

Integration Formulas and the Net Change Theorem

William M. Faucette

University of West Georgia

Outline

1 The Net Change Theorem

2 Integrating Even and Odd Functions

3 Example

Basic Integration Formulas

Recall the integration formulas given in the Table in Antiderivatives (p. 489 in the text book) and the rule on properties of definite integrals. Let's look at a few examples of how to apply these rules.

Basic Integration Formulas

Example

Use basic integration formulas to compute

$$\int \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right) dx.$$

Basic Integration Formulas

Solution

We use the power rule and sum rule for integrals.

$$\begin{aligned}\int \left(\sqrt{x} - \frac{1}{\sqrt{x}} \right) dx &= \int \left(x^{1/2} - x^{-1/2} \right) dx \\&= \int x^{1/2} dx - \int x^{-1/2} dx \\&= \frac{x^{3/2}}{3/2} - \frac{x^{1/2}}{1/2} + C \\&= \frac{2}{3}x^{3/2} - 2x^{1/2} + C.\end{aligned}$$

The Net Change Theorem

The Net Change Theorem

Theorem 5.6: Net Change Theorem

The new value of a changing quantity equals the initial value plus the integral of the rate of change:

$$F(b) = F(a) + \int_a^b F'(x) \, dx$$

or

$$\int_a^b F'(x) \, dx = F(b) - F(a).$$

Example

Example

Find the net displacement and total distance traveled in meters given the velocity function $f(t) = \frac{1}{2}e^t - 2$ over the interval $[0, 2]$.

Example

Solution

The net displacement is given by the integral of the velocity function from $t = 0$ to $t = 2$.

$$\begin{aligned}\int_0^2 \frac{1}{2}e^t - 2 \, dt &= \frac{1}{2}e^t - 2t \Big|_0^2 \\ &= \left(\frac{1}{2}e^2 - 2(2) \right) - \left(\frac{1}{2}e^0 - 2(0) \right) \\ &= \frac{1}{2}e^2 - \frac{9}{2}.\end{aligned}$$

Integrating Even and Odd Functions

Integrating Even and Odd Functions

Rule: Integrals of Even and Odd Functions

For continuous even functions such that $f(-x) = f(x)$,

$$\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx.$$

For continuous odd functions such that $f(-x) = -f(x)$,

$$\int_{-a}^a f(x) dx = 0.$$

Example

Example

Example

Integrate the function

$$\int_{-2}^2 x^4 \, dx.$$

Example

Example

Since $f(x) = x^4$ is an even function, we simply apply the rule for even functions:

$$\int_{-2}^2 x^4 dx = 2 \int_0^2 x^4 dx = 2 \left(\frac{1}{5}(2)^5 - \frac{1}{5}(0)^5 \right) = \frac{64}{5}.$$