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Chapter 2

Know about three-dimensional coordinates systems, including rectangular (or
Cartesian), cylindrical, and spherical coordinates.

The distance between P1(x1, y1, z1) and P2(x2, y2, z2) is

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

An equation of a sphere with center C(h, k, ℓ) and radius r is

(x− h)2 + (y − k)2 + (z − ℓ)2.

Know what a vector is, including both angle bracket notation and i⃗, j⃗ (and k⃗ in space)
notation. Know what a displacement vector is.

If the initial point of a vector v is A = (a1, a2) and the terminal point of a vector

v is B = (b1, b2), the displacement vector,
−−→
AB is

< b1 − a1, b2 − a2, b3 − a3 >= (b1 − a1) i⃗+ (b2 − a2) j⃗ + (b3 − a3) k⃗.

If v =< x1, y1, z1 > and w =< x2, y2, z2 >, then the sum of the two vectors is

v +w =< x1 + x2, y1 + y2, z1 + z2 > .

If λ is a scalar, the product of λ and v is

λv =< λx1, λy1, λz1 > .

This is called scalar multiplication. The vector −v = (−1)v.
We define the difference of two vectors by

v −w = v + (−1)w =< x1 − x2, y1 − y2, z1 − z2 > .
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You should also know how to add and scalar multiply vectors geometrically. This
means you need to know the Triangle Law and the Parallelogram Law. The sum of
two vectors is also called the resultant.

If v =< x1, y1, z1 >, then the x-component of v is the scalar x1, the y-component
of v is the scalar y1, and the z-componentof v is the scalar z1.

There is a one-to-one correspondence between points and vectors. If the point (x, y)
is in the plane, the corresponding position vector is < x, y >. If the point (x, y, z) is in
space, the corresponding position vector is < x, y, z >. This is just the vector having
initial point (0, 0) (or (0, 0, 0) in space) and terminal point (x, y) (or (x, y, z) in space).

The length or magnitude of the two-dimensional vector v =< x, y > is

|v| =
√

x2 + y2.

Similarly, the length or magnitude of the three-dimensional vector v =< x, y, z > is

|v| =
√

x2 + y2 + z2.

Length is also denoted ∥v∥. The length of a vector v is zero if and only if the vector v
equals the zero vector, 0 = (0, 0) (or 0 = (0, 0, 0) in space).

Properties of Vectors
If a and b are vectors and c and d are scalars then

a+ b = b+ a (a+ b) + c = a+ (b+ c)

a+ 0 = a a+ (−a) = 0

c(a+ b) = ca+ cb (c+ d)a = ca+ da

(cd)a = c(da) 1a = a.

There are special vectors in the plane, i⃗ =< 1, 0 > and j⃗ =< 0, 1 >, called the
standard basis vectors in R2. Each vector in the plane can be written uniquely as a
linear combination of i⃗ and j⃗: < x, y >= x i⃗+ y j⃗.

Analogously, there are special vectors in space, i⃗ =< 1, 0, 0 >, j⃗ =< 0, 1, 0 > and
k⃗ =< 0, 0, 1 >, called the standard basis vectors in R3. Each vector in space can be
written uniquely as a linear combination of i⃗, j⃗, and k⃗: < x, y, z >= x i⃗+ y j⃗ + z k⃗.

If a =< a1, a2, a3 > and b =< b1, b2, b3 >, the dot product (or scalar product or
inner product) is defined by

a • b = a1b1 + a2b2 + a3b3.

Properties of the Dot Product

a • a = |a|2

a • (b+ c) = a • b+ a • c
0 • a = 0

a • b = b • a
(ca) • b = c(a • b) = a • (cb)
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The most important property of the dot product is this: If a and b are vectors, then

a • b = |a| |b| cos θ.

where θ is the angle between a and b.
If θ is the angle between the nonzero vectors a and b, then

cos θ =
a • b
|a| |b|

.

This also gives us that

a and b are perpendicular (or orthogonal) ⇔ a • b = 0.

The direction cosines of a nonzero vector a are defined by

cosα =
a • i⃗
|a|

cosβ =
a • j⃗
|a|

cos γ =
a • k⃗
|a|

.

The vector projection of b onto a nonzero vector a is

proja b =
a • b
a • a

a.

The scalar projection of b onto a nonzero vector a is just the length of the vector
projection:

compa b =

∥∥∥∥a • b
a • a

a

∥∥∥∥ =
a • b
∥a∥

.

If a =< a1, a2, a3 > and b =< b1, b2, ab > are two three-dimensional vectors, then the
cross product of a and b = is the vector

a× b = det

 i⃗ j⃗ k⃗
a1 a2 a3
b1 b2 b3

 =< a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1 > .

The vector a× b is orthogonal to both a and b.
If θ is the angle between a and b, then ∥a × b∥ = |a| |b| sin θ. This is the area of the

parallelogram spanned by a and b.
Also, we have a and b are parallel if and only if a× b = 0.
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Properties of the Cross Product

a× b = −b× a

(ca)× b = c(a× b) = a× (cb)

a× (b+ c) = a× b+ a× c

(a+ b)× c = a× c+ b× c

a • (b× c) = (a× b) • c
a× (b× c) = (a • c)b− (a • b)c

The scalar triple product is defined by

a • (b× c) = det

a1 a2 a3
b1 b2 b3
c1 c2 c3


The volume of the the parallelepiped spanned by the vectors a, b and c is the absolute
value of their scalar triple product.

A line in space is given by a point P0 = (x0, y0, z0) and a nonzero vector v =< a, b, c >.
If two points P and Q are given, then v is the direction vector from P to Q.

The line through P0 = (x0, y0, z0) and direction vector v =< a, b, c > has vector
equation

r = r0 + tv

where r0 =< x0, y0, z0 >.
The line through P0 = (x0, y0, z0) and direction vector v =< a, b, c > has parametric

equations

x = x0 + ta

y = y0 + tb

z = z0 + tc.

The line through P0 = (x0, y0, z0) and direction vector v =< a, b, c > has symmetric
equations

x− x0
a

=
y − y0

b
=

z − z0
c

,

if abc ̸= 0. If one (or more) of the coordinates is (are) zero, this formula must be modified
slightly. For example, if a = 0 but bc ̸= 0, the symmetric equations are

y − y0
b

=
z − z0

c
and x = x0.
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The line segment from r0 to r1 is

r(t) = (1− t)r0 + tr1, 0 ≤ t ≤ 1.

A plane in space is given by a point P0 = (x0, y0, z0) and a nonzero vector
n =< a, b, c > orthogonal (or normal) to the plane. An equation of the plane with
normal vector n =< a, b, c > and containing a point P0 = (x0, y0, z0) is

a(x− x0) + b(y − y0) + c(z − z0) = 0

or
n• < x, y, z >= n• < x0, y0, z0 > .

The vector n is a normal vector to the plane.
The distance from a point P = (x1, y1, z1) to the plane with equation ax+ by+

cz = d is

D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
.

This is the scalar projection of the vector
−−→
P0P onto the normal vector n.
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Chapter 3

A curve in the plane is given by a vector function

r⃗(t) = x(t) i⃗+ y(t) j⃗,

for t in some interval [a, b], where x and y are real-valued functions.
A curve in space is given by a vector function

r⃗(t) = x(t) i⃗+ y(t) j⃗ + z(t) k⃗,

for t in some interval [a, b], where x, y and z are real-valued functions.
A curve r⃗ is smooth if dr⃗/dt is continuous and never 0⃗.
If r⃗(t) = x(t) i⃗+ y(t) j⃗, then

dr⃗

dt
=

dx

dt
i⃗+

dt

dt
j⃗.∫

r⃗(t) dt =

(∫
x(t) dt

)
i⃗+

(∫
y(t) dt

)
j⃗.∫ b

a
r⃗(t) dt =

(∫ b

a
x(t) dt

)
i⃗+

(∫ b

a
y(t) dt

)
j⃗.

If r⃗(t) is a curve in the plane or in space,

(1) The velocity is v⃗(t) = dr⃗
dt .

(2) The speed is ∥v⃗(t)∥.

(3) The acceleration is a⃗(t) = dv⃗
dt = d2r⃗

dt2
.

We have the following differentiation rules:

(1) d
dt C⃗ = 0⃗ for any constant vector-valued function C⃗.

(2) d
dt [cu⃗(t)] = cdu⃗dt .

(3) d
dt [f(t)u⃗(t)] =

df
dt u⃗(t) + f(t)du⃗dt .

(4) d
dt [u⃗(t)± v⃗(t)] = du⃗

dt ±
dv⃗
dt .

(5) d
dt [u⃗(t) • v⃗(t)] =

du⃗
dt • v⃗(t) + u⃗(t) • dv⃗

dt .

(6) d
dt [u⃗(t)× v⃗(t)] = du⃗

dt × v⃗(t) + u⃗(t)× dv⃗
dt .

(7) d
dt [u⃗(f(t))] =

du⃗
dt (f(t)) ·

df
dt .
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If a projectile with position function r⃗(t) is launched from the origin at time t = 0 with
initial velocity v⃗0 and v⃗0 makes an angle α with the horizontal, then

r⃗(t) = (v0 cosα) t i⃗ +

(
(v0 sinα)t−

1

2
gt2

)
j⃗,

where v0 = ∥v⃗0∥ and g is the acceleration due to gravity.
If r⃗(t) = x(t) i⃗ + y(t) j⃗, a ≤ t ≤ b, is a smooth curve then

(1) The arclength element is ds = ∥v⃗(t)∥ =
√
(x′(t))2 + (y′(t))2 dt.

(2) The arclength is ∫ b

a
ds =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

(3) The speed is

∥v⃗∥ =
ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2

.

(4) The unit tangent vector is

T⃗ (t) =
dr⃗

ds
=

dr⃗/dt

ds/dt
=

v⃗

∥v⃗∥
.

(5) The curvature is

κ =

∥∥∥∥∥dT⃗ds
∥∥∥∥∥ =

∥∥∥∥∥dT⃗ /dtds/dt

∥∥∥∥∥ =
1

∥v⃗∥

∥∥∥∥∥dT⃗dt
∥∥∥∥∥ .

(6) The principal unit normal vector is

N⃗(t) =
1

κ

dT⃗

ds
=

dT⃗ /ds

∥dT⃗ /ds∥
=

dT⃗ /dt

∥dT⃗ /dt∥
.

(7) The unit binormal vector is B⃗ = T⃗ × N⃗ .

(8) The torsion is

τ(t) = −dB⃗

ds
• N⃗ .

(9) If we resolve acceleration into its components parallel to T⃗ and parallel to N⃗ ,

a⃗ = aT⃗ T⃗ + aN⃗ N⃗

7



we get the tangential component aT⃗ and normal component aN⃗ of accelera-
tion:

aT⃗ =
d2s

dt2
=

d

dt
∥v⃗∥

aN⃗ = κ

(
ds

dt

)2

= κ∥v⃗∥2.

(10) The tangential and normal components of acceleration can also be computed by

aT⃗ =
∥v⃗ • a⃗∥
∥v⃗∥

aN⃗ =
∥v⃗ × a⃗∥
∥v⃗∥

.
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Chapter 4

If f(x, y) is a function of two variables, a level curve of f has equation f(x, y) = k
for some constant k. If f(x, y, z) is a function of three variables, a level surface of f has
equation f(x, y, z) = k for some constant k.

If lim(x,y)→(x0,y0) f(x, y) = L and lim(x,y)→(x0,y0) g(x, y) = M then

(1) lim(x,y)→(x0,y0) f ± g = L±M.

(2) lim(x,y)→(x0,y0) fg = LM.

(3) lim(x,y)→(x0,y0)
f
g = L

M , provided M ̸= 0.

(4) lim(x,y)→(x0,y0) [f(x, y)]
r/s = Lr/s, provided Lr/s is defined.

A function f(x, y) is continuous at (x0, y0) if

lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

If f(x, y) is continuous at (x0, y0) and g(t) is continuous at f(x0, y0), then g ◦ f is
continuous at (x0, y0). That is,

lim
(x,y)→(x0,y0)

g(f(x, y)) = g(f(x0, y0)).

In order for the limit as (x, y) goes to (x0, y0) of f(x, y) to exist, the limit must be
independent of the path taken as (x, y) goes to (x0, y0). So, if you can find two different
paths along which the limits as (x, y) goes to (x0, y0) of f(x, y) are different, then the limit
lim(x,y)→(x0,y0) f(x, y) does not exist.

A continuous function f(x, y) on a closed and bounded set in the plane must always
has both a maximum value and a minimum value.

To find the partial derivative of f with respect to any one of its variables, treat all
other variables as constants and take the derivative of f as a function of the sole remaining
variable:

∂f

∂x

∣∣∣∣
(x0,y0)

= lim
h→0

f(x0 + h, y0)− f(x0, y0)

h

∂f

∂y

∣∣∣∣
(x0,y0)

= lim
h→0

f(x0, y0 + h)− f(x0, y0)

h
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The notation for higher derivatives is

fxx =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2

fxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x

fyx =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y

fyy =
∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2

Clairaut’s Theorem says that if the second order mixed partials fxy and fyx are continuous
at a point, then they are equal at that point.

Let z = f(x, y). Let ∆z = f(x0 +∆x, y0 +∆y) − f(x0, y0). The function f is differ-
entiable at (x0, y0) if fx(x0, y0) and fy(x0, y0) exist and there exist functions ϵ1 and ϵ2
which go to zero as ∆x and ∆y go to zero so that

∆z =
∂f

∂x
(x0, y0)∆x+

∂f

∂y
(x0, y0)∆y + ϵ1∆x+ ϵ2∆y.

What this means is that the function z = f(x, y) and its tangent plane z = fx(x0, y0)(x−
x0) + fy(x0, y0)(y − y0) are close together near the point (x0, y0).

Notice it is not enough for fx and fy to exist at a point (x0, y0) for f to be differentiable
there. However, we do have the following theorem:

If f(x, y) is a function defined on an open set containing the point (x0, y0), and fx and
fy exist and are continuous at (x0, y0), the f is differentiable at (x0, y0).

The Chain Rules If w = f(x, y) has continuous partial derivative fx and fy and if
x = x(t) and y = y(t) are differentiable functions of t, then the composite w = f(x(t), y(t))
is a differentiable function of t and

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

If w = f(x, y), x = x(r, s) and y = y(r, s) have continuous partial derivatives, then the
composite w = f(x(r, s), y(r, s)) is a differentiable function of r and s and

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

and
∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
.

These two formulas have obvious generalizations to functions of more than two variables.
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If F (x, y) is differentiable and the equation F (x, y) = 0 defines y as a differentiable
function of x, then at any point where Fy ̸= 0,

dy

dx
= −Fx

Fy
.

Directional Derivatives and Gradient Vectors
Let f(x, y) be a function defined on an open set containing (x0, y0) and let u⃗ = u1 i⃗+u2 j⃗

be a unit vector. The directional derivative of f in the direction u⃗ at the point (x0, y0)
is

Du⃗f(x0, y0) = lim
s→0

f(x0 + su1, y0 + su2)− f(x0, y0)

s
,

provided this limit exists.
The gradient vector field of the function f(x, y) is the vector field ∇f = fx i⃗+ fy j⃗.

We have the following important facts relating directional derivatives and gradient
vector fields:

(1) The directional derivative of f in the direction u⃗ can be computed by the dot product

Du⃗f = ∇f • u⃗.

(2) The maximum rate of increase of the function f at the point (x0, y0) occurs in the
direction given by the gradient vector ∇f(x0, y0).

(3) The value of this maximum rate of increase of the function f at the point (x0, y0) is
the length of the gradient vector ∇f(x0, y0):

∥∇f(x0, y0)∥ =
√
fx(x0, y0)2 + fy(x0, y0)2

(4) If a curve is a level curve of the function f(x, y), so that the curve is given by
the equation f(x, y) = k for some constant k, then the gradient vector field ∇f is
perpendicular to the curve at each point. The same thing is true for level surfaces
for a function of three variables.

Tangent Planes and Differentials
Let f(x, y) be a differentiable function and let (x0, y0) be an interior point in the domain

of f . Let z0 = f(x0, y0).
The tangent plane to the surface z = f(x, y) at the point (x0, y0, z0) is given by the

equation
L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).
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Since f is differentiable, the difference f − L goes to zero as (x0, y0) and (x, y).
Let ∆f = f(x, y) − f(x0, y0) be the actual change in the function between the points

(x0, y0) and (x, y). Let df = fx(x0, y0)(x−x0)+ fy(x0, y0)(y− y0) be the actual change on
the tangent plane between the points (x0, y0) and (x, y). This is the differential of f at
the point (x0, y0). Since f − L goes to zero as (x0, y0) and (x, y), ∆f ≈ df .

So,
f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Extreme Values and Saddle Points
If f(x, y) has an extreme value at a point (x0, y0) and f is has first partial derivatives

at (x0, y0), then fx(x0, y0) = fy(x0, y0) = 0. A point where fx(x0, y0) = fy(x0, y0) = 0 is
a critical point for f . These are the only places (other than the boundary) where f can
have extrema.

Let f(x, y) have continuous second partial derivatives on an open set containing a
critical point (x0, y0). Let ∆ = fxx(x0, y0)fyy(x0, y0) − fxy(x0, y0)

2 be the discriminant of
f at (x0, y0). Then

(1) If ∆ > 0 and fxx(x0, y0) > 0, the f has a local minimum at (x0, y0).

(2) If ∆ > 0 and fxx(x0, y0) < 0, the f has a local maximum at (x0, y0).

(3) If ∆ < 0, the f has a saddle at (x0, y0).

This is the second derivative test for extrema.

Lagrange Multipliers
If we want to maximize (or minimize) a function z = f(x, y) subject to a constraint

g(x, y) = 0, the extreme value occurs when

∇f = λ∇g.

Similarly, if we want to maximize (or minimize) a function w = f(x, y, z) subject to a
constraint g(x, y, z) = 0, the extreme value occurs when

∇f = λ∇g.
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Chapter 5

If f(x, y) is continuous on a rectangle R = [a, b]× [c, d], then∫∫
R
f(x, y) dA =

∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy.

So, a double integral can be computed by an iterated integral and the order of integration
doesn’t matter. A similar result holds for triple integrals. This is Fubini’s Theorem.

This result is also true over more general regions as long as you compute the limits of
integration correctly. So, the double integral of f(x, y) over a region R can be computed
as a (correctly set up) iterated integral with either order of integration giving the same
value. A similar result holds for triple integrals.

Double (and triple) integrals have the following properties, assuming f(x, y) and g(x, y)
are continuous:

(1)
∫∫

R cf(x, y) dA = c
∫∫

R f(x, y) dA

(2)
∫∫

R f(x, y)± g(x, y) dA =
∫∫

R f(x, y) dA±
∫∫

R g(x, y) dA

(3) If f(x, y) ≥ g(x, y) for all (x, y) ∈ R, then∫∫
R
f(x, y) dA ≥

∫∫
R
g(x, y) dA.

(4) If R is the union of two nonoverlapping regions R1 and R2, then∫∫
R
f(x, y) =

∫∫
R1

f(x, y) +

∫∫
R2

f(x, y).

Applications
The area of a region R is given by ∫∫

R
dA.

The average value of f over a region R is given by

1

area of R

∫∫
R
f(x, y)dA.

The (first) moment of R with density function δ(x, y) about the x-axis is given by

Mx =

∫∫
R
y δ(x, y) dA.
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The (first) moment of R with density function δ(x, y) about the y-axis is given by

My =

∫∫
R
x δ(x, y) dA.

The center of mass of R with density function δ(x, y) is (x, y), where

x =
My

M
and x =

Mx

M
.

If δ is constant, the center of mass is called the centroid of R.
The moment of inertia (or second moment) of R with density function δ(x, y)

about the x-axis is given by

Ix =

∫∫
R
y2 δ(x, y) dA.

The moment of inertia (or second moment) of R with density function δ(x, y)
about the y-axis is given by

Iy =

∫∫
R
x2 δ(x, y) dA.

The polar moment of inertia of R with density function δ(x, y) is given by

I0 =

∫∫
R
(x2 + y2) δ(x, y) dA.

Notice that I0 = Ix + Iy.
The radii of gyration are

(1) About the x-axis: Rx =
√

Ix/M

(2) About the y-axis: Ry =
√
Iy/M

(3) About the origin: R0 =
√
I0/M

Double Integrals in Polar Coordinates
What you need to know here is that:

(1) x = r cos θ

(2) y = r sin θ

(3) x2 + y2 = r2

(4) dA = r dr dθ

14



Triple Integrals
The volume of a region R in space is given by∫∫∫

R
dV.

The average value of f(x, y, z) over a region R is given by

1

volume of R

∫∫∫
R
f(x, y, z)dV.

The (first) moment of R with density function δ(x, y, z) about the yz-plane is
given by

Myz =

∫∫∫
R
x δ(x, y) dA.

The (first) moment of R with density function δ(x, y, z) about the xz-plane is given
by

Mxz =

∫∫
R
y δ(x, y) dA.

The (first) moment of R with density function δ(x, y, z) about the xy-plane is given
by

Mxy =

∫∫
R
z δ(x, y) dA.

The center of mass of R with density function δ(x, y, z) is (x, y, z), where

x =
Myz

M
and y =

Mxz

M
and z =

Mxy

M
.

If δ is constant, the center of mass is called the centroid of R.
The moment of inertia (or second moment) of R with density function δ(x, y)

about the x-axis is given by

Ix =

∫∫
R
(y2 + z2) δ(x, y) dA.

The moment of inertia (or second moment) of R with density function δ(x, y)
about the y-axis is given by

Iy =

∫∫
R
(x2 + z2) δ(x, y) dA.

The moment of inertia (or second moment) of R with density function δ(x, y)
about the z-axis is given by

Iz =

∫∫
R
(x2 + y2) δ(x, y) dA.
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Spherical and Cylindrical Coordinates
What you need to know here is:
In cylindrical coordinates,

x = r cos θ

y = r sin θ

z = z

dV = r dr dθ dz.

In spherical coordinates,

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

dV = ρ2 sinϕdρ dϕ dθ.

16



Chapter 6

Line Integrals of Scalar Functions
If r⃗(t) = x(t) i⃗+ y(t) j⃗, a ≤ t ≤ b, is a curve in the plane and F⃗ = P (x, y) i⃗+Q(x, y) j⃗

is a vector field, we compute
v⃗ = x′(t) i⃗+ y′(t) j⃗,

and

T⃗ =
x′(t) i⃗+ y′(t) j⃗

∥x′(t) i⃗+ y′(t) j⃗∥
=

x′(t) i⃗+ y′(t) j⃗

ds/dt
.

Then ∫
C
F⃗ • T⃗ ds =

∫ b

a

(
P (x(t), y(t)) i⃗+Q(x(t), y(t)) j⃗

)
• x′(t) i⃗+ y′(t) j⃗

ds/dt
· ds
dt

dt

=

∫ b

a

(
P (x(t), y(t)) i⃗+Q(x(t), y(t)) j⃗

)
•
(
x′(t) i⃗+ y′(t) j⃗

)
dt

=

∫ b

a

(
P (x(t), y(t))x′(t) +Q(x(t), y(t)) y′(t)

)
dt

=

∫
C
P (x, y) dx+Q(x, y) dy.

Similarly, if r⃗(t) = x(t) i⃗+ y(t) j⃗+ z(t) k⃗, a ≤ t ≤ b, is a curve in space and F⃗ = P (x, y) i⃗+
Q(x, y) j⃗ +R(x, y) k⃗ is a vector field, then∫
C
F⃗•T⃗ ds =

∫
C
P dx+Qdy+Rdz =

∫ b

a

(
P (x(t), y(t))

dx

dt
+Q(x(t), y(t))

dy

dt
+R(x(t), y(t))

dz

dt

)
dt.

Work, Flow, Circulation, and Flux
The integral ∫

C
F⃗ • T⃗ ds

is the flow along C.
If the curve C is closed, the integral∮

C
F⃗ • T⃗ ds

is the circulation along C.
If the curve C is closed, the integral∮

C
F⃗ • n⃗ ds

17



is the flux along C, and if C is a plane curve and F⃗ = P i⃗+Q j⃗, then flux is given by∫
C
F⃗ • n⃗ ds =

∫
C
−Qdx+ P dy.

The integral ∫
C
F⃗ • T⃗ ds

is also the work done in moving an object along the curve in the positive direction. All
the following are different forms of the same expression:

W⃗ =

∫
C
F⃗ • T⃗ ds

=

∫
C
F⃗ • dr⃗

=

∫ b

a
F⃗ • dr⃗

dt
dt

=

∫ b

a

(
P
dx

dt
+Q

dy

dt
+R

dz

dt

)
dt

=

∫
C
P dx+Qdy +Rdz.

If a thin wire in the shape of a curve C has density function δ, then the mass of the
wire is given by

M =

∫
C
δ ds,

the moment of the wire about the yz-plane is given by

Myz =

∫
C
x δ ds,

the moment of the wire about the xz-plane is given by

Mxz =

∫
C
y δ ds,

the moment of the wire about the xy-plane is given by

Mxy =

∫
C
z δ ds,

and the center of mass of the wire is (x, y, z), where

x =
Myz

M
, y =

Mxz

M
, z =

Mxy

M
.
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Path Independence, Conservative Fields, and Potential Functions
A vector field F⃗ is conservative if F⃗ = ∇f for some function f . So, in the plane, this

means
F⃗ = P i⃗+Q j⃗ = fx i⃗+ fy j⃗ = ∇f,

so

P =
∂f

∂x
and Q =

∂f

∂y
.

The function f is a potential function for F⃗ .
If F⃗ = P i⃗+Q j⃗ has continuous first order partial derivatives and if F⃗ is conservative,

then
∂P

∂y
=

∂Q

∂x
.

This is a consequence of Clairaut’s Theorem.
If the vector field F⃗ , in addition, is defined on a simply connected region, then the

converse is also true:
If

∂P

∂y
=

∂Q

∂x
,

then F⃗ is conservative. This is a consequence of Green’s Theorem.
If F⃗ is conservative with potential function f and C is any path from a point A to a

point B, then ∫
C
F⃗ • T⃗ ds = f(B)− f(A).

This is the Fundamental Theorem of Line Integrals. In particular, if F⃗ is conservative, the
integral is independent of path.

Conversely, if F⃗ is defined on a simply connected region D and the integral
∫
C F⃗ • T⃗ ds

is independent of path for every curve C in D, then F⃗ is conservative.
If F⃗ = P i⃗ + Q j⃗ + R k⃗ is conservative, then curl F⃗ = 0⃗. If F⃗ is defined on a simply

connected domain D and curl F⃗ = 0⃗, then F⃗ is conservative.

Surface Integrals
Let S be a smooth surface in space parametrized by r⃗(u, v) = x(u, v) i⃗ + y(u, v) j⃗ +

z(u, v) k⃗ for (u, v) in some region R in the uv-plane. Then

dS =

∥∥∥∥ dr⃗du × dr⃗

dv

∥∥∥∥ dA

and ∫
S
f(x, y, z) dS =

∫
R
f(x(u, v), y(u, v), z(u, v))

∥∥∥∥ dr⃗du × dr⃗

dv

∥∥∥∥ dA.
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The length of r⃗u × r⃗v is the “stretch-squish” (technically, the Jacobian) and measures how
the parametrization between the uv-plane and xyz-space distorts area.

If z = f(x, y), so that the surface S is parametrized by a region R in the xy-plane,
then

dS =
√
1 + f2

x + f2
y dA.

If S is a surface and n⃗ is a unit normal vector to S, then the integral∫
S
F⃗ • n⃗ dS

is the flux of the vector field F⃗ across the surface S in the direction n⃗.
If a thin shell has the shape of a surface S with density function δ(x, y, z), the mass

of the shell is ∫∫
S
δ dS.

The moment of the shell about the yz-plane is given by∫∫
S
x δ dS.

The moment of the shell about the xz-plane is given by∫∫
S
y δ dS.

The moment of the shell about the xy-plane is given by∫∫
S
z δ dS.

The center of mass of the shell is given by (x, y, z), where

x =
Myz

M
, y =

Mxz

M
, z =

Mxy

M
.

Vector Calculus
If f is a function with first order partial derivatives, then the gradient of f is the

vector field
∇f = fx i⃗+ fy j⃗ (+fz k⃗).

If F⃗ = P (x, y, z) i⃗ + Q(x, y, z) j⃗ + R(x, y, z) k⃗ has first order partial derivatives, then
the curl of F⃗ is the vector field

curl F⃗ = ∇× F⃗ = det

 i⃗ j⃗ k⃗
∂ /∂x ∂ /∂y ∂ /∂z
P Q R

 .
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If F⃗ = P (x, y, z) i⃗ + Q(x, y, z) j⃗ + R(x, y, z) k⃗ has first order partial derivatives, then
the divergence of F⃗ is the scalar function

div F⃗ = ∇ • F⃗ =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

Handy Dandy Facts

(1) curl(∇f) = 0⃗ if f has continuous second order partial derivatives. So, if F⃗ is conser-
vative and has continuous first order partial derivatives, then curl(F⃗ ) = 0⃗.

(2) div(curl F⃗ ) = 0 if F⃗ has continuous second order partial derivatives.

Conversely, if everything is defined over a simply connected region D, then the converses
of these statements are true:

(1) If curl(F⃗ ) = 0⃗ and F⃗ has continuous first order partial derivatives, then F⃗ is conser-
vative, i.e. F⃗ = ∇f for some f .

(2) If div(G⃗) = 0 and G⃗ has continuous first order partial derivatives, with then there is
a vector field F⃗ so that G⃗ = curl F⃗ .

Green’s Theorem
If C is a piecewise smooth simple closed curve oriented counterclockwise and enclosing

a region R in the plane, and F⃗ = P i⃗+Q j⃗ is a vector field with P and Q having continuous
first order partial derivatives, then∮

C
F⃗ • T⃗ ds =

∮
C
P dx+Qdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

The integral on the left is the circulation of F⃗ around C.

Stokes’ Theorem
Let S is a piecewise smooth oriented surface having a piecewise smooth boundary curve

C oriented postively with respect to the orientation of S. Let F⃗ = P i⃗ + Q j⃗ + R k⃗ be a
vector field whose components have continuous first partial derivatives on an open region
containing S. Then ∮

C
F⃗ • T⃗ ds =

∫∫
S
curl F⃗ • n⃗ dS.

The integral on the left is the circulation of F⃗ around C.
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The Divergence Theorem
Let F⃗ be a vector field whose components have continuous first partial derivatives, and

let S be a piecewise smooth oriented closed surface bounding a region D in space. Then∫∫
S
F⃗ • n⃗ dS =

∫∫∫
D
div F⃗ dV.

The integral on the left is the flux of F⃗ across S.
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