programming,  with  predicate
commands  (that  return  True  or  False),  and  control  structures  and  looping  commands  such  as  If,
Do,  While,  and For. These commands instruct Mathematica  to carry out a sequence of instructions,
and  similar  commands  are  often  among  the  first  encountered  when  one  learns  an  elementary
programming language.

Section  8.6  discusses  commands  that  limit  the  scope  of  auxiliary  functions  and  symbols  that  are
sometimes  needed  in  programming.  These  scoping  commands  are  essential  to  insulate  local  defini-
tions  from  any  global  assignments  that  a  user  might  make.  Section  8.7  introduces  the  essential
commands  that  facilitate  iteration,  such  as  NestList,  NestWhileList,  FoldList,  and  FixedPointList.



Finally,  section 8.8  discusses  patterns  and pattern matching in the  context of  defining commands,
making replacements, and for use in specific commands like Cases.

8.2 FullForm: What the Kernel Sees
Every  Mathematica  expression  is  either  an  atom  or  a  nested  expression.  An  atom is  the  most  simple
type of expression: a number, a symbol, a string. It is an expression that cannot be decomposed into
simpler component pieces. The AtomQ command will tell you if an expression is atomic. Here are a
few examples:

In[1]:= Clear a, x ;

Grid Table exp, AtomQ exp , exp,

2, 2.0, 2 3, 2 3 , , a, Plot3D, Sin, "a string", 2 a, a x , Dividers Gray

Out[2]=

2 True

2. True
2

3
True

2 3 True

True

a True

Plot3D True

Sin True

a string True

2 a False

a x False

A nested  expression  has  the  form  head[arg1, arg2, …].  The  head  is  typically  atomic  (it  is  usually  a

command name, although it may itself be a nested expression), and the arguments are either nested
expressions or atoms. The arguments are enclosed in square brackets (typically there are one or more
arguments,  but  zero  arguments  are  permitted).  The  command  Head  will  display  the  head  of  any
nested expression. Here are a few examples (for each expression in the left column, its head appears
in the right column):

In[3]:= Clear a, b, c, g, x, y, myCommand ;

Grid Table exp, Head exp , exp, myCommand x , g x, y , a b x, y , c , a b c ,

Dividers Gray
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Out[3]=

myCommand x myCommand

g x, y g

a b x, y , c a

a b c a b

Even  the  expression  a[b][c]  qualifies  as  a  legitimate  nested  expression.  The  head  is  the  nested
expression a[b].

Every  non-atomic Mathematica  expression has this form, a head followed by square brackets enclos-
ing zero or more arguments.

That last  statement  should give  you pause.  Consider the  expression 2 + a.  It  is  not atomic (we saw
this in the second to last output above), so what is the head? Where are the square brackets? What
are the arguments? It does not appear to have the form head[arg1, arg2, …]. What gives?

In[4]:= Head 2 a

Out[4]= Plus

What’s going on is that the internal or FullForm of this expression is not revealed when we type 2 +
a.  These  paltry  three  characters  are  parsed  into  the  following  before  being  sent  to  the  kernel  for
evaluation:

In[5]:= 2 a FullForm

Out[5]//FullForm=

Plus 2, a

Ah,  so  this  expression  does  have  the  form  of  a  nested  expression  after  all,  and  the  head  is  indeed
Plus.  Mathematica  allows  you to type  2 + a  because you’re  a  human, and that’s what  you’re used  to
(this  is  called  the  infix  form  of  the  Plus  command).  In  this  and  in  dozens  of  other  cases  you  are
permitted  to  create  expressions  that  do  not  look  like  proper  nested  expressions.  This  flexibility  is
granted simply to make your interactions with Mathematica more natural, and to make the typing as
simple as possible.  But in each of these cases your input is parsed into a properly structured nested
expression before being sent to the kernel. It is crucial to understand this fact if you are to program
effectively in Mathematica. FullForm  is a great tool for peeking under the hood to view the internal
form of any Mathematica  expression.  Here are some other examples (for each expression in the left
column we show its FullForm in the right column):

8.2   FullForm: What the Kernel Sees          387



In[6]:= Grid Table exp, FullForm exp ,

exp, 2 a, 2 a, a, 2^a, a , 2 a, , , 2, a , , a , a , a 1 ,

a && b, a b, a, a 2, a . b, a . b, a b, a b, a b, a b,

a Reals, a b, a ' x , a x x , Dividers Gray Quiet

Out[6]=

2 a Plus 2, a

2 a Times 2, a

a Times 1, a

2a Power 2, a

a Power a, Rational 1, 2
2

a
Times 2, Power a, 1

Pi

E

2, a List 2, a

Blank

a Pattern a, Blank

a Pattern a, BlankSequence

a 1 Part a, 1

a && b And a, b

a b Or a, b

a Not a

a 2 Rule a, 2

a . b ReplaceAll a, b

a . b ReplaceRepeated a, b

a b Equal a, b

a b Unequal a, b

a b Less a, b

a b LessEqual a, b

a Reals Element a, Reals

a b StringExpression a, b

a x Derivative 1 a x

a x x Integrate a x , x

Note that Quiet  has been applied (in  postfix form) in the previous input.  This suppresses all
warning messages. In this case, for instance, the a /. b  input generates a warning message that
b is neither a replacement rule nor a list of replacement rules.
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Note that FullForm  can be subtle  to use  in some cases,  as an expression may evaluate before Full
Form  is  applied.  If  one  enters  FullForm[a = b],  for  instance,  the  expression  a = b  evaluates  and
returns b, and then the FullForm of b (which is simply b) is displayed. In fact, the FullForm of a = b
is  Set[a, b].  In  such  cases,  wrapping  the  expression  in  Defer  will  prevent  this  sort  of  premature
evaluation.

In[7]:= FullForm a b

Out[7]//FullForm=

b

In[8]:= Defer FullForm a b

Out[8]= Set a, b

In[9]:= Defer FullForm a : b

Out[9]= SetDelayed a, b

Understanding the structure of the Mathematica language allows you to do many things. One clearly
sees  at  this  point,  for  instance,  the  internal  distinctions  between  the  symbols  =,  :=,  and  .  They
correspond  respectively  to  the  commands  Set,  SetDelayed,  and  Equal.  You  will  soon  be  able  to
harness  your  knowledge of  the  structure  of  expressions  to  operate  in interesting ways  on complex
expressions. This is the essence of programming in Mathematica.

One last symbol deserves our attention in this context: the semicolon. We have used this symbol to
suppress output on many occasions. It also allows us to evaluate several commands in a single input
cell, like this:

In[10]:= a 3; 2 a

Out[10]= 6

The FullForm of the input above can be seen via Defer:

In[11]:= Defer FullForm a 3; 2 a

Out[11]= CompoundExpression Set a, 3 , Times 2, a

And here is the FullForm of an expression that ends in a semicolon:

In[12]:= Defer FullForm a 3;

Out[12]= CompoundExpression Set a, 3 , Null

The command is CompoundExpression,  and each argument is  itself an expression. The arguments
are  evaluated  in turn,  but  only the  output  associated with  the  expression  in the  final  argument  is
displayed.  CompoundExpression  is  an  invaluable  tool  in  writing  Mathematica  programs,  for  it
allows several  inputs  to  be  evaluated in turn,  one after  the  other,  with only the output  of  the  last
input displayed.
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Here’s one more example that may be revealing. Copy any graphic you like into an input cell, and
ask for its FullForm  or InputForm  to see its underlying structure.  In this case we used the Drawing
Tools palette to create a simple image with the Line Segments tool.

In[13]:= FullForm

Out[13]//FullForm=

Graphics List Line List List 0.21111111111111117`, 0.8333333333333334` ,

List 0.2972222222222223`, 0.5972222222222223` ,
List 0.18611111111111114`, 0.41666666666666674` ,

List 0.31666666666666665`, 0.1972222222222222` ,
Line List List 0.5611111111111111`, 0.8361111111111111` ,

List 0.4722222222222222`, 0.6027777777777779` ,

List 0.5722222222222222`, 0.40000000000000013` ,
List 0.4833333333333334`, 0.19999999999999996` ,

Line List List 0.7527777777777778`, 0.8305555555555556` ,
List 0.8611111111111112`, 0.6222222222222222` ,

List 0.7361111111111112`, 0.3944444444444444` ,
List 0.8166666666666667`, 0.18055555555555558` ,

Rule PlotRange, List List 0, 1 , List 0, 1

In fact, Mathematica  notebooks are themselves valid nested expressions. If you were to open a
Mathematica  notebook  in  a  text  editor,  you  would  see  a  plain  text  file  with  the  structure
Notebook[arg1,  arg2,  …].  The  individual  arguments  in  a  notebook  are  cells,  and every  cell  is
nested  expression  in  its  own  right  of  the  form  Cell[arg1,  arg2,  …],  and  so  on.  This  state  of
affairs  is  most  definitely intentional,  and is even a little  bit  devious. It  is  devious in that  the
FrontEnd does not reveal the highly structured nature of  the underlying document, just as it

does  not  reveal  the  FullForm  of  expressions  such  as  a ,  unless  you  ask  for it.  But  under-
neath, the structure is there. The benefit (and a distinguishing feature of Mathematica)  is that
you  have  access  to  this  underlying  form.  Because  cells  and  even  entire  notebooks  have  the
structure  of  a  valid expression,  it  is  possible  to  program Mathematica  to  operate on an  entire
notebook. This was done, for example, in the writing of this book. Each chapter in this book is
a Mathematica  notebook. The entire notebook expressions for all of the chapter files were sent
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to  the  kernel  to  programmatically  generate  the  table  of  contents.  They  were  sent  again  to
make the index, and so on. While the details of these specific techniques lie beyond the scope
of this book, it is important to understand the potential for operating programmatically on an
entire notebook.

Exercises 8.2
1. Find the Head of each of the following expressions:

a. x 2

b. 2

c. 1, 2, 3

d. 1 &

2. Find the FullForm of each of the following expressions:

a. x 2

b. 1/2

c. 2

d. 1, 2, 3

3. What is the head of the expression a'[x]? Find its FullForm, and base your answer on what you 
see. Check your answer with Head.

4. What is the FullForm of the expression 2x + 1 /. x 3? Use Defer and FullForm to find out.

5. What is the FullForm of the expression x = 3; 2x? Use Defer and FullForm to find out.

6. The command TreeForm produces a visual representation of the FullForm of any expression. 
Find the TreeForm of the expression 2x + 1 /. x 3. 

7. The Part command was introduced in Chapter 3 to extract a part of a list. It is typically invoked 
via typing double square brackets. For instance the input {a, b, c}[[2]] will produce the output b. 
But Part can also be used to extract parts of compound Mathematica expressions.

a. Apply TreeForm to the input a b c d2.

b. Extract the zeroth, first, and second parts of this same input.

c. Find parts 2,1  and 2,2 .

d. Find parts 2,2,1  and 2,2,2 .

8. Go to the Graphics menu, create a new graphic, bring up the Drawing Tools palette, and draw an 
arrow. Copy the arrow graphic into a new input cell, and apply TreeForm to the result. 

9. A String in Mathematica is any collection of characters or symbols enclosed in double quotations. 
Strings are atomic expressions. There are many commands available to operate on strings, but 
one of the most basic is StringExpression. StringExpression[string1, string2] will concatenate the 
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two strings string1 and string2 into a single string. The infix form of StringExpression is ~~. That 
is, one may invoke StringExpression by typing string1~~string2.

a. Type and enter a string. What do you see? What do you see if you apply FullForm to the 
input?

b. Apply FullForm to the input "I am"~~" putting strings together."

c. Apply Defer to the input FullForm["a"~~"b"].

d. The command ToString will take any expression and convert it to a string. It is often used in 
conjunction with StringExpression to create a string that depends on some external input. 
Use ToString and StringExpression to create a command that will take a numerical input n 
and return the string "n is my favorite number."

10. A notebook is comprised of cells. Each cell expression in a notebook has the head Cell. To see 
the underlying form of a Cell expression requires a special technique, as the FrontEnd will 
display Cell expressions nicely, that is, in a manner which hides the underlying structure of the 
expression.

a. Click anywhere in any cell in any notebook, and in the menus go to Cell ShowExpression. 
The underlying cell structure will be revealed. In this state, you can edit it directly if you like. 
Then toggle it back to normal with the same technique. Try this on several different cells in 
one of your notebooks.

b. A Cell is a versatile structure, capable of many forms, from input to output to text to graphics. 
So it may not be surprising to learn that Cell accepts a myriad of options. How many options 
would you guess Cell can accept? Test your answer using the Options command.

8.3 Numbers

Types of Numbers: Integer, Rational, Real, and Complex
When working  with  a  calculator  or  spreadsheet,  one  is  typically  not  concerned with  whether  one
enters a whole number (such as 12) or a decimal number (such as 12.0). These are, after all, the same
number. In Mathematica, however, they are treated very differently, and for a good reason. Decimal
numbers  are  cursed  with  an  inherent  ambiguity  stemming  from  the  fact  that  while  there  are  an
infinite  number  of  decimal  places,  we  cannot  possibly  write  them  all.  There  are  two  distinct
situations in which one would write a decimal number with finitely many places.  In one, we write
such a number when we are rounding it, such as when writing 3.14159. In the other, we agree to
stop writing decimal digits if beyond a certain point all the digits are known to be zero, such as when
writing 1 4 .25. Unfortunately, when one gives a computer a decimal number such as 3.14159 or
.25,  there  is  no  way  for  the  computer  to  know  which  situation  you  are  in.  When  you  type  .25,
should the computer interpret that to mean 1 4, or should it instead read it as the first two digits of
some potentially  longer number,  whose other  decimal places  are  not known? Mathematica  chooses
the  latter:  it  treats  all  decimal  numbers  as  approximations,  where  only  the  given  decimal  digits  are
known, and where all additional decimal digits are treated as unknown. Mathematica  refers  to such
numbers as Real numbers.
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By contrast,  an Integer,  or whole number,  is  exact.  There is no ambiguity.  Likewise, fractions with
integer  numerator  and  denominator  are  also  exact.  Such  fractions  are  called  Rational  numbers.
While any kind of number is an atomic expression in Mathematica, the Head command (introduced
in the last section) can be used to identify the type of any number.

In[1]:= Head 12.0

Out[1]= Real

In[2]:= Head 12

Out[2]= Integer

In[3]:= Head 12 7

Out[3]= Rational

It is often a shock for new Mathematica users to encounter output such as the following:

In[4]:=
22

7

Out[4]=
22

7

Mathematica  simply will not convert an Integer  or Rational  number to a Real  unless instructed to
do so. In cases where you seek a decimal output, either enter at least one Real number in the input,
or use the N command to convert it for you. Note that typing 22. is the same as writing 22.0.

In[5]:=
22.

7

Out[5]= 3.14286

In[6]:=
22

7
N

Out[6]= 3.14286

In addition to Integer, Rational, and Real numbers, there are also complex numbers, such as 2+3 ,
where  represents the square root of 1. Regardless of which type of numbers comprise the individ-
ual real and imaginary components of such a number, Mathematica  treats the entire expression as a
Complex number.

In[7]:= Head 2 3

Out[7]= Complex
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In[8]:= Head 2.0 3.0

Out[8]= Complex

Displaying Numbers
It  is  important  to  understand  that  while  real  (decimal)  numbers  are  displayed  with  six  significant
digits, internally they are stored to at least machine precision (usually 16 significant digits). Perhaps
you have  already discovered this;  if  you copy a real  number from an output  cell  and then paste  it
into a new input cell you will see the “full” machine representation of the number. Alternately, you
can use the command InputForm to display all the digits of a real number.

In[9]:= N

Out[9]= 3.14159

In[10]:= N InputForm

Out[10]//InputForm=

3.141592653589793

Note Mathematica’s InputForm for scientific notation:

In[11]:= N 1020 InputForm

Out[11]//InputForm=

3.1415926535897933*^20

It  is  possible  to  display  all  the  digits  of  a  real  number  in  any  format  you  can  imagine.  While
Mathematica’s  InputForm  is  handy  for  peeking  under  the  hood,  a  more  practical  command  for
displaying numbers is NumberForm. Here, for example, we see the first 12 digits of  (including the
digit to the left of the decimal point).

In[12]:= NumberForm N , 12

Out[12]//NumberForm=

3.14159265359

This is not too exciting, as it looks like the output for N[ ,12]. However, if the second argument to
NumberForm is a list of two positive integers, the first number specifies the total number of digits to
be  displayed  and the  second specifies  the  number  of  digits  to  the  right  of  the  decimal.  This  can  be
very  useful.  Here  we  see  the  first  ten  decimal  places  of   (compare  the  output  carefully  with  the
output above; NumberForm displays the number rounded to the correct number of specified digits):

In[13]:= NumberForm N , 11, 10

Out[13]//NumberForm=

3.1415926536
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If you ask for more total digits than needed, they will not be displayed.

In[14]:= NumberForm 1.0, 10, 5

Out[14]//NumberForm=

1.00000

However  the  option NumberPadding  allows  you  to  specify  characters  to  pad  the  areas  to  the  left
and right of the displayed digits.

In[15]:= NumberForm 1.0, 10, 5 , NumberPadding " ", "0"

Out[15]//NumberForm=

1.00000

The padding on the left  in the  output  above appears  to have one extra  character;  this  is  the space
reserved for the sign character in the case of negative numbers:

In[16]:= NumberForm 1.0, 10, 5 , NumberPadding " ", "0"

Out[16]//NumberForm=

1.00000

A similar command is PaddedForm, which works essentially the same way as NumberForm, but it
will  also  “pad”  the  number  with  white  space  on  the  left,  leaving  room  to  accommodate  all  the
requested digits (and the sign character). Using PaddedForm will often free you from having to add
a NumberPadding option to NumberForm.

In[17]:= NumberForm 1.0, 10, 5

NumberForm 1.0, 10, 5 , NumberPadding " ", "0"

PaddedForm 1.0, 10, 5

Out[17]//NumberForm=

1.00000

Out[18]//NumberForm=

1.00000

Out[19]//PaddedForm=

1.00000

PaddedForm  is  useful  for  displaying  numbers  in  a  table  so  that  numbers  in  a  column are  all  dis-
played with the same number of places to the right of the decimal, and with decimal points aligned.
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In[20]:= Table n, PaddedForm N n , 5, 2 , n, 0, 6 Grid

Out[20]=

0 0.00

1 3.14

2 6.28

3 9.42

4 12.57

5 15.71

6 18.85

Numbers that are very small or very large, however, will disturb the neat display above. Such num-
bers will (sensibly enough) be displayed in scientific notation (with the requested 2 places shown to
the right of the decimal):

In[21]:= PaddedForm .000001234, 12, 2

Out[21]//PaddedForm=

1.23 10 6

In[22]:= PaddedForm 1 001234.5678, 12, 2

Out[22]//PaddedForm=

1.00 106

If you do not want such numbers represented in scientific notation (for instance, if you are display-
ing monetary values and want your answer in dollars and cents), both NumberForm and Padded
Form  accept  the  option  setting  ExponentFunction (Null&),  which  prohibits  the  display  of
exponents.

In[23]:= PaddedForm .000001234, 12, 2 , ExponentFunction Null &

Out[23]//PaddedForm=

0.00

In[24]:= PaddedForm 1 001234.5678, 12, 2 , ExponentFunction Null &

Out[24]//PaddedForm=

1001234.57

This  mechanism  provides  a  sensible  means  of  representing  quantities  such  as  money,  where  pre-
cisely  two  decimal places  should be  displayed.  The following command could be  used  whenever  a
monetary value x is to be shown. This particular implementation allows for at most ten digits to the
left of the decimal (so don’t use it to display the national debt).

In[25]:= Clear dollar ;

dollar x : PaddedForm N x , 12, 2 , ExponentFunction Null &
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In[27]:= dollar 0.0049 , dollar 0.0050 , dollar , dollar 109 Column

Out[27]=

0.00

0.01

3.14

3141592653.59

Suppose you have one dollar,  and it  loses  1 3 of  its  value each year.  Here’s  what  happens to your
dollar over time. The second column shows the numerical value to the default six significant digits,
while the third column displays this same value rounded to the nearest penny:

In[28]:= Grid Table n, N 2 3 n , dollar 2 3 n , n, 0, 15 ,

Alignment ".", Dividers Gray

Out[28]=

0 1. 1.00

1 0.666667 0.67

2 0.444444 0.44

3 0.296296 0.30

4 0.197531 0.20

5 0.131687 0.13

6 0.0877915 0.09

7 0.0585277 0.06

8 0.0390184 0.04

9 0.0260123 0.03

10 0.0173415 0.02

11 0.011561 0.01

12 0.00770735 0.01

13 0.00513823 0.01

14 0.00342549 0.00

15 0.00228366 0.00

More complex structures such as loan amortization tables can be built in a similar fashion.

If the number we wish to display is an exact integer (no decimal point) we need not specify digits of
precision, and scientific notation will not be used.

In[29]:= NumberForm 1030

Out[29]//NumberForm=

1000000000000000000000000000000

But very large numbers are easier for humans to read if the digits are blocked in, say, groups of three.
NumberForm  and PaddedForm  have an option called DigitBlock  to allow for this sort of display.
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In fact there are a host of options that allow you full control over the display of numbers. Look up
NumberForm in the Documentation Center for more information.

In[30]:= NumberForm 1030, DigitBlock 3

NumberForm 1030, DigitBlock 5, NumberSeparator " "

Out[30]//NumberForm=

1,000,000,000,000,000,000,000,000,000,000

Out[31]//NumberForm=

1 00000 00000 00000 00000 00000 00000

Note  that  you  can go  into  Mathematica’s  Preferences  panel,  and  make  global  adjustments  to  these
settings. In the Preferences panel, look under Appearance Numbers Formatting , and tweak to your
heart’s content. This will invoke your display preferences for every session.

In this example we modify the command dollar to use 3-digit blocks:

In[32]:= Clear dollar ;
dollar x :

PaddedForm N x , 12, 2 , ExponentFunction Null & , DigitBlock 3

In[34]:= dollar 109

Out[34]//PaddedForm=

1,000,000,000.00

NumberForm  and  its cousin  PaddedForm have several other close relatives including Scientific
Form,  EngineeringForm,  and AccountingForm.  These work much the same way, but have differ-
ent default settings. Information can be had in the Documentation Center.

Precision and Accuracy
Here’s an experiment. Find another program on your computer that is capable of doing arithmetic,

for  instance  a  calculator  program  or  a  spreadsheet.  Ask  that  program  to  evaluate  21023  and  21024.
Now try  it  in Mathematica.  As  with  any calculation, with Mathematica  you  can ask  for  a  numerical
approximation or an exact answer:

In[35]:= N 21023, 10

Out[35]= 8.988465674 10307
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In[36]:= 21024

Out[36]= 179769313486231590772930519078902473361797697894230657273430081157

732675805500963132708477322407536021120113879871393357658789768

814416622492847430639474124377767893424865485276302219601246094

119453082952085005768838150682342462881473913110540827237163350
510684586298239947245938479716304835356329624224137216

In most cases you’ll find that other programs will give an answer like the output above for 21023, but

they will choke on 21024, and fail to produce an answer. This is because most programs rely on your
computer’s  hardware,  in  particular  on  its  floating  point  unit  (FPU),  to  carry  out  arithmetic  opera-
tions. And this number is simply too big for most floating point units commonly in use at the time
of this writing. It’s a matter that most of us rarely think about, but while the real number system is
infinite, the number system utilized by most FPU’s (commonly IEEE double–precision floating point
arithmetic)  is  finite.  That  is,  there  is  a  finite  quantity  of  numbers  available  in  this  system,  and so

there is necessarily a largest  number. In most systems it happens to be just under 21024. The bound-
ary occurs  at  a  power  of  two since the FPU converts  numbers  to base  2 before operating on them.
You can have Mathematica query your hardware and determine the largest number supported by the
FPU on your machine by entering the following:

In[37]:= $MaxMachineNumber

Out[37]= 1.79769 10308

In[38]:= N 21024

Out[38]= 1.797693134862316 10308

Mathematica  handles  numbers  differently  than  most  other  programs.  It  will  make  use  of  your
computer’s  FPU whenever possible  in order to save time,  since hardware is  generally several  orders
of  magnitude  faster  than  software.  But  when you input  a  real  number  too large,  too small,  or  too
precise  for  the  FPU  to  handle,  or  if  the  result  of  evaluating  your  input  produces  such  a  number,
Mathematica  will seamlessly switch into high precision mode, abandoning the FPU and carrying out
the calculation itself. In one sense you never need to worry about it, for it happens automatically. In
another sense,  it  is  useful  to understand just  how Mathematica  interprets  real  numbers  so that you
can better understand its output, and so that you can manually switch to high precision arithmetic
should you desire to do so.

For instance, enter the following input. Then select the output with your mouse, copy it, and paste
it into a new input cell. This is what you will see:

In[39]:= N

Out[39]= 3.14159

3.141592653589793`
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This procedure causes Mathematica  to give you a peek under the hood at how it views this number.
You  can  also  force  Mathematica  to  show  it  to  you  with  the  command  FullForm  (the  command
InputForm  will  also  display  all  the  digits  of  the  number,  but  it  does  not  display  the  backquote
character `).

In[40]:= N FullForm

Out[40]//FullForm=

3.141592653589793`

We already know that the N  command will by default display only six significant digits  of a num-
ber,  while  internally  there  is  a  machine  number  lurking  underneath.  Machine  numbers,  that  is,
numbers  accessible  to  your  computer’s  FPU,  never  have  more  than  a  fixed  number  of  significant
digits,  usually  16.  We  will  use  the  term  precision  to  indicate  how  many  significant  digits  a  real
number  has,  and  hence  we  say  that  machine  numbers  generally  have  a  precision  of  16.  Machine
numbers are identified (in FullForm) by the backquote ` appearing as the final character. If you ever
copy and paste  a number, revealing its internal structure as a machine number, don’t worry. Num-
bers can be input in this form and the output is no different than it would otherwise be.

In[41]:= 100 3.141592653589793`

Out[41]= 314.159

One way to input a high precision number is to type a decimal number with a total of more than 16
digits. Another is to use N specifying (with the second argument) more than 16 digits of precision.

In[42]:= N 2, 40

Out[42]= 2.000000000000000000000000000000000000000

If you copy and paste the output above, or apply FullForm  to it, you will see the internal structure
of a high precision number:

In[43]:= N 2, 40 FullForm

Out[43]//FullForm=

2.`40.

The FullForm of a high precision number is the number itself followed by the backquote character `
followed by the number’s precision. High precision numbers may also be entered directly this way:

In[44]:= 2`40

Out[44]= 2.000000000000000000000000000000000000000

In order to understand Mathematica’s internal form for any high precision number, we just combine
the notation above with the internal form for scientific notation (discussed in the previous subsec-
tion). For example:
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In[45]:= N 2 10100, 40 FullForm

Out[45]//FullForm=

2.`40. ^100

A simple way to force Mathematica to jump into high precision mode when evaluating an input is to
make sure every number appearing in the input is a high precision number. If any single number in
the input has only machine precision, the answer can be no more precise. The Precision command
displays the precision of any quantity.

In[46]:= Precision 2`40

Out[46]= 40.

In[47]:= Precision N 2, 40

Out[47]= 40.

In[48]:= Precision 2.

Out[48]= MachinePrecision

When high precision numbers are combined arithmetically, the precision is no greater than that of
the least precise number in the input.

In[49]:= N 2, 40 N 2, 30

Out[49]= 4.00000000000000000000000000000

In[50]:= Precision

Out[50]= 30.

However, with some operations the precision can decrease below that of the least precise number in
the  input.  In  the  following  example  it  is  useful  to  think  of  each  number  as  an  infinite  decimal
number,  the  first  few  digits  of  which  are  2  followed  by  29  or  39  zeros.  When  subtracted,  their
difference  begins  0.000000 …  (with  29  zeros  after  the  decimal  point),  but  beyond  that  nothing  is
known. No significant digits of the difference can be surmised. The precision is 0.

In[51]:= N 2, 30 N 2, 40

Out[51]= 0. 10 30

In[52]:= Precision

Out[52]= 0.

This  may  seem  unfair.  However,  we  do  know  that  the  result  is  zero  to  29  decimal  places,  even
though we don’t know any of the actual nonzero digits  of the difference. The command Accuracy
will tell you (roughly) how many digits to the right of the decimal point are known to be correct. 
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In[53]:= Accuracy

Out[53]= 29.699

The following won’t give a high precision number, since the machine precision number 2.0 appears
in the  input.  You  cannot take  a  machine precision real  number  and increase  its  precision.  In  fact,
you cannot do any operation involving a machine precision number and end up with high precision
output.

In[54]:= N 2., 40

Out[54]= 2.

In[55]:= Precision

Out[55]= MachinePrecision

Finally, note that exact numbers have infinite precision:

In[56]:= Precision 2

Out[56]=

In[57]:= Precision

Out[57]=

Exercises 8.3
1. You may be familiar with the parable about the peasant who is to be rewarded by the king with 

many sacks of rice. The peasant says, “Why don’t you simply give me one grain of rice the first 
day, 2 the second day, 4 the third day, and so on, each day giving me twice the quantity of the 
previous day, and do this for one month?” The King, thinking this will cost less, agrees. Make a 
table showing how many grains of rice the King owes each day, from day one to day 31. Use 
DigitBlocks of length three to make the numbers easy to read.

2. In this section we advocate the use of PaddedForm to display numbers in a table or column, 
each with the same number of decimal places and with the decimal points aligned. Another 
technique for accomplishing such alignment without necessarily restricting the number of 
decimal places is with the Alignment option in the Grid and Column commands. Look up this 
option in the Documentation Center, and use it to display the Table below in a column. You 

may also wish to consult Exercise 7 in Section 3.5.
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In[58]:= Table 10n N , n, 0, 5

Out[58]= 3.14159, 31.4159, 314.159, 3141.59, 31415.9, 314159.

8.4 Map and Function
Two fundamental Mathematica  programming commands, Map and Function, are introduced in this
section. An understanding of these commands is something that distinguishes a Mathematica  power
user  from a casual  user.  They will  facilitate  your  being able to  do powerful  list  manipulations,  and
expand your capability to do interesting tasks with great efficiency. We’ll tackle them one at a time,
then show how they can be used together.

Map is a command for applying a function to each member of a list. For instance, we can test a list
of numbers to see which of the numbers are primes:

In[1]:= Map PrimeQ, 2, 3, 4, 5, 6

Out[1]= True, True, False, True, False

Or we can apply an undefined function to a list of undefined quantities:

In[2]:= Clear f, a, b, c ;

Map f, a, b, c

Out[3]= f a , f b , f c

The first argument of Map  is a function or command. The second argument is a list.  The members
of the list are fed to the function, one by one, and the resulting list of values is returned.

There is a commonly used infix syntax for Map. Instead of typing Map[f, list], one can instead type
f /@ list. Effectively, one can Map a function over a list with just two keystrokes:

In[4]:= f a, b, c

Out[4]= f a , f b , f c

This will seem strange at first, but it is akin to typing 2 3 instead of the more formal Plus[2, 3].  It
departs  from  the  standard  “square  bracket”  notation  employed  by  most  Mathematica  commands.
With a bit of practice, however, it’s quite natural.

We  now  turn  our  attention  to  a  second  command,  Function,  that  is  typically  used  to  construct
functions to be used only once (for instance, functions to be Mapped over a list). In order to create a
function that squares its argument, for example, and apply it to every item in a list,  either of these
inputs will do:
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In[5]:= Map Function x, x2 , a, b, c

Out[5]= a2, b2, c2

In[6]:= Function x, x2 a, b, c

Out[6]= a2, b2, c2

This may seem like overkill;  we’ve  typed more input than the output  we produced. But the idea is
extremely powerful,  as  we  can now map any  function over  any  list.  We’ll  explore more interesting
examples shortly.

In general,  to create  a  function one types  Function[input,output].  The input  variable x  above could
be  replaced  by  any  symbol;  it’s  simply  a  dummy  variable.  An  alternate  syntax  is  commonly  used
that both minimizes typing and standardizes the name of the dummy variable to be the Slot charac-
ter  .  To  give  a  Function  using  this  syntax,  use  only  one argument:  the  output  expression  (using
the  for the variable):

In[7]:= Map Function 2 , a, b, c

Out[7]= a2, b2, c2

Even more brevity in typing can be attained by disposing entirely of the Function command name.
One may simply type the output expression (again using only  for the variable) and then type the
ampersand character & to mark the end of the function. It’s a bit odd at first, but you’ll pick up on it

quickly. Instead of Function 2 , for example, one instead may type a paltry three characters: 2 &.

For instance:

In[8]:= Map 2 &, a, b, c

Out[8]= a2, b2, c2

Or even better:

In[9]:=
2 & a, b, c

Out[9]= a2, b2, c2

This  last  form is  the  most  cryptic,  but  it  is  also  the  quickest  to  type,  and is  by  far  the  most  com-
monly encountered syntax convention for mapping a function over a list. You will see it frequently
in examples in the Documentation Center. Here are a few examples. Remember the Slot character 
is simply a stand-in for each member of the list that follows.
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In[10]:= Column N , & Range 20

Out[10]=

3.

3.1

3.14

3.142

3.1416

3.14159

3.141593

3.1415927

3.14159265

3.141592654

3.1415926536

3.14159265359

3.141592653590

3.1415926535898

3.14159265358979

3.141592653589793

3.1415926535897932

3.14159265358979324

3.141592653589793238

3.1415926535897932385

In[11]:= GraphicsRow Plot Sin x4 , x, 0, 2 , PlotStyle & Dashed, Dotted, Thick

Out[11]=
0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0
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In[12]:= Plot x & 1 6, 1 5, 1 4, 1 3, 1 2, 1, 2, 3, 4, 5, 6 ,

x, 0, 1 , Ticks None, AspectRatio 1

Out[12]=

In[13]:= GraphicsRow

Plot x , x, 0, 1 , Ticks None, AspectRatio 1, AxesOrigin 0, 0 &

1 6, 1 5, 1 4, 1 3, 1 2, 1, 2, 3, 4, 5, 6

Out[13]=

In[14]:= Text Style Grid , " ", Expand & Table 1 x n, n, 9 , Alignment Left ,

"TraditionalForm"

Out[14]=

1 x 1 x

1 x 2 1 2 x x2

1 x 3 1 3 x 3 x2 x3

1 x 4 1 4 x 6 x2 4 x3 x4

1 x 5 1 5 x 10 x2 10 x3 5 x4 x5

1 x 6 1 6 x 15 x2 20 x3 15 x4 6 x5 x6

1 x 7 1 7 x 21 x2 35 x3 35 x4 21 x5 7 x6 x7

1 x 8 1 8 x 28 x2 56 x3 70 x4 56 x5 28 x6 8 x7 x8

1 x 9 1 9 x 36 x2 84 x3 126 x4 126 x5 84 x6 36 x7 9 x8 x9

Note that it  is possible to Map a Function  over a list without using either command. Beginning in
Mathematica  6,  one  may  use  the  special  iterator  form  {x, list}  in  a  Table  to  accomplish  the  same
thing. In fact, this idea has been used repeatedly throughout this book. For instance:
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In[15]:= Table x2, x, a, b, c

Out[15]= a2, b2, c2

In[16]:= GraphicsRow

Table Plot Sin x4 , x, 0, 2 , PlotStyle sty , sty, Dashed, Dotted, Thick

Out[16]=
0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

Keep in mind, however,  that Mathematica  has been around since the late 1980s.  Prior to version 6,
the  Map-Function  combo  was  ubiquitous.  Its  use  still  pervades  examples  in  the  Documentation
Center, and is found in much of the code you are likely to see. And it’s more than a relic. It is, with
a little practice, very easy both to type and to read. It avoids the use of a dummy variable (like the
sty  variable in the example above). And in cases  where the list  being mapped over is  generated by
Table, the Map-Function combo negates the need to nest one Table inside another.

It should also be noted that both Function  and Map  are widely used independently of each other.
In short, both are essential programming tools.

A Function  can be given multiple arguments. This form is required by the Sort command, which is
used to sort a given list. For instance:

In[17]:= myList RandomInteger 100, 15

Out[17]= 40, 1, 79, 47, 51, 68, 45, 12, 19, 18, 64, 100, 91, 5, 11

In[18]:= Sort myList

Out[18]= 1, 5, 11, 12, 18, 19, 40, 45, 47, 51, 64, 68, 79, 91, 100

The sorting may be accomplished via a sorting function which returns True  precisely when its two
arguments are  given in the  desired order.  Each of the notations below accomplish the same thing:
they put the list in reverse order:

In[19]:= Sort myList, Function x, y , x y

Out[19]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

In[20]:= Sort myList, Function 1 2

Out[20]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1
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In[21]:= Sort myList, 1 2 &

Out[21]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

Note  that  there  are  many  other  ways  to  accomplish  this.  For  instance,  one  could  Reverse  the  list
after it is sorted in ascending order, or one could call the built-in Greater command, which accom-
plishes the same thing as our Function above:

In[22]:= Reverse Sort myList

Out[22]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

In[23]:= Sort myList, Greater

Out[23]= 100, 91, 79, 68, 64, 51, 47, 45, 40, 19, 18, 12, 11, 5, 1

But here we sort a list of vectors according to their Norm. There is no better way to accomplish this
feat than with a sorting Function:

In[24]:= myList RandomInteger 100, 10, 3

Out[24]= 82, 7, 96 , 97, 10, 6 , 13, 96, 6 , 28, 63, 42 , 45, 75, 17 ,
87, 98, 40 , 84, 86, 58 , 62, 0, 6 , 59, 35, 65 , 2, 97, 35

In[25]:= Sort myList, Norm 1 Norm 2 &

Out[25]= 62, 0, 6 , 28, 63, 42 , 45, 75, 17 , 59, 35, 65 , 13, 96, 6 ,
97, 10, 6 , 2, 97, 35 , 82, 7, 96 , 84, 86, 58 , 87, 98, 40

And here we sort the same list of vectors according to the value of the third coordinate:

In[26]:= Sort myList, 1 3 2 3 &

Out[26]= 62, 0, 6 , 13, 96, 6 , 97, 10, 6 , 45, 75, 17 , 2, 97, 35 ,

87, 98, 40 , 28, 63, 42 , 84, 86, 58 , 59, 35, 65 , 82, 7, 96

In[27]:= Clear myList

RegionFunction  and  MeshFunctions  specifications  in  3D  plotting  commands  are  typically  each
given as a Function with multiple arguments. In this setting the Slot values #1, #2, and #3 stand for
the coordinate values x,  y,  and z  respectively.  Below the RegionFunction  setting specifies  that  the

domain  is  the  interior  of  the  circle  of  radius  2  centered  at  the  origin,  while  the  MeshFunctions
setting specifies that Mesh lines will be drawn at equally spaced z values. 
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In[28]:= Plot3D x2 y2
, x, 2, 2 , y, 2, 2 , RegionFunction Norm 1, 2 2 & ,

MeshFunctions 3 & , PlotPoints 30

Out[28]=

Functional Programming
Mathematica  is  a  functional  programming  language.  That  is,  unlike  languages  such  as  BASIC  and  C,
Mathematica  commands can operate not only on specific types  of numbers and data structures,  but
on arbitrary expressions. In particular, the argument to one function may be another function. This
provides  a  powerful  and  elegant  paradigm  for  programming.  While  we  will  not  provide  a
philosophical discussion on the advantages and nature of functional programming, suffice it to say
that if you’ve read and followed this section to this point you’re already doing it. Map and Function
are  your  point  of  entry.  Commands  such  as  Apply,  Thread,  and  MapThread  (introduced  below)
will  expand  your  horizons,  while  Nest,  Fold,  replacement  rules  and  pattern  matching (introduced
later in the chapter) will take you to the next level.

A useful  command that is similar to Map is  Apply.  Like Map,  Apply  takes two arguments:  a func-
tion and an expression (often a  list).  The output  is  the second argument,  with its  head replaced  by
the function  in the  first  argument.  That’s  it;  Apply  will  pluck  the  head off  of  any  expression  and
replace it with something else. For example, Apply[Times, List[a, b, c]] will return Times[a, b, c]:

In[1]:= Apply Times, a, b, c

Out[1]= a b c

Apply can be given in infix form via @@.

In[2]:= Times a, b, c

Out[2]= a b c

Here’s  another  example.  We randomly generate  40  points  in  the  plane (ordered pairs  of  numbers,
with  each  coordinate  between  1  and  1),  then  replace  Point  by  Line  to  connect  the  individual
points with line segments, and by Polygon  to fill the resulting regions. Finally, we display all three
together.
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In[3]:= pts Point RandomReal 1, 1 , 40, 2 ;

Graphics pts

Out[4]=

In[5]:= GraphicsRow

Graphics Line pts , Graphics Gray, Polygon pts ,

Graphics Gray, Polygon pts , Line pts, pts ,

Dividers All

Out[5]=

In[6]:= Clear pts

The command Thread  can be used to “thread” a function over several  lists.  In the example below,
the (undefined) function is  called f.  It  is  called with two arguments,  each of which is  a  list.  Wrap-
ping this expression in Thread causes f to be called on corresponding members of the two lists, with
the output being a list of the results:

In[7]:= Thread f a, b, c , 1, 2, 3

Out[7]= f a, 1 , f b, 2 , f c, 3

Here  are  two  applications.  The first  shows  how to  use  Thread  to  programmatically  create  a  list  of
rules  from  a  list  of  left-side  values  and  a  list  of  right-side  values.  In  this  case,  the  command Rule
plays  the  role  of  the  function  f  above.  The  second  example  illustrates  that  Thread  has  the  same
effect as Transpose on a list of lists (i.e., on a matrix). In this case List plays the role of the function
f above.

In[8]:= Thread a, b, c 1, 2, 3

Out[8]= a 1, b 2, c 3
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In[9]:= Thread a, b, c , 1, 2, 3

Out[9]= a, 1 , b, 2 , c, 3

The  command  MapThread  combines  the  functionality  of  Map  and  Thread.  The  example  below
illustrates  a  typical  implementation.  It  essentially  does  what  Thread  does,  but  there  are  two argu-
ments, with the function (in this case f) being given alone as the first argument.

In[10]:= MapThread f, a, b, c , 1, 2, 3

Out[10]= f a, 1 , f b, 2 , f c, 3

An example that  illustrates  the utility  of MapThread  follows.  Suppose  you wish to construct a  3D
graphic  of  a  right  cylinder  whose  top  and  bottom are  regular  polygons.  These  polygons  are  easily
constructed (we utilize Map to add the third coordinate to each vertex):

In[11]:= n 10;

pts Table Cos t , Sin t , t, 0, 2 ,
2

n
;

bottom Map Append , 0 &, pts ;

top Map Append , 1 &, pts ;

Graphics3D Map Polygon, top, bottom

Out[15]=

The rub is constructing the n rectangles that make up the sides. Suppose that b1, b2  is a list of two
adjacent  vertices  on  the  bottom  polygon,  and  that  t1, t2  are  the  vertices  on  the  top  polygon
directly  above  these.  The  side  of  the  cylinder  with  these  four  vertices  will  have  the  form
Polygon[{b1, b2, t2, t1}].  To  get  this,  we  will  Partition  the  top  and  bottom  vertices  into  sublists  of
length 2 with an offset (or overlap) of 1, and Reverse each ordered pair of vertices on the top. We’ll
then use MapThread to Join the corresponding lists. Here’s an illustration of the idea:

In[16]:= Partition b1, b2, b3 , 2, 1

Out[16]= b1, b2 , b2, b3

In[17]:= Reverse Partition t1, t2, t3 , 2, 1

Out[17]= t2, t1 , t3, t2
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In[18]:= MapThread Join, ,

Out[18]= b1, b2, t2, t1 , b2, b3, t3, t2

Here’s the finished product:

In[19]:= sides MapThread Join, Partition bottom, 2, 1 , Reverse Partition top, 2, 1 ;

Graphics3D Polygon Join top, bottom , sides

Out[20]=

In[21]:= Clear n, pts, top, bottom, sides

Exercises 8.4
1. The command First, when applied to a list, will return the first item in the list. More generally, 

First[f[a,b,c]] will return the first argument a for any command f. Compare the outputs of the 
commands Options[NSolve] and First/@ Options[NSolve]. What is the command f to which 
First is being applied in this case?

2. Use Function to define a command which when given an integer argument n between 1 and 26 
will return the nth letter of the alphabet. Use it to find the 19th letter of the alphabet.

3. What is the FullForm of the pure function 2 &?

4. What is the FullForm of the pure function Norm[{#1, #2}] < 3?

5. One could have, back at the beginning of Chapter 3, taken a different approach to defining a 

function such as f x x2 3 x 1 in Mathematica. Back then we advocated the following conven-

tion to define this function: f x : x2 3 x 1. In this exercise we’ll consider an alternate 

approach: f Function x, x2 3 x 1 .

a. Define f  using Function, then make a Plot of f  on the domain 5 x 2.

b. Use Mathematica to differentiate and integrate f .
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6. How would you use Function to define the multivariable real-valued function 

f x, y x2 y x 3 y?

7. How would you use Function to define the vector field f x, y x2 y x 3 y, cos x ?

8. Map, Function, and Apply can be used to transform a simple Table into a stunning display. In 
this exercise you will work with the table below, where each row holds the left and right sides of 
a trigonometric identity.

t Table Tan k a , Together TrigExpand Tan k a , k, 2, 9 ;

a. Use Map, Function, Apply and Equal on t, and display the result with Column and Tradition
alForm to produce the output below:

tan 2 a 2 cos a sin a

cos2 a sin2 a

tan 3 a
sec a 3 cos2 a sin a sin3 a

cos2 a 3 sin2 a

tan 4 a
4 cos3 a sin a cos a sin3 a

cos4 a 6 sin2 a cos2 a sin4 a

tan 5 a
sec a sin5 a 10 cos2 a sin3 a 5 cos4 a sin a

cos4 a 10 sin2 a cos2 a 5 sin4 a

tan 6 a
2 3 sin a cos5 a 10 sin3 a cos3 a 3 sin5 a cos a

cos6 a 15 sin2 a cos4 a 15 sin4 a cos2 a sin6 a

tan 7 a
sec a sin7 a 21 cos2 a sin5 a 35 cos4 a sin3 a 7 cos6 a sin a

cos6 a 21 sin2 a cos4 a 35 sin4 a cos2 a 7 sin6 a

tan 8 a
8 sin a cos7 a 7 sin3 a cos5 a 7 sin5 a cos3 a sin7 a cos a

cos8 a 28 sin2 a cos6 a 70 sin4 a cos4 a 28 sin6 a cos2 a sin8 a

tan 9 a
sec a sin9 a 36 cos2 a sin7 a 126 cos4 a sin5 a 84 cos6 a sin3 a 9 cos8 a sin a

cos8 a 36 sin2 a cos6 a 126 sin4 a cos4 a 84 sin6 a cos2 a 9 sin8 a

b. Use Map, Function, Apply and Rule on t, and display the result with TabView and Tradition
alForm to produce the output below:

2 cos a sin a

cos2 a sin2 a

tan 2 a tan 3 a tan 4 a tan 5 a tan 6 a tan 7 a tan 8 a tan 9 a

9. Look up the term functional programming in Wikipedia, and contrast it with procedural 
programming.

10. A cipher is an encryption scheme whereby each individual character in the message is replaced 
by some other character or symbol. For instance, one could encode a message by replacing every 
a with b, every b with c, and in general replacing each letter with the next letter, except for z 
which is replaced with a. A cipher such as this that is based on a simple shift (replacing each 
letter with the letter a fixed number of characters to its right) is called a Caesar cipher.

a. Use StringReplace, CharacterRange, Thread, and RotateLeft to build a command encode 
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that will implement this cipher on any String comprised of lowercase letters.

b. Create a decode command to decode an encrypted message (you may wish to use 
RotateRight).

11. Modify the commands in the previous exercise so that a second argument controls the number 
of places that each character is shifted to the left in the encryption process.

8.5 Control Structures and Looping
In  contrast  to  the  techniques  introduced  in  the  previous  section,  procedural  programming  is  a
paradigm in which one gives step by step instructions to the computer. This is often the first type of
programming one encounters, using a language such as BASIC or C. Mathematica  supports this style
of programming with looping commands such as Do, For, and While, and control structures such as
If and Which. In this section we’ll discuss the use of these commands.

The most  simple  looping command is  Do.  Its  syntax is  like that of  Table;  the first  argument is  an
expression, and additional arguments are iterators.  The expression is  evaluated once for  each value
assumed by the iterated variable. For example:

In[1]:= myList ;

Do PrependTo myList, k , k, 10 ;

myList

Out[3]= 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Above we begin with an empty list myList,  and then PrependTo  (put at the beginning of) this list
each of the first ten whole numbers in turn, beginning with 1. While effective, this procedural code
is certainly not the easiest way to produce this list. Here’s another way:

In[4]:= Reverse Range 10

Out[4]= 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

As a  second example,  we use  Do  to write  a  procedural program for calculating the factorial of  any
integer. Yes,  there is a built-in command Factorial  (!) that does this already; the point is simply to
illustrate how Do works. We begin by having Do calculate 4 factorial. First the dummy variable x is
set to 1. Then as k assumes the integer values 1 to 4 in turn, x is set to k times its current value. So
first x becomes 1 1 1, then 2 1 2, then 3 2 6, then 4 6 24.

In[5]:= x 1;
Do x k x, k, 4 ;

x

Out[7]= 24
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We use this idea to create a command fac to calculate the factorial of any positive integer n. We use
SetDelayed (:=) for we do not want to evaluate the right side until fac is called.

In[8]:= fac n : x 1; Do x k x, k, n ; x

For example:

In[9]:= TabView Table ToString n " " fac n , n, 15 , 13

Out[9]=
6 227020800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In[10]:= Clear fac, x

Note  that  the  first  argument  to  Do  can  be  a  CompoundExpression  (a  sequence  of  commands
separated by semicolons). This allows you to Do more than one thing, or to organize your code into
simple steps.  For instance, below we get serious and harness Do to implement the secant method for
approximating  the  root  of  an  equation  f x 0.  You  may  recall  that  this  method begins  with  two

points  x0  and x1  near the root in question.  One then builds  a  sequence of  values  x1,  x2,  x3,… that

(one  hopes)  will  be  successively  better  approximations  to  the  actual  root.  The  sequence  is  con-
structed recursively via the second-order difference equation

xn 1 xn
xn xn 1

f xn f xn 1
f xn .

Below we harness Do to carry out nine steps of this process on the cubic f x x3 2 x 2 (you can

check that  f  has  only one real  root),  starting at  x0 1 and x1 3 2.  In this  implementation we

use x0 and x1 to represent the current values of xn 1 and xn, respectively, in the equation above. We

use  xtemp  to  temporarily  hold  the  value  of  xn  so  that  xn 1  may  assume  this  value  in  the  next

iteration. Note also that the iterator for Do in this case is the ultra-simple {9}, which simply means,
“do this nine times.”

In[11]:= f x : x3 2 x 2

In[12]:= x0 1;

x1 3 2;

Do xtemp x1;

x1 x1
x1 x0

f x1 f x0
f x1 ;

x0 xtemp;

Print N x1, 40 , 9
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2.090909090909090909090909090909090909091

1.709454061251664447403462050599201065246

1.757205908865359830981764868540767091628

1.769832257373596686295309726912982898092

1.769287639221607075547801570536291382136

1.769292352411024860110478553708965415028

1.769292354238637603574664697348116397970

1.769292354238631415240401342331442514107

1.769292354238631415240409464335033492634

In this case we obtain 38 digit precision,  for the actual real root (to forty digit precision) looks like
this:

In[15]:= N Reduce f x 0, x, Reals , 40

Out[15]= x 1.769292354238631415240409464335033492671

While Do is effective, the secant method and the Newton-Raphson method for approximating roots
can be implemented more efficiently using NestList.  Implementations can be found in Section 8.7.

See page 437 for Newton-Raphson, and Exercise 5 on page 442 for the secant method.

Do  can  also  accept  more  than  one  iterator.  Below  k  assumes  integer  values  from  0  to  3,  while  m
assumes the values a, b, and c.

In[16]:= myList ;

Do AppendTo myList, k m , k, 0, 3 , m, a, b, c ;

myList

Out[18]= a, b, c, 1 a, 1 b, 1 c, 2 a, 2 b, 2 c, 3 a, 3 b, 3 c

In[19]:= Clear myList

Predicates
Many  control  structures  rely  on  conditions  that  are  either  true  or  false.  If  a  condition  is  true,  a
certain set of instructions are given, while if the condition is false, an alternate set of instructions are
given.  In  logic,  a  statement  that  is  either  true  or  false  is  called  a  predicate.  In  computer  science,  a
command that returns one of the values true or false is sometimes referred to as a query. Mathematica
has many predicate commands, which often end in the letter Q (for query). These commands return
either the symbol True or the symbol False. 
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In[20]:= PrimeQ 216 1

Out[20]= True

In[21]:= Table EvenQ n , n, 10

Out[21]= False, True, False, True, False, True, False, True, False, True

Another useful predicate command is FreeQ,  which will return True  if  the expression appearing in
its first  argument is  completely free of the pattern or expression in its second argument. Note that
for  atomic  expressions  (such  as  numbers),  one  can  use  their  Head  (e.g.,  Integer,  Rational,  Real,
Complex) for the second argument.

In[22]:= FreeQ 2, 3, 4 , Complex

Out[22]= True

In[23]:= FreeQ 2, 3, 4 2 , Complex

Out[23]= False

In[24]:= FreeQ Solve x3 34 x2 9 x 1 0, x , Complex

Out[24]= False

An equation can be a useful predicate.

In[25]:= 2 3

Out[25]= False

In[26]:= N 1.0

Out[26]= True

Note also that one can reverse the output of a predicate command by wrapping it in Not. The prefix
form of Not[expr] is !expr.

In[27]:= False

Out[27]= True

In[28]:= PrimeQ 8

Out[28]= True

In the case of equations,  one may type !=  for  Unequal,  or use the  button on the BasicMathInput
palette.
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In[29]:= 2 3

Out[29]= True

Here’s an application that requires predicates: the Select command is used to select those items from
a list that satisfy a condition. More precisely, a predicate command is applied to each member of the
given list,  and Select  returns those items in the list for which the predicate is True. Here we Select
all integers from 1 to 30 that are prime:

In[30]:= Select Range 30 , PrimeQ

Out[30]= 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

It is  common to use a Function  to create a  specialized predicate. Here we select those items in the
given list whose value is at least 4:

In[31]:= Select 1, 2, 3, 4, 5, 6 , 4 &

Out[31]= 4, 5, 6

Here are all integers from 1 to 1000 with more than 3 distinct prime factors:

In[32]:= Select Range 1000 , Length FactorInteger 3 &

Out[32]= 210, 330, 390, 420, 462, 510, 546, 570, 630, 660, 690,
714, 770, 780, 798, 840, 858, 870, 910, 924, 930, 966, 990

Select  is  useful  for  extracting  numerical  items  from long lists.  For  instance,  a  few of  the  countries
listed in CountryData do not currently have oil consumption figures available.

In[33]:= CountryData "Andorra", "OilConsumption"

Out[33]= Missing NotAvailable

Recalling  that  CountryData[]  returns  a  list  of  all  countries  in  the  data  set,  the  input  and  output
below reveals  that  (at  the  time of this  writing) there are  237  countries  in  the world,  and there are
numerical  oil  consumption values  known for  211  of  these,  while  these  data  are missing  for  the re-
maining 26. 

In[34]:= Length CountryData , Select CountryData ,

NumericQ CountryData , "OilConsumption" & , Select CountryData ,

CountryData , "OilConsumption" Missing "NotAvailable" &

Out[34]= 237, 211, 26

418 Programming



Control Structures: If, Which, Piecewise
The  most  basic  control  structure  is  the  If  command.  Its  usage  is  straightforward:  it  accepts  three
arguments. The first is a predicate. The second is what is to be evaluated if the predicate is True, and
the third is what is to be evaluated if the predicate is False. Here, for example, we test a few nearby
numbers for primality, and display the results in a table:

In[36]:= Text Grid

Table k, If PrimeQ k , "prime", "composite" , k, 101, 117, 2 ,

Dividers Gray

Out[36]=

101 prime
103 prime
105 composite
107 prime
109 prime
111 composite
113 prime
115 composite
117 composite

Here’s  an  example  in  which  we  combine  an  If  control  structure  with  a  Do  loop  to  investigate  a
conjecture made by Leibniz himself in the field of number theory. Leibniz observed that:

22 1   is divisible by 3,

24 1   is divisible by 5,

26 1   is divisible by 7,

28 1   is NOT divisible by 9,

210 1 is divisible by 11,

212 1 is divisible by 13,

214 1 is NOT divisible by 15,

216 1 is divisible by 17, and so on.

He conjectured that 2n 1 will be evenly divisible by n 1 if and only if n 1 is an odd prime. The
numbers  on  the  right  in  these  examples,  after  all,  are  primes  precisely  in  those  cases  where

divisibility occurs. One can restate this conjecture as follows: 2n 1

n 1
 will be an integer precisely when

n 1 is  an odd prime.  Here we check it  for the values of n  up to 200. It  would appear that Leibniz
was on to something!
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In[37]:= Table If PrimeQ n 1 IntegerQ
2n 1

n 1
, True, False , n, 2, 200, 2

Out[37]= True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True, True, True, True, True, True

The predicate above (the first argument in the If command) in this case is an equation with one of
True  or  False  appearing  on  each  side.  It  will  be  True  if  and  only  if  the  two  symbols  agree.  For
instance:

In[38]:= True True, True False, False True, False False

Out[38]= True, False, False, True

A quick way to make sure a long list (such as the Table above) contains only the symbol True is to
Apply  the  And  command to it.  And  gives  True  only  if  each of  its  arguments  is  True.  We see,  for
instance, that Leibniz was correct up through n 338:

In[39]:= And Table If PrimeQ n 1 IntegerQ
2n 1

n 1
, True, False , n, 2, 338, 2

Out[39]= True

But,  unfortunately,  when  n 340  the  conjecture  fails.  And  it  fails  for  several  larger  values  of  n  as
well. Here are the values of n 1 for which it fails up through 10000:

In[40]:= counterExamples ;

Do If PrimeQ n 1 IntegerQ
2n 1

n 1
,

AppendTo counterExamples, n 1 , n, 2, 10 000, 2 ;

counterExamples

Out[42]= 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821,
3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911

So the conjecture, despite its promising start, is most definitely false. How exactly does it fail? Either

341 is not prime while 2340 1

341
 is an integer, or 341 is prime while 234 1

341
 is not an integer. It turns out

to be the former:
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In[43]:= PrimeQ 341

Out[43]= False

In[44]:= IntegerQ
2n 1

n 1
. n 340

Out[44]= True

All of our counterexamples fail this way:

In[45]:= PrimeQ counterExamples

Out[45]= False, False, False, False, False, False, False, False, False, False, False,

False, False, False, False, False, False, False, False, False, False, False

Does it never fail the other way round? That is, if p is an odd prime, must it be the case that 2p 1 1

p

is an integer? The answer is yes. This is a consequence of Fermat’s little theorem (which you can look
up online at MathWorld). So to his credit, Leibniz was half right. If he had a copy of Mathematica, he
certainly would have been able to see the folly of his original conjecture. Given that the first counter-

example occurs at n 340,  and involves checking that 2340 1 is  divisible by 341,  it  is  understand-
able that he believed this conjecture. And given that you have access to Mathematica, it is a reason-
ably  simple  matter  for  you  to  make  investigations  of  this  nature  to  peer  deeply  into  the  world  of
numbers.

Which  is similar to If. The arguments come in pairs.  The first argument in each pair is a predicate,
and the second is an expression to evaluate if that predicate is True.  Which  will  return the output
associated with the first predicate that is True. For instance:

In[47]:= Text Grid Table n, Which n 1, "is a unit", PrimeQ n , "is a prime",

EvenQ n , "is an even composite", OddQ n , "is an odd composite" ,

n, 10 , Alignment Right, Left

Out[47]=

1 is a unit
2 is a prime
3 is a prime
4 is an even composite
5 is a prime
6 is an even composite
7 is a prime
8 is an even composite
9 is an odd composite
10 is an even composite

The number n 1 satisfies  the first  and last predicate, but it is  the expression corresponding to the
first that is evaluated.
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Similar  to  Which  is  the  Piecewise  command,  introduced  in  Section  3.6.  It  has  the  advantage  of
reading  very  nicely  when  its  infix  form  is  utilized.  Type  pw  followed  by  one  or  more  
(Mac OS) or  (Windows), one for each additional line.

In[48]:= Text Grid Table n,

"is a unit" n 1

"is a prime" PrimeQ n

"is an even composite" EvenQ n

"is an odd composite" OddQ n

, n, 10 ,

Alignment Right, Left

Out[48]=

1 is a unit
2 is a prime
3 is a prime
4 is an even composite
5 is a prime
6 is an even composite
7 is a prime
8 is an even composite
9 is an odd composite
10 is an even composite

Looping with While and For
The most basic  looping  command  is  Do.  The  commands  While  and  For also allow you to repeat a
procedure,  but rather  than using an iterator to control the body of the loop, a  predicate is  utilized
instead. Each of these procedural commands closely mirrors its counterpart in the C language.

The While  command takes  two arguments.  The first  is  a  predicate.  The second is  the  body,  which
will be evaluated repeatedly until the predicate returns False. Here we use a While loop to find the
first prime number greater than 1000. We Set a dummy variable k to be 1000, and then Increment k
(increase its  value by 1) until it  is  a  prime.  The value of  this prime (the current value of  k) is  then
returned.

In[49]:= k 1000;
While PrimeQ k , Increment k ;

k

Out[51]= 1009

Note that  the Increment  command has the alternate postfix  syntax ++.  That  is,  Increment[k]  can
be typed as k++.  Here,  for  instance, we use the same technique to find the first prime greater than
one million:
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In[52]:= k 1 000000;
While PrimeQ k , k ;
k

Out[54]= 1 000003

The For command accepts four arguments (no pun intended), although three will suffice if the body
is empty. You can, for instance, use For to write a procedure like those above to find the first prime
number exceeding 1000: for k starting at 1000, and as long as k is not a prime, continue increment-
ing k by one. At this point, return the value of k. Here is how to implement this program:

In[55]:= For k 1000, PrimeQ k , k ; k

Out[55]= 1009

The general syntax takes  the form For[start, test, increment, body].  Upon entry, start  is  evaluated, and
then  the  increment  and  body  are  evaluated  repeatedly  until  the  test  returns  False.  In  the  example
below,  we  take  a  starting  number  and  repeatedly  divide  it  by  2  until  the  result  is  no  longer  an
integer.  The  body  makes  use  of  the  Print  command,  which forces  the  value  of  k  to  be  printed  at
each step.

In[56]:= For k 1296, IntegerQ k , k k 2, Print k

1296

648

324

162

81

Exercises 8.5
1. Enter the input ?*Q to get a listing of all commands that end with a capital Q. Here you will find 

many of the basic predicate commands that will output one of the symbols True or False.

2. The great French mathematician Pierre de Fermat (1601–1665) postulated that every number 
exceeding by one the quantity two raised to a power of two must be a prime number. That is, 

every number of the form 2 2n
1 is prime according to Fermat. It was about a century later that 

he was proved wrong, by none other than Leonard Euler. Find the first counterexample to 
Fermat’s famous conjecture.

3. The two most commonly used methods for incrementing a dummy variable are Increment 
(postfix form ++), described in this section, and PreIncrement (prefix form ++). Enter the com-
mands j = 1; j++ and k = 1; ++k, and describe the difference.
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4. Find the smallest positive integer n with the property that 
0
21 20 1 n

xn x 1

10
.

5. Write a For loop to carry out the following procedure: Beginning with the number 1, keep 
adding a random integer chosen between 1 and 100 to the current value until such time as the 
result is a prime.

a. Write the loop so that all intermediate results are displayed.

b. Write the loop so that a list of all intermediate values, including the last, is displayed.

c. Write the loop so that only the number of iterations required is displayed.

d. Run the procedure from part c 1000 times (using Table), and Tally the results. 

8.6 Scoping Constructs: With and Module
When  writing  a  program  it  is  common  to  make  one  or  more  intermediate  assignments.  See,  for

instance, the example at the end of Section 8.4 on page 411, where we wrote a program to display a

3D graphic of a right cylinder whose base is a regular n-gon. In that example assignments were made
to  the  symbols  n,  pts,  top,  bottom,  and  sides.  These  assignments  were  only  used  to  create  the
image,  and  were  not  needed  afterward.  Another  example  appears  below.  It  provides  a  means  of
drawing a regular n-gon for any integer n 2.

In[1]:= n 10;

Graphics Line Table Cos t , Sin t , t, 0, 2 ,
2

n

Out[2]=

The only potentially bad consequence of this construction is that the symbol n has been Set to the
value 10.  This  has  the potential  to interfere with other evaluations involving this symbol  that you
might try to make. For instance, if after entering the input above, you try to Solve an equation for n
you will run into trouble:
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In[3]:= Solve 3 n 1 22, n

General::ivar : 10 is not a valid variable.

Out[3]= Solve False, 10

Essentially,  you  must  be  diligent  in  Clearing  all  such  assignments  before  using  these  symbols  in
another  setting.  A  better  practice  is  to  make  assignments  locally.  This  is  easily  accomplished  by
putting  them  inside  of  a  scoping  command,  such  as  With  or  Module.  Whatever  is  assigned  in  a
scoping command stays in the scoping command.

In[4]:= Clear n ;

With n 5 , Graphics Line Table Cos t , Sin t , t, 0, 2 ,
2

n

Out[5]=

In this case, n has not been assigned a value in the Global` context (where one typically works):

In[6]:= n

Out[6]= n

This  means  that  the  local  assignment  made  to  the  symbol  n  will  not  interfere  with  subsequent
evaluations:

In[7]:= Solve 3 n 1 22, n

Out[7]= n 7

With  accepts  two arguments.  Its  first  argument is  a  list  of  assignments.  Its  second argument  is  an
expression.  The  assignments  given in the  first  argument  only work  in the  expression  appearing  in
the  second  argument.  Their  scope  is  local;  they  do  not  persist  afterward,  nor  do  they  affect  any
previous assignments. The command name With suggests its use; you can read the input code like a
sentence  that  begins,  “With  n 10,  do  the  following….”  Here’s another example.  Note  how  the
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With statement does not affect the earlier assignment n = 3, and how this assignment does not affect
the n appearing within the With statement.

In[8]:= n 3;

With n 10 , n2

Out[9]= 100

In[10]:= n

Out[10]= 3

Another  useful  scoping  construct,  and  indeed  a  more  general  one,  is  Module.  It  works  much  like
With, insulating any symbols you have already defined from its own local variables, and vice-versa.
The  main  difference  between  Module  and  With  (from  the  user’s  perspective)  is  that  the  local
variables in a Module do not need to be assigned in the first argument (although they do have to be
listed there). Delayed assignments (:=) may also be used in a Module,  while only immediate assign-
ments (=) can be used in With. Here’s a simple example:

We’re going to draw a star shape. We’ll begin with a list of 2 n points equally spaced around the unit
circle. We then multiply every second point (as we move clockwise around the circle) by a scalar, to
move it  farther from the origin along its  radial axis.  Finally, we connect the resulting list  of points
with line segments. Let’s do this step by step with n 5:

In[11]:= n 5;

pts Table Sin t , Cos t , t, 0, 2 ,
2

2 n

Out[12]= 0, 1 ,
5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 , 0, 1 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 ,

5

8

5

8
,

1

4
1 5 , 0, 1

Note how our list has 2 n 1 11 points, with the first equal to the last. To get a corresponding list
of scale factors for each of these points, we utilize the Riffle command to intersperse a scale-factor of
2.5 at every second position in a list of n 1 6 ones. The resulting list has length 2 n 1 to match
our list of points.
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In[13]:= scaleList Riffle Table 1, n 1 , 2.5

Out[13]= 1, 2.5, 1, 2.5, 1, 2.5, 1, 2.5, 1, 2.5, 1

The  final  picture  is  obtained  by  multiplying  the  two  lists  (which  multiplies  their  corresponding
members), and wrapping the resulting list of points in the Line command:

In[14]:= Graphics Line scaleList pts

Out[14]=

In[15]:= Clear n, pts, scaleList

Here is how we could organize the individual commands above into a coherent piece of code, all in
a single input cell, and in such a way that none of the local variables interferes with a global symbol
of the same name. Note that while n and scaleFactor  are assigned in the first argument, the other
local variables  pts  and scaleList  are  listed  but  not  assigned  there.  Rather,  they  are  assigned  in the
body  of  the  Module.  This  body  (the  second  argument  to  Module)  is  a  CompoundExpression
(expressions separated by  semicolons).  The first  two such expressions  define the  local variables  pts
and  scaleList,  and  the  third  creates  the  Graphics.  Note  also  that  the  values  assigned  to  pts  and
scaleList  depend on the values of n  and scaleFactor.  This would be impossible  using With,  where
all local variables must be assigned in the first argument, and independently of one another.

In[454]:= Module n 5, scaleFactor 2.5, pts, scaleList ,

pts Table Sin t , Cos t , t, 0, 2 ,
2

2 n
;

scaleList Riffle Table 1, n 1 , scaleFactor ;

Graphics Line scaleList pts

Finally, we can use this code to create a command for sketching stars,  letting the user select values
for n and the scale factor.

8.6   Scoping Constructs: With and Module          427



In[16]:= star n , scaleFactor : Module pts, scaleList ,

pts Table Sin t , Cos t , t, 0, 2 ,
2

2 n
;

scaleList Riffle Table 1, n 1 , scaleFactor ;

Graphics Line scaleList pts

For instance:

In[17]:= GraphicsGrid Table star n, k , n, 5, 7 , k, 1, 4, .5

Out[17]=

Note that it is not necessary  to use any local variables in the definition above, and hence not neces-
sary to use a Module at all. One could just do the following:

In[18]:= star n , scale :

Graphics

Line Riffle Table 1, n 1 , scale Table Sin t , Cos t , t, 0, 2 ,
2

2 n
This is essentially just the last line of code in the earlier Module, with local variables pts and scale
List  replaced by their definitions. While more elegant in one sense, some would find the code here
more  difficult  to  read.  A  Module  allows  you  to  break  a  complex  set  of  instructions  into  smaller
pieces, with each one easy to read and understand. In more complex settings, a Module is actually a
more  efficient  way  to  code.  For  instance,  if  a  single  large  Table  appears  more  than  once  in  a
program,  it  is  generally  more  efficient  to  assign  a  local  variable  to  represent  it  (so  the  Table  is
evaluated only once), and then use that local variable every time the Table is needed.

This happens  in the example provided below, where the local variable circlePts  is  used twice.  This
example shows  code to produce  illustrations of  a  circular  frustum  (loosely speaking,  a  cone with its
tip cut off). The output is a Manipulate in which the user controls the top and bottom radii and the
height h  between them. The code is based on the example given at the end of Section 8.4 on page

411. In this case the top and bottom circles are approximated by many-sided polygons. The number
of sides for these polygons is determined by the step size (.05) in the Table that defines circlePts.
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In[19]:= Manipulate

Module circlePts, bottomPts, topPts ,

circlePts Table Cos t , Sin t , t, 0, 2 , .05 ;

bottomPts Map Append , h 2. &, r2 circlePts ;

topPts Map Append , h 2. &, r1 circlePts ;

Graphics3D EdgeForm , Polygon MapThread Join,

Partition bottomPts, 2, 1, 1 , Reverse Partition topPts, 2, 1, 1 ,

PlotRange 1, Boxed False, ImageSize 200 ,

PlotLabel Style "surface area \n r1 r2 h2 r1 r2
2 "

ToString PaddedForm r1 r2 h2 r1 r2 2 , 4, 2

,

r1, .6, "r1" , .01, 1, Appearance "Labeled" ,

r2, 1., "r2" , .01, 1, Appearance "Labeled" ,

h, 1. , 0, 2, Appearance "Labeled" , Alignment Center

Out[19]=

r1 0.6

r2 1.

h 1.

surface area

r1 r2 h2 r1 r2
2 5.41
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Scoping and Dynamic Elements
Most  of  the  dynamic  interfaces  and controls  that  we  have  seen,  such as  sliders  and buttons,  have
been generated by the Manipulate command. But, as you would expect, Manipulate makes calls to
a host of lower-level commands that do the real magic, and you have access to these commands as
well.  The  fundamental  command  at  the  heart  of  all  such  live  interactive  interfaces  is  Dynamic.
Wrap an expression in Dynamic  and the front end will automatically update it whenever its value
changes. Below, for example, we make a Slider  that ranges from 0 to 3, and that is used to control
the values assumed by the symbol x.

In[20]:= Slider Dynamic x , 0, 3 , Dynamic x

Out[20]= , 1.78

Note that moving the slider (we moved the one above to 1.78) will actually make an assignment to
the symbol x: 

In[21]:= x

Out[21]= 1.78

The construction of dynamic interfaces with Mathematica,  while remarkably simple  compared with
most  other  programming languages,  is  a  vast  subject  that  falls beyond the scope of  this  book. The
tutorials  in  the  Documentation Center  titled  “Introduction  to  Dynamic”  and “Advanced Dynamic
Functionality” are excellent resources for those who wish to explore this arena. Our purpose here is
to introduce the DynamicModule command, and to understand its role in the context of the other
scoping  commands.  Like  Module,  any  symbols  declared  in  a  DynamicModule  will  be  insulated
from  assignments  made  elsewhere.  Below,  for  instance,  we  duplicate  the  input  above  within  a
DynamicModule.

In[22]:= DynamicModule x 2.5 ,

Slider Dynamic x , 0, 3 , Dynamic x

Out[22]= , 2.5

The  dynamic  content  is  now  completely  insulated  from  the  global  variable  x,  whose  value  is  still
1.78:

In[23]:= x

Out[23]= 1.78
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Here’s  a  simple  but  more  interesting  example.  Below  we  take  a  thick,  orange  PolarPlot  whose
independent  variable  tops  out  at  the  dynamically  controlled  quantity  u,  and  superimpose  it  with
the same (but thin) PolarPlot on the full domain 0 2 . A slider allows you to adjust u, so that
you can follow the parameterization from 0 to 2 .

In[24]:= DynamicModule u 4.5 ,

Column Slider Dynamic u , .01, 2 ,

Dynamic Show PolarPlot Cos 2 Cos 4 3 Sin 5 , , 0, 2 ,

PolarPlot Cos 2 Cos 4 3 Sin 5 , , 0, u ,

PlotStyle Directive Thick, Orange , Frame Gray

Out[24]=

2 2 4

4

2

2

4

This  example  illustrates  once again the  powerful  implications of  working in a functional program-
ming environment.  The Dynamic  command accepts  general  Mathematica  expressions  (such  as  the
Show expression above), and permits them to be dynamically updated.

The  interface  and input  code  above  is  nearly  identical  to  what  one  could  produce  using Manipu
late.  The real  benefit  of  using  dynamic programming constructions (instead of  Manipulate)  is  the
precise  control  that  is  afforded  regarding which quantities  get  dynamically updated  and which do
not. This is controlled by careful placement of Dynamic  elements. Above, both the static polar plot
and the dynamic orange plot are re-evaluated whenever the slider is moved. This is a consequence of
wrapping  the  entire  Show  expression  in  Dynamic.  An  alternate  and  slightly  more  sophisticated
input  that  produces  the  same  output  follows.  In  this  case,  the  static  plot  is  evaluated  only  once.
Only the thick orange plot is dynamically updated by the controller.

8.6   Scoping Constructs: With and Module          431



In[25]:= DynamicModule u 4.5, dynamicPlt ,

dynamicPlt Dynamic First PolarPlot Cos 2 Cos 4 3 Sin 5 ,

, 0, u , PlotStyle Directive Thick, Orange ;

Column Slider Dynamic u , .01, 2 ,

Show PolarPlot Cos 2 Cos 4 3 Sin 5 , , 0, 2 , Graphics dynamicPlt ,

Frame Gray

Out[25]=

2 2 4

4

2

2

4

In the input above we applied First to the thick, orange PolarPlot. This returns the first argument of
the Graphics  generated by PolarPlot (essentially a Line  object with dozens or hundreds of points).
Dynamic is applied to this quantity, and it is later displayed (by wrapping it in Graphics) together
with the static plot. The behavior of this output and the previous one are essentially the same, but
in principle this latter one is zippier and more responsive as the slider is moved, as fewer items need
to be  dynamically updated.  If  you were  to  add a  static  but  complicated ContourPlot  to  the  Show
argument  in  each  of  the  last  two  inputs,  the  relative  zippiness  provided  by  this  latter  approach
would be obvious.

A DynamicModule,  unlike a  Module,  stores  its  information in the  Front  End.  If  you save  a  note-
book with the output cell above included and re-open it later, it will display properly and the slider
will still work, even if you do not re-evaluate the input. Moreover, you could copy the output above
and paste it in several different places. Each pasted copy would work independently of the others. In
essence,  the  DynamicModule can be thought of as providing insulation in such a way  that  it  stakes
out specific real estate in a notebook in which the localizations take place.
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Exercises 8.6

1. Here is one way to generate the nth partial sum 1 1

2

1

3

1

n
 of the harmonic series. Explain 

how it works, and use it to calculate the 100th partial sum of the harmonic series. Compare the 

output with that of the built-in command HarmonicNumber. See also Section 8.7 on page 439 

for an alternate definition using Fold.

harmonicNumber n : Module s 0 , For i 1, i n, i , s s
1

i
; s

2. A local variable named x within a Module creates a symbol with a name such as x$30075, where 
the stuff to the right of the local variable name is the current value of the system variable $Mod
uleNumber. This variable is incremented each time any Module is called. Create a Do loop that 
will evaluate the expression Module[{x}, Print[x]] ten times.

3. In addition to With and Module, there is a third scoping command called Block, whose syntax
and purpose matches that of Module. Block uses a slightly different approach to insulate its local 
variables. To illustrate how it works, suppose that you have entered x = 3 in a session, and then 
create a Block with the local assignment x = 2. No new symbols will be created. Rather, when the 
Block is evaluated the value of x will be temporarily cleared and the local assignment will be 
utilized. After Block is finished the old value of x will be restored.

a. Enter the input below to see Block in action.

x 3; Block x 2 , Print x ; x

b. Enter the inputs below and explain the different outputs.

Clear x ; expr x 1

Block x 2 , x expr

Module x 2 , x expr

Clear expr

8.7 Iterations: Nest and Fold
Consider the following input:

In[1]:= Clear f, x ;
NestList f, x, 3

Out[2]= x, f x , f f x , f f f x

The  command  NestList  is  a  fundamental  tool  for  iterating  a  function.  When  one  enters  Nest
List[command, start, n], a list of length n 1 is created with start as the first entry. This is followed by
the result of applying command  to start  and then the result of applying command  to this result, and
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so on,  up through n  applications of  command.  The command Nest  is  similar,  and will  output  only
the last item in this list.

In[3]:= Nest f, x, 3

Out[3]= f f f x

Here’s a famous example of the type of problem that is especially amenable to computer exploration
using iterations.  It  is  known as  the  reverse-add problem, or  sometimes  as the versum  problem (this
being a  derivative  of  “reverse  sum”).  Take  a  positive  integer  and add  it  to  the  integer  obtained by
writing  the  original  number  backwards.  For  instance,  if  the  original  number  is  29,  one  adds
29 92 121.  The  result  in  this  case  is  a  palindrome,  a  number  that  reads  the  same  forward  and
backward.  If  you  start  with  39  and  carry  out  this  procedure  you  get  39 93 132  which  is  not  a
palindrome. However,  apply  the  procedure to 132  and you get  the  palindrome 363.  It  was  conjec-
tured long ago that  no matter  what  the  starting number  a  palindrome will  eventually  result  when
this procedure is iterated.

Here  is  a  means  of  using  Mathematica  to  carry  out  the  reverse-add  procedure.  Each  step  of  the
procedure can be accomplished by extracting the digits of the input number (IntegerDigits), revers-
ing this list of digits (Reverse), then converting the reversed digit list back to a number (FromDigits)
and finally adding it to the original.

In[4]:= Clear step ;

step n : n FromDigits Reverse IntegerDigits n

For example:

In[6]:= 39, step 39 , step step 39

Out[6]= 39, 132, 363

In[7]:= NestList step, 39, 2

Out[7]= 39, 132, 363

To  explore  the  conjecture  (that  every  input  will  lead  eventually  to  a  palindrome),  let’s  make  a
command that  will  identify  palindromes.  The  command palStyle  accepts  an  integer  as  input  and
outputs that integer with a frame around it if it is a palindrome and in black otherwise.

In[8]:= palStyle n : If IntegerDigits n Reverse IntegerDigits n , Framed n , n

For example, starting with 79 we see three palindromes in the first 20 iterations:
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In[9]:= palStyle NestList step, 79, 20

Out[9]= 79, 176, 847, 1595, 7546, 14003, 44044 , 88 088 , 176176, 847847,

1596595, 7 553546, 14 007103, 44 177144 , 88 354288, 176599676,

853595347, 1 597190705, 6668108656, 13236127322, 35608290553

For this  particular application it  would be nice to have a mechanism whereby the iterations would
stop  as  soon  as  a  palindrome  is  produced,  for  it  is  simply  not  clear  how  many  iterations  may  be
required.  The  command NestWhileList  (or  NestWhile  if  only  the  last  item  is  to  be  output)  is  the
ticket. The syntax is like that of NestList,  but instead of using a positive integer for the third argu-
ment  to  indicate  the  number  of  iterations,  use  a  predicate  instead.  The  iterations  will  continue as
long as the predicate returns True. Here, for instance, we set up a pure function for this purpose:

In[10]:= NestWhileList step, 79, IntegerDigits Reverse IntegerDigits &

Out[10]= 79, 176, 847, 1595, 7546, 14 003, 44044

And here  we  see  the number  of  iterations required to  reach a  palindrome for  each of  the  first  195
integers.  That  is,  above  each  integer  n  on  the  horizontal  axis  we  see  a  vertical  bar  indicating  the
minimal  number  of  iterations  required  to  reach  a  palindrome.  Integers  n  that  are  palindromes
appear directly on the horizontal axis:

In[11]:= ListPlot Table n,

Length NestWhileList step, n, IntegerDigits Reverse IntegerDigits &

1 , n, 195 , Filling Axis, PlotStyle PointSize .002 ,

PlotRange All, AspectRatio 1 3, AxesOrigin 0, 0

Out[11]=

We stopped at 195 here for a very good reason. The number 196 will not produce a palindrome even
after millions of iterations. For this reason it is strongly suspected that the original conjecture is false,
although at the time of this writing this has not been proved. In other words, no one really knows if
after  enough iterations of  this  procedure starting at  196  a  palindrome will  be produced.  All  that  is
known  is  that  a  palindrome  will  not  be  produced  quickly.  If  you  were  to  call  our  NestWhileList
input with 196 as the starting value, it would run (if you let it) for days, weeks, maybe years. Suffice
it to say that you might get bored waiting. For this reason it is possible to add an escape mechanism
to NestWhileList  so  that after  a  certain number of  iterations it  will stop,  regardless  of whether the
predicate is  True  or  not.  The following input  accomplishes this.  The fourth argument (1) indicates
that  the  predicate  needs  only  one argument  (the  last  result).  The final  argument  (50)  specifies  the

8.7   Iterations: Nest and Fold          435



maximal  number  of  iterations  to  allow.  Here  we  see  that  there  are  no  palindromes  in  the  first  50
iterations when one starts with 196:

In[12]:= palStyle

NestWhileList step, 196, IntegerDigits Reverse IntegerDigits &, 1, 50

Out[12]= 196, 887, 1675, 7436, 13783, 52 514, 94 039, 187088, 1 067869, 10 755470, 18 211171,
35 322452, 60 744805, 111589511, 227574622, 454050344, 897100798,
1794102596, 8 746117567, 16 403234045, 70 446464506, 130992928913 ,

450822227944, 900544455998 , 1800098901007, 8801197801088,
17 602285712176, 84 724043932847, 159547977975595, 755127757721546 ,

1400255515443103 , 4413700670963144 , 8827391431036288 ,
17 653692772973576 , 85 191620502609247 , 159482241005228405 ,

664304741147513356 , 1317620482294916822 , 3603815405135183953 ,
7197630720180367016 , 13 305261530450734933 , 47 248966933966985264 ,
93 507933867933969538 , 177104867844767940077 , 947154635293536341848 ,

1795298270686072793597 , 9 749270977546801719568 ,
18 408442064004592449047 , 92 502871604050616929528 ,

175095833209091234750057 , 925153265399993573340628

Let’s apply this procedure to each of the first thousand numbers and make a list of the results:

In[13]:= data Table NestWhileList step, n,

IntegerDigits Reverse IntegerDigits &, 1, 50 , n, 1000 ;

For example:

In[14]:= palStyle data 485

Out[14]= 485, 1069, 10 670, 18271, 35 552, 61 105, 111221, 233332

Here is a ListPlot like that produced earlier, but with a Tooltip added which will display the coordi-
nates of a data point as you mouseover it.

In[15]:= ListPlot Tooltip First , Length 1 & data,

Filling Axis, PlotStyle PointSize .002 ,

AspectRatio 1 3, PlotRange All, AxesOrigin 0, 0

Out[15]=

Below  are  all  numbers  between  1  and  1000  that,  like  196,  do  not  produce  a  palindrome  after  50
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iterations.  In  fact,  even  with  many  more  iterations  none  of  these  numbers  have  ever  produced  a
palindrome. See Exercise 2.

In[16]:= First Select data, Length 51 &

Out[16]= 196, 295, 394, 493, 592, 689, 691, 788, 790, 879, 887, 978, 986

In[17]:= Clear data

For a second example of programming iteratively, consider the Newton-Raphson method for approxi-
mating a root of an equation f x 0, where f  is a differentiable function. The technique, you may

recall,  entails  making an initial guess  x0  for  the  root,  and then calculating a sequence of  (what  we

hope will be) successively better approximations x1, x2, x3, … via the iterative formula

xn 1 xn
f xn

f ' xn

Here is a command newtonStep  that can be iterated with NestList. In order that it may be iterated,
it needs to accept a single numerical input. But we would also like to be able to specify the function f

whose root we wish to approximate.  We accommodate both of these demands by using the syntax
below:

In[18]:= Clear newtonStep, f, x ;

newtonStep f Function x, Simplify x
f x

f ' x
;

We can now specify a function f  explicitly like this:

In[20]:= f x : 2 x2;

newtonStep f x

Out[21]=
1

x

x

2

Or as a pure function, like this:

In[22]:= newtonStep 2 2 & x

Out[22]=
1

x

x

2

Either way,  we know that the function f x 2 x2  has a positive root at x 2 . Here we use the

Newton-Raphson technique to approximate this root, using the initial value of N[1,40]:
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In[23]:= NestList newtonStep f , N 1, 40 , 8 Column

Out[23]=

1.000000000000000000000000000000000000000

1.500000000000000000000000000000000000000

1.416666666666666666666666666666666666667

1.41421568627450980392156862745098039216

1.41421356237468991062629557889013491012

1.41421356237309504880168962350253024361

1.41421356237309504880168872420969807857

1.4142135623730950488016887242096980786

1.4142135623730950488016887242096980786

We see that  seven iterations are  sufficient  to give  38 digit  accuracy  in this  case (since the  last  two
rows—the seventh and eight iterates—agree at every digit, and since two digits of precision were lost
during the iteration process). This agrees with our knowledge of the root:

In[24]:= N 2 , 38

Out[24]= 1.4142135623730950488016887242096980786

It may be worth recalling that the built-in command FindRoot  is designed to be used in cases such
as this, where a good approximation to the root of a function is desired. Programming the Newton-
Raphson  method  is  intended  to  shed  light  on  the  behavior  of  this  algorithm.  We  don’t  mean  to
imply that it is the best and only tool for this purpose.

In[25]:= FindRoot 2 x2 0, x, 1 , WorkingPrecision 40

Out[25]= x 1.414213562373095048801688724209698078570

There  are  several  other  iteration commands  available  beyond Nest  and  NestList.  One  of  the  most
useful is FixedPointList. This is a special case of NestWhileList  that halts when the outputs become
indisinguishable from one another. That is, it provides a simpler means of doing what the NestWhile
List input below does:

In[26]:= NestWhileList newtonStep f , N 1, 40 , UnsameQ, 2 Column

Out[26]=

1.000000000000000000000000000000000000000

1.500000000000000000000000000000000000000

1.416666666666666666666666666666666666667

1.41421568627450980392156862745098039216

1.41421356237468991062629557889013491012

1.41421356237309504880168962350253024361

1.41421356237309504880168872420969807857

1.4142135623730950488016887242096980786
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In[27]:= FixedPointList newtonStep f , N 1, 40 Column

Out[27]=

1.000000000000000000000000000000000000000

1.500000000000000000000000000000000000000

1.416666666666666666666666666666666666667

1.41421568627450980392156862745098039216

1.41421356237468991062629557889013491012

1.41421356237309504880168962350253024361

1.41421356237309504880168872420969807857

1.4142135623730950488016887242096980786

And, as you would expect, there is a FixedPoint command that simply returns the final value:

In[28]:= FixedPoint newtonStep f , N 1, 40

Out[28]= 1.4142135623730950488016887242096980786

Here we use Newton’s method to give an approximation of 4 (i.e., as a root of f x sin x cos x).

In[29]:= FixedPoint newtonStep Sin Cos & , N 1, 40

Out[29]= 0.78539816339744830961566084581987572105

In[30]:= N 4, 38

Out[30]= 0.78539816339744830961566084581987572105

Note that FixedPoint and FixedPointList can accept a third argument, which specifies the maximal
number of iterations. This is useful when it is not clear in advance that the iteration will converge.

The commands Fold  and FoldList  are  used  to iterate  a  function of  two variables  over  its  first  vari-
able, while the second variable assumes successive values in a given list.  That sounds worse than it
is. The input below illustrates the idea. The first argument is the function to be iterated, the second
argument is the starting value for this function’s first variable, and the third argument is the list of
values for the function’s second variable. The length of this list controls the number of iterations to
perform:

In[31]:= Clear f, a ;

FoldList f, a, 1, 2, 3

Out[32]= a, f a, 1 , f f a, 1 , 2 , f f f a, 1 , 2 , 3

In[33]:= Fold f, a, 1, 2, 3

Out[33]= f f f a, 1 , 2 , 3

Here  is  how  to  use  FoldList  to  create  a  list  whose  nth  member  is  the  nth  partial  sum

1 1

2

1

3

1

n
 of the harmonic series: 
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In[34]:= FoldList 1
1

2
&, 1, Range 2, 10

Out[34]= 1,
3

2
,

11

6
,

25

12
,

137

60
,

49

20
,

363

140
,

761

280
,

7129

2520
,

7381

2520

Notice  that  changing  the  initial  value  from  1  to  1.  causes  numerical  approximations  to  be  used
throughout. This increases the speed of computation and produces results sufficient for plotting:

In[35]:= FoldList 1
1

2
&, 1., Range 2, 10

Out[35]= 1., 1.5, 1.83333, 2.08333, 2.28333, 2.45, 2.59286, 2.71786, 2.82897, 2.92897

In[36]:= ListPlot FoldList 1
1

2
&, 1., Range 2, 200

Out[36]=

50 100 150 200

2

3

4

5

6

An even simpler means of calculating partial sums is via the Accumulate  command. Given a finite
list {a, b, c,…}, Accumulate will return a list of the partial sums: {a, a+b, a+b+c,…}. 

In[37]:= Accumulate Table 1 n, n, 10

Out[37]= 1,
3

2
,

11

6
,

25

12
,

137

60
,

49

20
,

363

140
,

761

280
,

7129

2520
,

7381

2520

Another useful iteration command is Differences, which will return the differences between succes-
sive members in a list.

In[38]:= Differences 1, 4, 9, 16

Out[38]= 3, 5, 7

Whereas one could use  Nest  to iterate  this  command, it  will  accept a  second argument (specifying
the number of iterations desired) to save you the trouble:
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In[39]:= Differences Range 10 2

Out[39]= 3, 5, 7, 9, 11, 13, 15, 17, 19

In[40]:= Differences Range 10 2, 2

Out[40]= 2, 2, 2, 2, 2, 2, 2, 2

In[41]:= Differences Range 10 2, 3

Out[41]= 0, 0, 0, 0, 0, 0, 0

The  input  below  shows  a  means  of  displaying  successive  differences  for  the  first  ten  terms  in  the
harmonic sequence, where each row after the first represents the differences for the row above. The
display is a Column  with each row aligned at its center.  Individual rows are Grids (each with only
one row),  where the ItemSize  option is  utilized to guarantee a  fixed width for  each item.  It  is  this
fixed width that  is  needed to  produce  an easy-to-read display.  Exercise 10 in  Section 8.8  will  have
you build a command to automate this procedure for any initial list.

In[43]:= Column Table Grid Differences Table 1 n, n, 10 , k , ItemSize 3.25 , k, 0, 9 ,

Alignment Center

Out[43]=

1 1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

10

1

2

1

6

1

12

1

20

1

30

1

42

1

56

1

72

1

90

1

3

1

12

1

30

1

60

1

105

1

168

1

252

1

360

1

4

1

20

1

60

1

140

1

280

1

504

1

840

1

5

1

30

1

105

1

280

1

630

1

1260

1

6

1

42

1

168

1

504

1

1260

1

7

1

56

1

252

1

840

1

8

1

72

1

360

1

9

1

90

1

10

Exercises 8.7
1. If one were to set f = Function[x, 2x], then the input Nest[f, x, 4] would produce the output 16x. 

Give the definition of a Function called f so that Nest[f, x, 4] produces the outputs below. Be sure 
to check your answers.

a. 10000 x
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b. x16

c. 1 1 1 1 x

d. 1

1
1

1
1

1
1

1 x

2. When the reverse-add procedure is applied to some numbers, a palindrome is not produced even 
after millions of iterations. It is suspected (although it has not yet been proved) that a palin-
drome will never result with these numbers. The numbers in this class are known as the Lychrel 
numbers (do an internet search for A023108 and follow the link to the Online Encyclopedia of 
Integer Sequences for more information). Carry out an investigation of the orbit of the number 
196 under ten thousand iterations of the reverse-add procedure, and confirm that no palindrome 
is produced.

3. When an iteration scheme has a fixed point, it is often a matter of interest to understand how 
quickly the fixed point is approached. Does it take many iterations to get (for instance) 100 digits 
of precision, or just a few? A very simple means for garnering a qualitative assessment of the rate 
of convergence for an iterative sequence of real numbers can be had as follows: Make an Array
Plot where each row represents an iterate, and where each digit is represented by a different 
tonal value. When a particular decimal position stabilizes to its final value, the column in the 
array representing that position will be monotone from that point on down. This concept is 
illustrated below:

a. Use NestList to iterate the function f x 1

x

x

2
 ten times, with a starting value of N[1,20].

b. Map the function First[RealDigits[#]]& over the output above to convert each number into a 
list of its digits.

c. Wrap the output above with ArrayPlot to produce a visual representation.

d. Repeat parts a through c in a single input, but where the initial value is N[1,100].

e. Repeat part d, where the function to be iterated is f x 1

x

x

3
, and where there are 200 (as 

opposed to 10) iterations in total. Contrast the results to those of part d.

4. Add the option setting ColorFunction "Rainbow" to your favorite ArrayPlot and see what 
happens.

5. The secant method for finding a real root of an equation f x 0 was discussed in Section 8.5 on 

page 415, where it was implemented via a Do loop. If you go online and visit MathWorld 

(www.mathworld.com) and lookup “secant method,” you will find the Mathematica code shown 
below for implementing the secant method using NestList. Explain how the code works, and run 

nine iterations on the function f x x3 2 x 2 with starting values x0 1 and x1 3 2. Does 

it give the same result as the implementation using Do? (We did exactly this example on page 

415.)
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In[43]:= secantMethodList f , x , x0 , x1 , n :
NestList Last 0, Function x, f Last Subtract

Subtract Function x, f &, x0, x1 , n

6. When a function f  is iterated and converges to a fixed point x , it must be the case that f x x  

(why?). Geometrically, this means that the point x , x  is the intersection of the graphs of 
y f x  and y x. One often illustrates the convergence of the iteration from a particular starting 

value x0 by making a cobweb diagram. This is comprised of the graphs of y f x  and y x, 

together with line segments joining the points x0, x0 , x0, f x0 , f x0 , f x0 , f x0 , f f x0 , 

and so on, with alternating vertical and horizontal segments heading ever deeper into the 
iteration scheme. An illustration is provided below for the function f x 2.9 x 1 x  and starting 

point x0 0.5. Program Mathematica to produce such a diagram.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

7. Make a Manipulate showing cobweb diagrams (like that of the previous exercise) for the family 
of functions f x a x 1 x , with a slider for a ranging from 2.5 to 3.7, and a second slider for 

the starting point x0 ranging from 0.1 to 0.9.

8. The command ContinuedFraction will accept a real number as input and will output a list of 
integers that specifies the simple continued fraction form of the input (provided a finite or repeat-
ing continued fraction exists). The output {1,2,3}, for example, represents the continued fraction 

1 1

2
1

3

.

a. Enter ContinuedFraction[10/7], and check that 10

7
1 1

2
1

3

.

b. Use Fold and Defer to write a command named displayCF that will accept a (finite) digit list 
as input and will display the simple continued fraction corresponding to that digit list. For 

instance, displayCF[{1,2,3}] should return 1 1

2
1

3

. Moreover (by using Defer), you will be able 

to click on and then enter the output to evaluate it.

c. Use displayCF to display a continued fraction that approximates  to within 10 20. You can 

use ContinuedFraction Rationalize , 10 20 , for instance, to find a continued fraction 

sequence for a rational number close to .
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9. Use Accumulate to find the first ten partial sums of the series 1 1

4

1

9

1

16

1

25
. Euler 

showed this series converges to 
2

6
 in 1735, solving a decades old problem (known as the Basel 

problem) and securing fame for himself in the process. Make a ListPlot of the first thousand 

partial sums together with a horizontal line at height 
2

6
. Comment on the rate of convergence.

8.8 Patterns
For those who wish to program with Mathematica, patterns are often the most inaccessible aspect of
the language. They are the last frontier to be conquered. For those who “get it” on the other hand,
patterns  are  most  definitely  a  source  of  power.  With  an  understanding  of  the  fundamentals  of
patterns,  there  is  the  possibility  of  developing  toward  power-user  status.  Without  such  an
understanding, there is little hope.

The first thing to recognize is that you have been using patterns for quite a while. The most typical
instance is in a function definition that includes an underscore (_) on the left hand side, like the first
input shown below. While the subject of patterns is far too vast to adequately cover here, our hope
is to be able to convey enough basic knowledge and some illustrative examples so that you will be
able to recognize the power of patterns and replacement rules as you go about your work. 

A pattern  is a structure that can be used to represent an entire class of expressions.  Mathematica  has
extensive  tools  for  building  sophisticated  patterns,  for  detecting  when  a  particular  expression
matches  a  given  pattern,  and  for  making replacements  according to  criteria  given  as  patterns.  We
have already used the most basic type of pattern when defining functions. The x_ on the left side of
the definition below, for example, is a pattern.

In[1]:= Clear f, g, u ;

f x : x 1

Here is the FullForm of this definition:

In[3]:= Defer FullForm f x : x 1

Out[3]= SetDelayed f Pattern x, Blank , Plus x, 1

The pattern itself, x_, is show below:

In[4]:= FullForm x

Out[4]//FullForm=

Pattern x, Blank

We already have a pretty clear sense that this means x is the independent variable. If the function f
above  is  called  with  a  numerical  argument,  say  for  instance  that  the  user  enters  f[2],  then  the
expression on the right side of the definition will be evaluated with 2 replacing the x and the result
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is 3. In the broader context of Mathematica  itself, the pattern x_ can represent any structurally valid
expression (either an atom or a nested expression, as discussed in Section 8.2). For instance:

In[5]:= f g u

Out[5]= 1 g u

One important use of patterns is to restrict the class of expressions that will match the left side of a
definition. If,  for  instance,  one  wanted to  define  a  function f  that  would only  work  with  numeric
arguments, this structure would do the trick:

In[6]:= Clear f ;
f x ?NumericQ : x 1

In[8]:= f 24

Out[8]= 25

Non-numeric input does not match the pattern x_?NumericQ, and so the definition given above is
not applied; rather the expression is returned unevaluated:

In[9]:= f g u

Out[9]= f g u

There is much to say here. First note the structure of the pattern. The name of the pattern (we used
x)  can  be,  of  course,  whatever  you  like.  It  is  simply  the  name used  to  refer  to  the  pattern  on the
right side of the definition. The underscore is essential; we’ll discuss this soon. The ? can be followed
by any predicate command. An expression matches the pattern if and only if  the predicate returns
True for that expression. A handy way to explore this idea is with the command MatchQ. The first
argument is an expression and the second is a pattern.

In[10]:= MatchQ g u , x ?NumericQ

Out[10]= False

In[11]:= MatchQ 24, x ?NumericQ

Out[11]= True

For the purpose of matching the name x is not even necessary. The underscore (Blank[]) suffices:

In[12]:= MatchQ 24, ?NumericQ

Out[12]= True

Next, note that the same symbol f may be given a different definition for a different form of input.
Recall  that  the  function  f  was  defined  above  for  numeric  input  x  as  x 1.  We  can  add  another
definition for an input that is  a string;  f  will then return an output corresponding to either  type of
input.

8.8   Patterns          445



In[13]:= f x ?StringQ : "YOUR INPUT WAS: " x

In[14]:= f "blah blah blah"

Out[14]= YOUR INPUT WAS: blah blah blah

In[15]:= f 3

Out[15]= 4

In[16]:= f apple

Out[16]= f apple

Since apple is neither a string nor numeric (its head is Symbol), f returns unevaluated.

This notion of multiple definitions, one for each of several forms of input, can be useful. For exam-
ple, consider the famous Collatz conjecture (for Lothar Collatz, who proposed it in 1937): start with a
positive integer n.  If  n  is  even,  return n 2.  If  n  is  odd, return 3 n 1.  Iterate  this  process  while the
result is not 1. The conjecture states that regardless of the starting number, the process will eventu-
ally  lead  to  the  number  1.  The  conjecture  has  been  tested  extensively,  and  while  it  appears  to  be
true, it has not been proven. But programming the function to be iterated is a snap:

In[17]:= Clear f ;

f n ?EvenQ : n 2;
f n ?OddQ : 3 n 1

Here, for example, is the orbit of the starting number 342. It takes a while, but it eventually gets to
1. See Exercise 5 to further explore this conjecture.

In[20]:= NestWhileList f, 342, 1 &

Out[20]= 342, 171, 514, 257, 772, 386, 193, 580, 290, 145, 436, 218, 109, 328, 164, 82,
41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182,

91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790,
395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132,

566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,
1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077,
9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244,

122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
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Now the function f above could also effectively be defined as a Piecewise  function. Patterns in this
case provide an alternate approach. There are other cases where patterns provide a uniquely elegant
means of identifying a pertinent class of expression. In order to see such examples it is necessary to
broaden our knowledge of pattern structures.  The next fundamental pattern structure we introduce
is  a  _  (Blank[])  followed  immediately  by  a  symbol,  typically  a  command  name.  Any  expression
having that symbol as its Head will match this pattern. It is the internal FullForm of the expression
(discussed in Section 8.2) that determines a match.

In[21]:= MatchQ 1, 2, 3 , List

Out[21]= True

In[22]:= MatchQ 1, 2, 3 , Times

Out[22]= False

If a particular expression (such as {1,2,3} below) matches two patterns, the more specific will gener-
ally be used first:

In[23]:= Clear f ;

f x List : Apply Times, x ;

f x : x

In[26]:= f 1, 2, 3

Out[26]= 6

In[27]:= f g u

Out[27]= g u

Note  that  the  evaluation  sequence  is  important.  Structurally,  the  input  232  is  represented  as
Power[23, 2]  before  evaluation. Its  head is  Power.  After  evaluation it  becomes 529,  and its  head is
Integer. Expressions will be evaluated before being matched to a pattern.

In[28]:= Defer FullForm 232

Out[28]= Power 23, 2

In[29]:= MatchQ , Integer & 23, 232,
0

1

2 t t,
0

1

t t

Out[29]= True, True, True, False

One  may  combine  the  two  pattern  structures  discussed  above.  Suppose,  for  instance,  you  wish  to
create a function which will only accept a positive integer as its argument. This can be accomplished
with the  pattern  _Integer?Positive.  It  will  only match an expression  that  evaluates  to  an Integer,
and which returns True when the predicate command Positive is applied.
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In[30]:= MatchQ , Integer?Positive & 23, 23, 23.

Out[30]= True, False, False

In[31]:= Clear f ;

f x Integer ?Positive : 3 x 1

In[33]:= f 23, 23, 23.

Out[33]= 70, f 23 , f 23.

In case you were wondering, yes, this could also be accomplished via the slightly more cumbersome
pattern _?(Positive[#]&&IntegerQ[#]&).

In[34]:= MatchQ , ? Positive && IntegerQ & & 23, 23, 23.

Out[34]= True, False, False

Now let’s  consider  those  pesky  underscores.  While  a  single  underscore  _  (Blank[])  will  match any
expression, a double underscore __ (two underscores back-to-back, full name BlankSequence[]) is an
object that will match any sequence  of one or more expressions (i.e.,  expressions separated by com-
mas).  Just  as  with  the  single  underscore,  it  can  be  preceded  by  a  name  (e.g.,  x__)  and  it  can  be
followed by  either  a  question  mark  and predicate,  or  by  a  command name.  For  instance,  consider
the  following  definition.  The  pattern  x__Integer  will  be  matched  by  a  sequence  of  one  or  more
integers. Every  argument in the sequence must  be an integer in order for there to be a match. The
name x refers to the entire sequence.

In[35]:= Clear f, a ;

f x Integer : Times x

In[37]:= f 1, 2, 3

Out[37]= 6

In[38]:= f 3

Out[38]= 3

In[39]:= f 1, 2, a

Out[39]= f 1, 2, a

Using the double underscore, you can easily create a command that is based on a built-in command.
For instance,  below we create  a  command f  that  simply  invokes ParametricPlot3D  with the  same
arguments.  It  produces  two  versions  of  the  same  image.  The  pattern  args__  represents  the  entire
sequence of arguments.
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In[40]:= Clear f, t ;

f args : GraphicsRow ParametricPlot3D args ,

ParametricPlot3D args, PlotStyle Dotted , ImageSize 280

In[42]:= f Sin t Cos 50 t , Sin t Sin 50 t , t , t, 0, ,
BoxRatios 1, Boxed False, Axes False

Out[42]=

Finally, there is the triple underscore ___ (BlankNullSequence[]), which will match any sequence of
zero  or  more  expressions.  This  is  especially  useful  for  adding optional  arguments  to  a  user-defined
command.  For  example,  the  command  myPlot  will  call  the  Plot  command  with  some  specific
option settings,  including a PlotLabel  and AxesLabel  that are based on the values of  the requisite
arguments.  In  the  definition below,  f  and iter  represent  the  requisite  arguments  for  the  Plot  com-
mand,  while  opts  represents  any  additional  option  settings  the  user  wishes  to  add.  Since  such
settings  have the head Rule,  we demand this via  the pattern opts___Rule.  The triple  underscore is
appropriate here since myPlot might be called without any options.

In[43]:= Clear myPlot ;

myPlot f , iter List, opts Rule : Plot f, iter, opts, PlotStyle Thick,

PlotLabel "y " ToString TraditionalForm f , AxesLabel iter 1 , "y"

In[45]:= myPlot 1 x2, x, 1, 1

Out[45]=

1.0 0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

y

y 1 x2
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Note that the PlotLabel and AxesLabels are based on the values provided to the myPlot command’s
requisite  arguments  (in  the  example  below,  for  instance,  the  variable  t  is  used  instead  of  x).  Note
also that  because opts  appears  on the right side of  the myPlot  definition before  the specific  option
settings  (e.g.,  PlotStyle Thick),  any user-supplied  option settings  will  override these  defaults.  For
instance, here a different PlotStyle is specified:

In[46]:= myPlot t, t, 0, 3 , PlotStyle Dashed

Out[46]=

0.5 1.0 1.5 2.0 2.5 3.0
t

5

10

15

20

y

y t

The  three  types  of  underscores  can  also  be  used  in  a  StringExpression  (~~).  The  inputs  below
demonstrate their use in this setting. Given several strings, StringExpression  will concatenate them
into a single string, as in the PlotLabel  setting for myPlot above. Below the command Dictionary
Lookup is used to scour the dictionary for words that begin with “angle.” In the first case it finds all
such words  that  have  a  single  additional character  (there  are  three).  In  the  second case  it  finds  all
such words  with  one or  more additional letters  (there are seven,  including the three from the  first
output).  In  the  last  it  finds  all  such  words  with  zero  or  more  additional  letters.  The  output  is  the
same as the second case with one exception: the word “angle” itself is also present.

In[47]:= DictionaryLookup "angle"

Out[47]= angled, angler, angles

In[48]:= DictionaryLookup "angle"

Out[48]= angled, anglepoise, angler, anglers, angles, angleworm, angleworms

In[49]:= DictionaryLookup "angle"

Out[49]= angle, angled, anglepoise, angler, anglers, angles, angleworm, angleworms

So far we have discussed the three types of underscores, that it is permissible to name a pattern by
preceding any type of underscore with a symbol (e.g., x_), and that it is possible to restrict the type
of expression that will match a pattern in one of two ways: by following the underscore with either
a command name (such as  x_Integer),  or  with a  question mark followed by a predicate command
(such as x_?NonNegative). When defining your own commands this knowledge will get you a long
way, as patterns like these are very common on the left side of definitions. But patterns have many
other uses,  and there are countless  cases  where more sophisticated pattern objects are  needed. The
next order of business will be to explain how such objects are constructed.
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We will  do  this  by  introducing the  Cases  command.  Like  Select,  this  command is  used  to  extract
items  from  a  list.  Unlike  Select  (which applies  a  predicate  command to  the  list  items  and returns
those for which the predicate is True), Cases returns those items from the list that match a pattern.
For instance:

In[50]:= Cases 0, 2, 2, 4, 4, 6, 6 , ?NonNegative

Out[50]= 0, 2, 4, 6

For the most basic use of Cases, the first argument is the list, and the second is a pattern object. It is
the  multitude  of  possible  variations  for  this  second  argument  we  wish  to  address.  Here  are  some
illustrative examples:

In[51]:= Clear x, g, a, b, c ;

Cases x . NSolve 3 x4 x3 5 x2 7 x 1, x , Real

Out[52]= 0.758966, 0.162674

In[53]:= Cases NSolve 3 x4 x3 5 x2 7 x 1, x , x Real

Out[53]= x 0.758966 , x 0.162674

In[54]:= Cases 1, a, a2, a3, a , a4 , Power a,

Out[54]= a2, a3, a , a4

In[55]:= Cases 1, a, a2, a3, a , a4 , a ? 3&

Out[55]= a , a4

In[56]:= Cases 1, a, a2, a3, a , a4 , a Integer

Out[56]= a2, a3, a4

In[57]:= Cases g 1 , g a , g a, b , g a, b, c , g

Out[57]= g 1 , g a

In[58]:= Cases g 1 , g a , g a, b , g a, b, c , g Symbol

Out[58]= g a

In[59]:= Cases g 1 , g a , g a, b , g a, b, c , g Symbol

Out[59]= g a , g a, b , g a, b, c

In[60]:= Cases g 1 , g a , g a, b , g a, b, c , g , b,

Out[60]= g a, b , g a, b, c

8.8   Patterns          451



The point here is that a pattern object can be any ordinary expression, but typically it  will contain
one or more of the various underscores. 

Pattern objects can also make use of a number of special commands. For instance, Except[pattern] is
a pattern object that will match any expression except those that match pattern. It is useful in cases
when it is more convenient to say what something isn’t rather than what it is. The input below is a
simplified  example  of  a  list  where  some  members  have  the  form  Missing["Not  Available"].  For
instance,  many  of  the  curated  data  commands  such  as  CountryData  will  use  this  symbol  when
there is missing data. Cases and Except can be used to extract those data values that are not missing.

In[61]:= Cases 1, 2, Missing "Not Available" , Except Missing

Out[61]= 1, 2

The Repeated (..) command is useful for matching repeating sequences of objects. In the first input
below we find all cases of a list comprised of the same expression a repeated multiple times. In the
next input we find all cases of a list comprised only of integers.

In[62]:= Cases .12, 2, 3 , 2, 2, 2 , 3, 2, 3 , a ..

Out[62]= 2, 2, 2

In[63]:= Cases .12, 2, 3 , 2, 2, 2 , 3, 2, 3 , Integer ..

Out[63]= 2, 2, 2 , 3, 2, 3

Other such pattern commands include Longest, Shortest, Condition, and PatternSequence.

Most of the pattern objects used in the Cases examples above were not named. Another setting that
often  makes  use  of  pattern  objects  is  that  of  making  replacements,  and  this  enterprise  generally
requires that patterns be named. Here are two simple examples. In the first, no patterns are used. In
the second, a simple named pattern is used to make the replacements:

In[64]:= 1 x x2 x3 . x x2

Out[64]= 1 x2 x4 x6

In[65]:= 1 x x2 x3 . a Integer a 1

Out[65]= 2 x x3 x4

In the second example every integer in the expression is increased by 1. It is important to make clear

that the x in the expression does not get transformed to x2 under this replacement (even though x is
mathematically equivalent  to  x1).  Rather,  patterns  are  matched to  the  underlying FullForm  of  the
expression in question.

Now imagine that in the last example you wish to increase by 1 only the exponents (not the 1 at the
far  left).  The pattern  object  Power[x, n_]  will  match the  exponents,  or  equivalently  xn .  Note  that
you need to name the pattern (in this case n) in order to refer to it on the right side of the rule.
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In[66]:= 1 x x2 x3 . xn xn 1

Out[66]= 1 x x3 x4

If you want to increase the exponents on all of the x’s, the simplest means of doing so is with
the pattern object Power[x, n_.]. Note the dot (a simple period) after the underscore. The n_.
represents  an  optional  argument  to  a  function,  and  it  will  assume  a  default  value  if  it  is
omitted. For the Power command, the default value is 1. In other words, MatchQ[x, Power[x,
n_.]] will return True. So the rule Power[x, n_.] Power[x, n+1] will do the trick.

In the example below, a simple replacement rule is used to turn an integer into a row of a table:

In[67]:= Grid Range 10 . n Integer Defer n , " ", n , Alignment Right

TraditionalForm

Out[67]//TraditionalForm=

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3 628800

Here’s  yet  another  example  of  named patterns  being used  in  the  context  of  making replacements.
We begin with a table, where on any row you will find two mathematically equivalent trigonometric
expressions.

In[68]:= Clear a, k, n ;

Grid

Table Cos k a , TrigExpand Cos k a , k, 2, 9 ,

Alignment Left, Dividers Gray

TraditionalForm
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Out[69]//TraditionalForm=

cos 2 a cos2 a sin2 a

cos 3 a cos3 a 3 cos a sin2 a

cos 4 a cos4 a 6 sin2 a cos2 a sin4 a

cos 5 a cos5 a 10 sin2 a cos3 a 5 sin4 a cos a

cos 6 a cos6 a 15 sin2 a cos4 a 15 sin4 a cos2 a sin6 a

cos 7 a cos7 a 21 sin2 a cos5 a 35 sin4 a cos3 a 7 sin6 a cos a

cos 8 a cos8 a 28 sin2 a cos6 a 70 sin4 a cos4 a 28 sin6 a cos2 a sin8 a

cos 9 a cos9 a 36 sin2 a cos7 a

126 sin4 a cos5 a 84 sin6 a cos3 a 9 sin8 a cos a

Looking carefully  at  the  expanded expressions  in the  right column, we observe that  the sine  func-
tion only occurs with an even exponent. This means we can easily eliminate all sine functions from

the  expressions  on  the  right:  use  the  fact  that  sin2 a 1 cos2 a .  Or  raising  each  side  of  this

identity  to  an  arbitrary  integer  power  n,  we  have  sin2 n a 1 cos2 a
n
.  Here  is  how  one  could

make such a replacement:

In[70]:= TrigExpand Cos 7 a . Sin a n ?EvenQ 1 Cos a 2 n 2

Out[70]= Cos a 7 21 Cos a 5 1 Cos a 2 35 Cos a 3 1 Cos a 2 2
7 Cos a 1 Cos a 2 3

Finally, we Expand this to get a nice expression for cos 7 a  as a polynomial in cos a :

In[71]:= Expand

Out[71]= 7 Cos a 56 Cos a 3 112 Cos a 5 64 Cos a 7

Here is the table that results from this procedure:

In[72]:= Grid

Table Cos k a ,

TrigExpand Cos k a . Sin a n ?EvenQ 1 Cos a 2 n 2
Expand , k, 2, 9 ,

Alignment Left, Dividers Gray

TraditionalForm
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Out[72]//TraditionalForm=

cos 2 a 2 cos2 a 1

cos 3 a 4 cos3 a 3 cos a

cos 4 a 8 cos4 a 8 cos2 a 1

cos 5 a 16 cos5 a 20 cos3 a 5 cos a

cos 6 a 32 cos6 a 48 cos4 a 18 cos2 a 1

cos 7 a 64 cos7 a 112 cos5 a 56 cos3 a 7 cos a

cos 8 a 128 cos8 a 256 cos6 a 160 cos4 a 32 cos2 a 1

cos 9 a 256 cos9 a 576 cos7 a 432 cos5 a 120 cos3 a 9 cos a

Exercise  6  asks  you  to  use  this  table  to  prove  that  cos 21  is  a  root  of  the  polynomial

f x 1 16 x 32 x2 48 x3 96 x4 32 x5 64 x6.

The Cases  command discussed earlier  in this  section can also make replacements.  That is,  one can
find  all  cases  within  a  list  (or  indeed  any  expression)  of  subexpressions  that  match  a  particular
pattern,  and  replace  each  of  these  by  something  else.  It  sounds  a  bit  far  fetched,  but  it’s  actually

incredibly  powerful  and  useful.  There  was  an  example  in  Section  7.9,  for  instance,  where  we
extracted all Line  objects from a graphic and replaced each with the underlying list of points. Let’s
recreate an example like that one:

In[73]:= Cases , Line pts pts, Infinity

Out[73]= 0.211111, 0.833333 , 0.297222, 0.597222 ,
0.186111, 0.416667 , 0.316667, 0.197222 ,

0.561111, 0.836111 , 0.472222, 0.602778 , 0.572222, 0.4 , 0.483333, 0.2 ,
0.752778, 0.830556 , 0.861111, 0.622222 ,

0.736111, 0.394444 , 0.816667, 0.180556

The  first  argument  to  Cases  here  is  not  a  list,  but  rather  a  Graphics  that  was  produced  with  the
Drawing Tools palette. Note the third argument to Cases is Infinity. Cases goes into the FullForm of
the  Graphics  and  searches  at  every  level  (since  the  third  argument  is  Infinity)  for  subexpressions
matching the pattern object Line[pts_]. Each matching expression is replaced by pts, and a list of all
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such matching expressions  is  returned.  The result  in  this  case  is  three  lists  of  points  (or  more pre-
cisely, a list of three lists of points).

When making replacements,  it  is  often desirable to  assign a  name to  an entire  pattern object.  The
Pattern  command  is  used  for  this  purpose.  The  infix  form  of  this  command  is  the  colon  (:).  An
expression of the form name:pattern is used to associate name with pattern. In the (simple but common)
setting where the pattern object is a simple underscore, the colon can be eliminated altogether. That
is  the  expression  x_  (that  is  so  commonly  seen)  is  equivalent  to  x:_.  The  colon  is  essential  when
naming a  more  intricate  pattern  object.  Consider,  for  instance,  the  example  below in which every
row that begins with 1 in a matrix gets replaced with that same row multiplied by 3:

In[74]:=

1 3 5 7

7 9 1 8

1 2 3 4

2 5 9 1

. a : 1, 3 a MatrixForm

Out[74]//MatrixForm=

3 9 15 21

7 9 1 8

3 6 9 12

2 5 9 1

The name a is associated with the pattern object {1, __}. So 3a represents the scalar 3 times this list,
which has the effect of multiplying every member of the list by 3. 

Note  that  when you  make  a  replacement  via  ReplaceAll  (/.),  the  very  first  item in  the  evaluation
sequence will  be  the  right  side  of  the  Rule.  That  is,  when you enter  the  cell  containing a  replace-
ment,  the  right  side  of  the  Rule  is  evaluated  first.  In  the  example  below  (which  is  just  like  the
previous example, except here we Reverse each row in the matrix that begins with 1) this is problem-
atic.  The  input  Reverse[a]  generates  an  error  message  (because  a  is  a  Symbol,  not  a  List).  The
output, however, is correct.

In[75]:=

1 3 5 7

7 9 1 8

1 2 3 4

2 5 9 1

. a : 1, Reverse a MatrixForm

Reverse::normal : Nonatomic expression expected at position 1 in Reverse a .

Out[75]//MatrixForm=

7 5 3 1

7 9 1 8

4 3 2 1

2 5 9 1

In  a  case  such  as  this,  it  is  better  to  delay  evaluation  of  the  right  side  of  the  Rule  until  after  the
replacements  have  been made.  Then Reverse  will  be  applied  only to  an actual  list,  and all  is  fine.
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The key to doing this is to use RuleDelayed (:> or ) instead of Rule:

In[76]:=

1 3 5 7

7 9 1 8

1 2 3 4

2 5 9 1

. a : 1, Reverse a MatrixForm

Out[76]//MatrixForm=

7 5 3 1

7 9 1 8

4 3 2 1

2 5 9 1

Another  example  may  help  to  clarify  the  distinction  between  Rule  and  RuleDelayed.  In  the  first
input  below,  the  right  side  of  Rule  is  evaluated  prior  to  making  the  replacements.  Hence  every
replacement receives the same random integer. In the second input, the right side of RuleDelayed is
not  evaluated  until  after  the  replacements  have  been  made.  Hence  RandomInteger[100]  is  evalu-
ated three times.

In[77]:= a, a, a . a RandomInteger 100

Out[77]= 94, 94, 94

In[78]:= a, a, a . a RandomInteger 100

Out[78]= 31, 74, 22

In  order  to  understand  the  evaluation  sequence  upon  entering  a  particular  expression,  wrap
the  expression  with  Trace.  The  result  will  be  a  list  of  every  expression  that  is  encountered
during the evaluation process, with the final item being the output.  In the case of an expres-
sion with head ReplaceAll whose second argument is a Rule, the right side of the Rule will be
the first thing evaluated.

The  final  pattern  command  that  we  will  introduce  is  called  Optional.  This  allows  you  to  build  a
command with  an optional  argument.  Optional  accepts  a  pattern  object  as  its  first  argument,  and
the  default  value  to  be  used  if  that  pattern  is  omitted  as  its  second  argument.  For  instance,  this
command will draw a random sample from the list x. If a second argument is given, that will be the
size of the sample. If no second argument is given, a random sample of size three will be generated.

In[79]:= Clear f ;

randomSample x List, Optional y , 3 : RandomChoice x, y

In[81]:= randomSample Range 100 , 5

Out[81]= 3, 6, 58, 85, 23
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In[82]:= randomSample Range 100

Out[82]= 49, 68, 13

The infix form of Optional is a colon (:). There are two distinct commands whose infix form is
given  by  a  colon  (:).  For  an  expression  matching  the  form  symbol:pattern,  the  meaning  is
Pattern[symbol, pattern].  On  the  other  hand,  for  an  expression  matching  the  form
pattern:expression, the meaning is Optional[pattern, expression]. So the left side of the definition
above  could  have  been  entered  as  randomSample[x_List, y_:3].  This  can  be  confusing  to
someone trying to learn about patterns, but it never leads to  syntactic  ambiguity,  for  the  first
argument  to  Pattern  must  be  symbol,  while  the  first  argument  to  Optional  should  be  a
pattern  object.  Mercifully,  this  dual  use  of  a  single  symbol  is  exceedingly  rare  (another
example is !, which is used for both Factorial and the logical negation command Not).

Exercises 8.8
1. Define a function f with a single argument. The function will return unevaluated unless

a. the argument is an even integer greater than 10. In this case the function returns the string 
"success".

b. the argument is either an even integer, or is greater than 10. In this case the function returns 
the string "success".

2. Explain the following output. Doesn’t x_1 represent a pattern that will only match the number 1?

In[83]:= Clear f ;

f x 1 : "success";

f 1, 2, 2., "donkey"

Out[85]= success, success, success, success

3. Find a word that contains the five letters “angle,” (contiguous, and in that order) and which 
begins with the letter “q” and ends with the letter “s.”

4. A DNA molecule is comprised of two complementary strands twisted into a double helix, where 
each strand may be represented as an ordered sequence of the letters A, C, G, and T. The comple-
mentary strand is built from a given strand by replacing every A by T, every T by A, every G by 
C, and every C by G. In other words, A is swapped with T, and C is swapped with G. Define a 
command complementaryDNA that will take a list of character strings from the four-letter 
alphabet "A","C","G", and "T" (which is how we will represent a strand of DNA) and return the 
complementary strand, in which all As and Ts are switched, and in which all Gs and Cs are 
switched.

5. This exercise concerns the Collatz conjecture, which was discussed in this section.

a. Write a command collatz, that when given a positive integer will return the orbit of that 
integer under the iterated Collatz process. The conjecture states that every orbit ends at 1, so 
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use NestWhileList with iterations occurring as long as the iterated function does not return 1. 
To be safe, put a cap on it so that it will never carry out more than 1000 iterations.

b. Run the collatz command on each of the first 20 integers, and make a Table of the results. 
Map the command Length over this table to see how many iterations were carried out for 
each input. Make a ListPlot of the results. Did any number require all 1000 possible itera-
tions? If not, we can be confident that every orbit ends in 1.

c. Map the Partition command over your data table to replace an orbit such as {5,16,8,4,2,1} 
with a list of pairs of successive numbers, like this: {{5,16},{16,8},{8,4},{4,2},{2,1}}.

d. Flatten the result at level 1 to produce a single list of pairs, then feed that list of pairs to the 
Union command (to eliminate duplicate pairs). The list should end like this: 
{…{88,44},{106,53},{160,80}}.

e. Use Map to Apply the command Rule to each pair from part c to obtain an amalgamated list 
of all orbits. It should end like this: {…, 88 44, 106 53, 160 80}. Now feed the result to the 
command GraphPlot to get a visualization of the orbit space for the Collatz process.

f. Repeat the entire exercise for the first 100 integers (rather than just the first twenty). Do it yet 
again for the first thousand.

6. Use the trigonometric example from page 454 to prove that cos 21  is a root of the polynomial 

f x 1 16 x 32 x2 48 x3 96 x4 32 x5 64 x6. You may wish to take a look at the example 

from Section 4.6 on page 180.

7. Make a replacement to Range[15] and wrap the result in TabView to produce the output shown 
below.

362 880

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8. Make a command scaleRuns that will take a list  of zeros and ones, and return a list in which 
every run of k consecutive ones in  is replaced with k consecutive ks. For instance, the input 
{1,1,0,1,1,1,0,0} should produce the output {2,2,0,3,3,3,0,0}. You may want to make use of the 
Split command and the Repeated command.

9. Use the scaleRuns command of the previous exercise to build a command that will take a list of 
zeros and ones and display it using an ArrayPlot with a single row (with one item in the array 
for each member of the list), and where each consecutive run of ones is shaded according to the 
length of the run. Use Partition to modify this command so that it will break a long sequence 
(say with more than 50 elements) into several rows.

10. Make a command differenceTable that will accept two arguments. The first is a list. The second 
is an optional argument (with default value 3) that specifies the ItemSize for each item in a 
Grid. The output will be a difference table display like the one appearing at the end of Section 

8.7 on page 441. You can model the command on the input for the example given there.

8.8   Patterns          459





Index

, 414
 

, 36
 
, 45

 
, 52

 
`, 44
 
;, 40
 
?, 41
 
., 153

 
, 85

 
, 19, 360

 
, 10

 
, 42

 
: , 52
 

 , 153
 
 , 449

 Expand , 148

 Factor , 172

 Simplify , 180

 TrigReduce , 179

 , 13

 , 232

 , 153

 , 5

 , 203

 , , 281

 , 227

 , 222

 , 230

 , 150

  , 5

 
, 417 
, 409

&&, 96, 158
, 8
, 448
, 422
, 450

, 96
 
;;,127, 344
??, 127

, 403
., 288

: , 457
, 404

^, 2
, 2
, 444

 , 2
, 20

?, 445
, 2

:, 456, 458



, 422
expr, 417
, 2 
, 199
, 9 

$, 24 , 9
, 9
, 197
, 2
, 6
, 6
, 158, 388
, 59, 388
, 457
, 159 
, 159

 

Abort Evaluation , 38
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adjoint, 352
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arguments, 10
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assignment, 20

local, 54, 425
Assuming, 224
Assumptions, 177
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AtomQ, 386
Auto Save Package, 35
Automatic, 60
average rate of change, 200
axes, 54

at origin, 61
label, 68
remove, 64
scaling, 60
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AxesEdge, 260
AxesLabel, 68
AxesOrigin, 61
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Arrowheads, 65
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Background, 64
Band, 356
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Collatz conjecture, 446, 458
Collect, 157
color, 63
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Darker, 63
gradient, 304
Lighter, 63
slider, 81
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Column, 168
command, 10

completion, 42
infix, 387
looping, 414
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prefix, 37
syntax, 10
templates, 42

Complete Selection , 42
Complex, 393
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Convert, 45
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data, 120
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decimals, 6, 392
Defer, 389
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Definition, 41
Degree, 13, 253
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Delete all Output, 23
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Denominator, 174
derivatives, 202

directional, 283
higher order, 206
partial, 280

Det, 350
determinant, 350
diagonalization, 375
DiagonalMatrix, 339
DictionaryLookup, 450
difference equation, 142, 189
difference quotient, 199
Differences, 440
differential equation, 218
DigitBlock, 397
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Dimensions, 337
directional derivative, 283
Directive, 64, 262
discontinuities, 96
discriminant, 286
Disk, 115
Div, 329
divergence, 329
Dividers

horizontal, 88
vertical, 88

All, 88
division, 2
DNA molecule, 458
Do, 414

Documentation Center, 23, 42
dollar, 396
domain, 15, 54
Dot, 255
dot product, 252, 368

Drawing Tools, 112

DSolve, 218
dy

dx
, 202

Dynamic, 283, 430
DynamicModule, 430
 

Edit Stylesheet , 30
Eigensystem, 371
Eigenvalues, 371
Eigenvectors, 371
Element, 306
elementary row operations, 346
ElementData, 141
EllipticE, 226
EngineeringForm, 398
entering commands, 1
Epilog, 108, 154
equal, 6, 20, 101
error message, 25
Evaluate, 105

Evaluate Cells, 23, 35

Evaluate Notebook , 35
EvaluationNotebook, 138
EvenQ, 446
exact number, 7
Excel, 138
Except, 141, 452
Exclusions, 70, 264
ExclusionsStyle, 70
Expand, 15, 148
exponent, 5
ExponentFunction, 396
expression, 23
ExpToTrig, 179
extrema

global, 213, 284
local, 208, 284

 

Face, 28
FaceIndices, 383
Factor, 15, 147
Factorial, 414
FactorInteger, 14
Fahrenheit, 46
False, 95
Fermat's conjecture, 423
Fermat's little theorem, 421
Fibonacci numbers, 189
Filling, 106, 123
FillingStyle, 64
FinancialData, 134
FindFit, 124
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FindMaximum, 291
FindMinimum, 291
FindRoot, 184, 438
First, 127, 412, 432
Fit, 122
FixedPoint, 439
FixedPointList, 438
Flatten, 160
FlipView, 83
floating point unit, 399
Fold, 439
FoldList, 439
font, 28
FontFamily, 91
FontWeight, 91
Foot, 45
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For, 423
formal letter, 30
Formats, 140
Frame, 64
FrameStyle, 64
FreeQ, 417
FresnelC, 225
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FromDigits, 19, 434
front end, 2
FullForm, 85, 387
FullSimplify, 179
function
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implicitly defined, 97
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plot, 53

Function, 403
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gamepad controllers, 86
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graph, 53
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Gray, 64
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Head, 386
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help, 41
high precision number, 400
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homotopy, 324
Hour, 45
HSB, 74
HTML, 33
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If, 419
Im, 18
ImageSize, 84
imaginary number, 18
implicit differentiation, 217
Import, 136
improper integral, 232
inconsistent, 360
Increment, 422
infinite loop, 144
Infinity, 197
infix form, 387
inflection points, 215
initial condition, 219
initialization cell, 35
inline cell, 29
Inner, 255
inner product, 255, 368
input

cell, 3
previous, 36
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InputField, 83
InputForm, 10, 18, 394
instantaneous rate of change, 201
Integer, 143, 393
IntegerDigits, 18, 434
Integer?Positive, 447
Integers, 212
Integrate, 223, 293
InterpolatingFunction, 220
Inverse, 349
inverse trigonometric functions, 12
ItemSize, 85, 441
iterated integral, 293
iterator, 15, 54
 
jaggies, 100
Jigger, 45
Joined, 145
JordanDecomposition, 375
justification, 28
 
Kepler, 135
kernel, 2, 34

local, 48
keyboard shortcuts, 38
Kilo, 45
 
label, 68

axes, 68
plot, 68

Labeled, 69
Lagrange multipliers, 291
LakeColors, 299
Last, 127
LegendPosition, 104
Leibniz's conjecture, 419
Length, 131, 366
less than, 6
level curves, 266
Lighter, 63
Lighting, 262
LightTerrain, 217
LightYear, 45
Limit, 196
Line, 115
line integral, 332
linear transformation, 377
linearly independent, 364
LinearSolve, 359
LinearSolveFunction, 359
list, 126
List, 126

Listable, 127
ListAnimate, 83
ListPlot, 121
Liter, 45
ln, 26
loading packages, 43
Locator, 81, 282 283
logarithmic scale, 71
logarithms, 13
logistic growth, 189
LogLinearPlot, 71
LogLogPlot, 71
LogPlot, 71
long division, 174
Longest, 452
looping commands, 414
LU decomposition, 376
Lychrel numbers, 442
 
machine numbers, 400
MachinePrecision, 402

Make Template , 42
Manipulate, 16, 76
manipulator, 76
Map, 85, 352, 378 379, 403
MapThread, 411
MatchQ, 445
MathKernel, 2, 34
matrix

add column, 340
add row, 340
addition, 348
adjoint, 352
block, 341
cofactors, 352
determinant, 350
diagonal, 339
elementary, 347
enter, 335
general, 339
identity, 339
inverse, 349
lower triangular, 338
minors, 351
multiplication, 348
nonsingular, 362
null space, 362
nullity, 366
operations, 348
power, 349
rank, 366
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row space, 365
scalar multiplication, 348
singular, 362
upper triangular, 347
zero, 338

MatrixForm, 335
MatrixPower, 349
MatrixQ, 336
Maximize, 212, 284
maximum, 208
MaxMachineNumber, 399
MaxRecursion, 79, 259, 270
menu

Cell, 10, 18, 23, 35, 173, 392

Edit, 23, 28

Evaluation, 23, 35, 38

File, 23

Format, 28 32

Help, 23

Insert, 29, 31, 36, 74, 120

Palettes, 4, 32, 148
MenuView, 83
Mesh, 62, 265
MeshFunctions, 63, 265
MeshShading, 267, 279
MeshStyle, 64, 273
Mile, 45
Min, 338
Minimize, 212, 284
minimum, 208
Minors, 351
Missing, 141
modify cell style, 30
Module, 214, 283, 426
multiplication, 2
 
N, 11
Names, 45
naming things, 20
natural logarithm, 13
.nb, 23
NDSolve, 220
Needs, 44
Nest, 434
NestList, 146, 190, 433
NestWhile, 435
NestWhileList, 435
Neutral, 262
new cell, 27

New Graphic, 113

New Template , 32
Newton Raphson method, 185, 437

NIntegrate, 237
NMaximize, 284
NMinimize, 284 285
nonhomogeneous, 358
NonNegative, 450
nonsingular, 349
Norm, 252, 367

Normal, 32
Normal, 248, 355
Normalize, 367
Not, 417
notebook, 1
Notebook, 390
NSolve, 149
Null, 41, 389, 396
nullity, 366
NullSpace, 362 363
number

Complex, 393
decimal, 392

Formatting, 398
high precision, 400
Integer, 393
machine, 400
padded, 395
Rational, 393
Real, 392

NumberForm, 394
numbering cells, 34
NumberPadding, 395
Numerator, 174
numerical approximation, 11
numerical integration, 237
NumericQ, 445
 
OddQ, 446
Opacity, 116, 262

Open Recent, 38
Opener, 83
OpenerView, 83
opening saved notebooks, 27, 34
optimization, 284, 208 214, 284, 291
optimization word problem, 213

Option Inspector, 31
Optional, 457
Options, 85, 412
Or, 96, 388
origin, 54, 61
orthogonal, 367
Orthogonalize, 367
orthonormal basis, 367
osculating circle, 308
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output
cell, 3
previous, 36
suppressing, 40

O x , 247
 
packages, 43
paclet, 131
PaddedForm, 395
page break, 31
page numbers, 31
palette

AlgebraicManipulation, 148

BasicMathInput, 4

Drawing Tools, 112

SlideShow, 32

SpecialCharacters, 22
palindrome, 434
paraboloid, 319
parallelogram

area, 255
law, 256

parametric
curve, 301
surface, 311

parametricCylindricalPlot3D, 320
ParametricPlot, 302
ParametricPlot3D, 309 313
parametricSphericalPlot3D, 322
parentheses, 8, 25
partial derivatives, 280
partial fraction decomposition, 175
Partition, 90, 411

Paste, 28
PatternSequence, 452
pause, 76
Pi, 9
Piecewise, 95, 198, 264
piecewise defined functions, 94, 197 198
play

backward, 76
forward, 76

Plot, 15, 54
color, 63
filled, 106
options, 59
superimposed, 103

Plot3D, 258 268
PlotLabel, 68
PlotLegends, 104, 272
PlotMarkers, 121
PlotPoints, 79, 100, 258, 270

PlotRange, 17, 59, 79, 259
PlotStyle, 63, 262
plotting functions, 15, 53

implicitly defined, 97
multivariable, 258

Point, 115, 154
PointSize, 117, 154, 208
polar coordinates, 314
polarParametricPlot, 317
PolarPlot, 315 316, 431
Polygon, 115
PolyhedronData, 381, 383
polynomial

cubic, 156 157
expanding, 147
factoring, 147
long division, 174
quartic, 154
quintic, 155

PolynomialQuotient, 174 175
PolynomialRemainder, 174 175
PopupView, 83
postfix command, 37
Power, 2, 5, 57, 388
Precision, 401
predicate, 91, 416
prefix command, 37
PreIncrement, 423
PrependTo, 414
previous input, 36
previous output, 36
prime factorization, 14
PrimeQ, 403, 421

Print, 31
Print, 118, 423

Print Selection , 31

Printing Settings, 31
procedural programming, 414
product rule, 204
programming, 19, 385

functional, 409
procedural, 414

Properties, 131
 
QRDecomposition, 369
quadratic formula, 151
Quartics, 159
query, 416
Quiet, 388

Quit, 23

Quit Kernel, 48
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radian, 12
RadioButtonBar, 83
radius of curvature, 308
Rainbow, 442
RandomComplex, 130
RandomInteger, 130, 337
RandomReal, 130
Range, 67
rank, 366
Raster, 115
rate of change

average, 200
instantaneous, 201

Rational, 393
rational functions, 171
Rationalize, 443
Re, 18
Real, 392
realPower, 58
Reals, 163
Rectangle, 115
recurrence relation, 142, 189
RecursionLimit, 144
Red, 63
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Reduce, 157
reduced row echelon form, 346
reflection, 378
region of convergence, 247
RegionFunction, 263
RegionPlot, 295
RegionPlot3D, 295
Remove, 46
Repeated, 452, 459
ReplaceAll, 153, 288, 388, 452
replacement rule, 150, 153, 256
ReplaceRepeated, 288, 388
Rescale, 298
residuals, 125
resize a graphic, 55
Rest, 141
Reverse, 408
revers d problem, 434
revers ose, 4
RevolutionPlot3D, 242, 258, 319
RGBColor, 74
riddle, 85
Riemann sum, 230
Riffle, 426
Right, 70

root
cube, 5
nth, 5
principal, 167
square, 17

Root, 155
roots, 147

approximate, 148
complex, 152
exact, 154
irrational, 149

RotateLeft, 413
RotateRight, 414
RotationMatrix, 380
RowReduce, 346
RSolve, 189
Rule, 449
RuleDelayed, 457
Running..., 38, 47
 

Save, 23
ScaleFactor, 329
scatter plot, 122
scientific notation, 11, 394
ScientificForm, 398
Sec, 12
secant method, 415
Second, 45
second derivative, 206

Section, 28
Select, 141, 418
selection placeholder, 5
sequence, 246
Series, 247
Set, 52
SetDelayed, 52
SetDirectory, 138
SetterBar, 79

Shapes, 121
Short, 41
Shortest, 452
Show, 107

Show Toolbar, 27

ShowExpression, 392
Sign, 255
significant digits, 11, 394
Simplify, 157, 172, 176
Simpson's rule, 231
Sin, 12
slider, 16, 76 
Slider, 430
Slider2D, 80
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SlideShow, 32
SlideView, 83
Slot, 404
Solve, 150, 360
Sort, 407, 142
space shuttle, 381
Spacings, 88
span, 364
Span, 127, 344
SparseArray, 354
Specularity, 262
speed, 76
spelling, 27
Sphere, 276
spherical coordinates, 320
SphericalPlot3D, 258, 320
Spikey, 1
Split, 459
Sqrt, 18
square gyrobicupola, 383
square root, 17
StandardForm , 207
StarryNightColors, 267
String, 44, 69
StringExpression, 85, 391, 450
StringQ, 446
StringReplace, 413

Style, 28
Style, 91

StyleSheet, 29
Subscript, 256

Subsection, 28
subtraction, 2
suffix, 23
Sum, 92, 230
superformula, 324
suppressing output, 40
surface integral, 331
surface of revolution, 242, 312
SymbolName, 85
syntax, 24
System, 43
systems of equations, 162, 358
 
Table, 86, 337

Table of Contents, 33

Table Matrix, 120, 335
TabView, 83
Take, 45, 342
Tally, 424
Tan, 12
tangent line, 202, 205

Tartaglia, 157
Taylor series, 247
Teaspoon, 45
TemperatureMap, 301
Text, 27, 115

Text Color, 91
Thick, 64
Thickness, 64
Thread, 250, 410
Ticks, 67
Timing, 41

Title, 28
ToExpression, 85
Together, 176
TogglerBar, 83

Toolbar, 27
Tooltip, 103, 122, 134, 436
topographical map, 261
Torrence, Alexandra, 85
Torrence, Robert, 114
ToRules, 160
torus, 311
ToString, 85, 392
Tr, 350
Trace, 351, 457
TraditionalForm, 38, 159, 173
Transpose, 129, 349
trapezoidal rule, 231
TreeForm, 391
TrigExpand, 179
TrigFactor, 179
trigonometric functions, 12
trigonometric identities, 179, 413
TrigReduce, 179
TrigToExp, 179
trivial solution, 362
True, 95
tutorials, 42
typesetting

mathematics, 29
shortcuts, 38

 
underscore, 52, 444

Undo, 38
Unequal, 417
Union, 459
unit normal vector, 307
unit tangent vector, 306
unit vector, 367
Units, 44
URL, 137
 
vector, 251

field, 325
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unit, 367
unit normal, 307
unit tangent, 306

vector space, 364
dimension, 366

VectorAnalysis, 317
VectorFieldPlot, 325
VectorFieldPlot3D, 327
VectorFieldPlots package, 325
VectorHeads, 327
versum problem, 434
VertexCoordinates, 383
vertical asymptote, 55
VerticalSlider, 83
ViewPoint, 261
 

web page, 33
Which, 421
While, 422
Whitneyumbrella, 311
wild card, 45
With, 54, 425
WorkingPrecision, 185
x , 444

, 160
Zoe, 377
zoom, 54, 92 93, 206, 257

$Aborted, 48
$Post, 336
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