Quick and Dirty Introduction to LATEX Lecture 2: Typesetting Mathematics

William M. Faucette

University of West Georgia

Fall Semester, 2022

- 2 Control sequences for binary operators
- **3** Control sequences for BIG operators
- 4 Control sequences for Arrows
- 5 Control Sequences for Miscellaneous Symbols

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 6 Control Sequences for Functions
- 7 Display Math Mode

Math mode allows you to put inline mathematics in a paragraph.

Inline math mode can be started and ended three ways:

Begin with a single dollar sign \$ and end with another single dollar sign \$.

- Begin with \setminus (and end with \setminus).
- Begin with \begin{math} and end with \end{math}.

For example, the line

The Pythagorean Theorem tells us that $a^2+b^2=c^2$.

gives us

The Pythagorean Theorem tells us that $a^2 + b^2 = c^2$.

The code

 $\lim_{x \to a} f(x) = L$

gives you
$$\lim_{x \to a} f(x) = L$$
 in math mode and $\lim_{x \to a} f(x) = L$

in display math mode.

Notice an underscore in math mode gives you a subscript. (A caret ^ gives you a superscript).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The command $\frac{a}{b}$ gives you $\frac{a}{b}$ in math mode and

 $\frac{a}{b}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

in display math mode.

The code

$$\label{eq:linear_state} $$ \sum_{k=0}^{infty}frac{(-1)^k}{k+1} = \\ int_0^1\frac{dx}{1+x} $$ $$ $$ the set of the se$$

gives you $\sum_{k=0}^\infty \frac{(-1)^k}{k+1} = \int_0^1 \frac{dx}{1+x}$ in math mode and

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} = \int_0^1 \frac{dx}{1+x}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

in display math mode.

The code

$\label{eq:lim_x} $$ \lim_{x \to 0} \int |x| = 1 $$ \lim_{x \to 0} x_{x} = 1 $$ \label{eq:lim_x} is the set of the set o$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

gives you
$$\lim_{x o 0} rac{\sin x}{x} = 1$$
 in math mode and $\lim_{x o 0} rac{\sin x}{x} = 1$

in display math mode.

Use the sqrt command to produce square roots:

 $\operatorname{sqrt}(frac{a}{b})$

produces $\sqrt{\frac{a}{b}}$.

If you need an *n*th root, use sqrt[n] instead.

 $\operatorname{[10]}{frac{a}{b}}\$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

produces $\sqrt[10]{\frac{a}{b}}$.

The code

 $int_a^b f(x)$, dx

gives you
$$\int_a^b f(x) dx$$
 in math mode and

$$\int_{a}^{b} f(x) \, dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

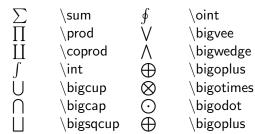
in display math mode. The control symbol \setminus , is a **thin space**.

Control sequences for binary operators

Control sequences for binary relations. You can negate these by adding \not as a prefix.

\leq	$\setminus leq$	\geq	\setminus geq	≡	∖equiv
\ll	\II	\gg	$\setminus gg$	÷	\doteq
\prec	\prec	\succ	\succ	\sim	∖sim
\preceq	\preceq	\succeq	\succeq	\simeq	∖simeq
\subset	\subset	\supset	∖supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\simeq	$\setminus cong$
	\sqsubset		∖sqsupset	\bowtie	$\setminus Join$
	\sqsubseteq	\square	\sqsupseteq	\bowtie	∖bowtie
\in	∖in	\ni	ni, owns	\propto	$\setminus propto$
\vdash	$\setminus vdash$	\neg	δshv	Þ	$\setminus models$
	$\setminus mid$		∖parallel	\perp	$\setminus perp$
\smile	∖smile	\frown	∖frown	\asymp	\setminus asymp
:	:	∉	\notin	· → ≠a →	, _≣ ∖neq , _≡

Control sequences for binary operators.


+	+	_	-
\pm	∖pm	Ŧ	\setminus mp
•	∖cdot	÷	\div
\times	\times	\setminus	\setminus
\cup	\setminus cup	\cap	\cap
\Box	\sqcup	\Box	\sqcap
\vee	$\vee ext{ or } \oldsymbol{lor}$	\wedge	\wedge, \land
\oplus	$\setminus oplus$	\ominus	$\setminus ominus$
\odot	∖odot	\oslash	ackslash
\otimes	∖otimes	\bigcirc	\bigcirc
\bigtriangleup	ackslashbigtriangleup	\bigtriangledown	ackslashbigtriangledown
\triangleleft	\setminus Ihd	\triangleright	\setminus rhd
\trianglelefteq	\setminus unlhd	\geq	\setminus unrhd

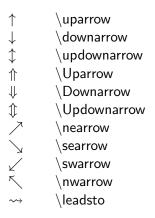
Control sequences for binary operators.

\triangleleft	$\$ triangleleft
\triangleright	\triangleright
*	∖star
*	$\setminus ast$
0	∖circ
•	∖bullet
\diamond	\diamond
$ \boxplus $	∖uplus
Ш	\adjustlimits
†	$\setminus dagger$
‡	$\backslash ddagger$
2	\wr

Control sequences for BIG operators

Control sequences for BIG Operators.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで


Control sequences for Arrows

Control sequences for arrows.

\leftarrow	\leftarrow	\leftarrow
\rightarrow	$\$ rightarrow	\longrightarrow
\leftrightarrow	\leftrightarrow	\longleftrightarrow
\Leftarrow	\Leftarrow	\Leftarrow
\Rightarrow	$\backslash Rightarrow$	\implies
\Leftrightarrow	\Leftrightarrow	\iff
\mapsto	\mapsto	\mapsto
\leftrightarrow	\hookleftarrow	\hookrightarrow
<u> </u>	\leftharpoonup	<u> </u>
	\leftharpoondown	\rightarrow
\rightleftharpoons	\right leftharpoons	\iff

\longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \longmapsto \hookrightarrow \rightharpoonup \rightharpoondown \iff

Control sequences for arrows.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Control Sequences for Miscellaneous Symbols

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Control Sequences for Miscellaneous Symbols:

	\dots		\cdots
\hbar	hbar	ı	∖imath
R	∖Re	\Im	∖Im
\forall	\forall	Ξ	\exists
/	\'	1	∖prime
∇	\nabla	\bigtriangleup	\triangle
\bot	$bot or \perp$	Т	∖top
\diamond	\diamondsuit	\heartsuit	∖heartsuit
-	\neg or $\low lnot$	þ	flat

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Miscellaneous symbols

÷	∖vdots
J	∖jmath
х	\aleph
Ω	$\setminus mho$
Ø	$\setminus emptyset$
	$\setminus Box$
2	\angle
÷	\clubsuit
4	$\$ natural

••• \ddots l ∖ell \wp \wp д \partial \infty ∞ \Diamond \Diamond \surd V \spadesuit \sharp

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Ħ

Control Sequences for Functions

Control Sequences for Functions:

\arccos	\arcsin	\setminus arctan	$\setminus arg$	$\setminus cos$	$\setminus cosh$	∖cot
\setminus coth	$\backslash csc$	$\setminus deg$	∖det	∖dim	∖exp	\gcd
\setminus hom	∖inf	$\setminus ker$	$\setminus Ig$	∖lim	∖liminf	∖limsup
∖sinh	∖sup	$\$ tan	$\$ tanh			

You can get every Greek letter, upper and lower case, by control words:

$\Gamma \setminus Gamma$	$\alpha \$	$\nu \setminus nu$	√ \digamma
$\Delta \setminus \text{Delta}$	β \beta	$\xi \$ i	ε \varepsilon
$\Lambda \$ Lambda	$\gamma \setminus gamma$	$\pi \ge \pi$	$\varkappa \setminus varkappa$
$\Phi \setminus Phi$	$\delta \$	$\rho \$	$\varphi \setminus \texttt{varphi}$
$\Pi \setminus Pi$	$\epsilon \setminus epsilon$	$\sigma \$ igma	ϖ \varpi
$\Psi \$ Psi	$\zeta \setminus zeta$	$\tau \$ tau	ϱ \varrho
$\Sigma \setminus Sigma$	$\eta \setminus ta$	$v \ v $	$\varsigma \setminus varsigma$
$\Theta \setminus Theta$	$\theta \setminus theta$	$\phi \setminus phi$	ϑ \vartheta
Υ \Upsilon	$\iota \setminus iota$	$\chi \setminus chi$	
$\Xi \setminus Xi$	$\kappa \setminus kappa$	$\psi \setminus \texttt{psi}$	
$\Omega \setminus Omega$	$\lambda \$ lambda	$\omega \setminus omega$	
	$\mu \$ mu		

Figure 1: Control words for Greek letters

You can get the following math alphabets (and others):

Example	Command	Required package
ABCdef ABCdef ABC	\mathrm{ABCdef} \mathit{ABCdef} \mathnormal{ABC}	
\mathcal{ABC}	\mathbf{ABC}	eucal with option: mathcal
ABCdef ABC	\mathscr{ABCdef} \mathfrak{ABCdef} \mathbb{ABCdef}	eucal with option: mathscr eufrak amsfonts or amssymb

If you need to find the control sequence for a symbol, you can google the symbol using something like

LaTeX symbol for subset not equal to

https://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf.

Display Math Mode

(ロ)、(型)、(E)、(E)、 E) の(()

We have already discussed the control sequence $\backslash [$ which starts display math mode and the control sequence $\backslash]$ that ends display math mode.

In addition, there is the equation environment that does exactly the same thing, but it also provides a number tag to the equation.

The code

\begin{equation} e^{i\theta}=\cos\theta+ i\sin\theta \end{equation}\label{eqn:Euler}

gives us

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1}$$

Notice the equation environment automatically numbers the equation. Also notice I have given this equation a label by the code $\label{eqn:Euler}$.

Display Math Mode: The align environment

The commands

\begin{align} a_1 &= b_1 + c_1 \\ a_2 &= b_2 + c_2 \end{align}

give you

$$a_1 = b_1 + c_1$$
 (2)

$$a_2 = b_2 + c_2 \tag{3}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The symbols after the ampersands are aligned vertically.

These equations are tagged with the numbers 2 and 3 because an earlier equation was tagged with the number 1. LATEX does the numbering automatically for you.

Display Math Mode: The align* environment

The commands

\begin{align*} a_1 &= b_1 + c_1 \\ a_2 &= b_2 + c_2 \end{align*}

give you

$$a_1 = b_1 + c_1$$
$$a_2 = b_2 + c_2$$

Notice the lines are aligned, but not numbered. The difference is the asterisk after align.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Display Math Mode: Matrices

The code

```
\[
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\]
```

gives you

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

The "p" puts parentheses around the matrix. There are also \begin{bmatrix}, \begin{vmatrix}, \begin{Vmatrix}, and \begin{matrix}. I'll let you play with those.

Display Math Mode: The aligned environment

The commands

\[f(x)= \left\{ \begin{aligned} -x, &\quad \mbox{if }x< 0\\ x, &\quad \mbox{if }x\geq 0 \end{aligned} \right. \]

give you

$$f(x) = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Notice the commands outlined in red:

\[f(x)= \left\{ \begin{aligned} -x, &\quad \mbox{if }x< 0\\ x, &\quad \mbox{if }x\geg 0 \end{aligned} \right. \]

for each \left there must be a corresponding \right . The command \right . gives you the closing "right" with no symbol after it.

The commands \left and \right also automatically adjust the size of symbols appearing after them.

If we use parentheses, we get

$$(\frac{x+y}{x-y})$$

This is produced by this code

```
\[
(\frac{x+y}{x-y})
\]
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If we use $\label{eq:left}$ and \right with the parentheses, we get

$$\left(\frac{x+y}{x-y}\right)$$

This produced by this code

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Loading the package amsfonts allows you to use the command \mathbb{}\$, which gives you "broadback" letters:

Usage: \mathbb{R}. Requires amsfonts.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00