

The Fundamental Theorem of Calculus

William M. Faucette

University of West Georgia

Outline

- 1 The Mean Value Theorem for Integrals
- 2 The Fundamental Theorem of Calculus, Part I
- 3 Examples
- 4 Fundamental Theorem of Calculus, Part 2
- 5 Examples

The Mean Value Theorem for Integrals

The Mean Value Theorem for Integrals

The Mean Value Theorem for Integrals

Let $f(x)$ be a continuous function defined on a closed interval $[a, b]$. Then there is some point c , $a < c < b$, so that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx.$$

The Mean Value Theorem for Integrals

Let's see why this is true.

Since f is a continuous function on a closed interval, f has a maximum value M and a minimum value m on $[a, b]$. So, we have

$$m \leq f(x) \leq M \quad \text{for all } x \in [a, b].$$

Then we have

$$m(b - a) = \int_a^b m \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b M \, dx = M(b - a).$$

The Mean Value Theorem for Integrals

In the equation

$$m(b - a) = \int_a^b m \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b M \, dx = M(b - a),$$

we evaluate the integral on the left by knowing what the integral means: It's the area under the line $y = m$ from a to b . This region is a rectangle of height m and width $b - a$, so the area is $m(b - a)$.

The same is true for the integral on the right.

The Mean Value Theorem for Integrals

Now divide by $(b - a)$:

$$m \leq \frac{1}{b-a} \int_a^b f(x) \leq M.$$

The Mean Value Theorem for Integrals

Recall the Intermediate Value Theorem:

Intermediate Value Theorem

Let f be a continuous function on the interval $[a, b]$. If $f(x_1) = y_1$ and $f(x_2) = y_2$, and y is any number between y_1 and y_2 , then there exists x , $x_1 \leq x \leq x_2$ so that $f(x) = y$.

This theorem says if f takes on one value and then a second value, then f must take on every intermediate value on that interval.

The Mean Value Theorem for Integrals

We have found that

$$m \leq \frac{1}{b-a} \int_a^b f(x) \leq M.$$

Since a continuous function actually takes on its minimum and maximum values, by the Intermediate Value Theorem, there exists c in the interval $[a, b]$ so that

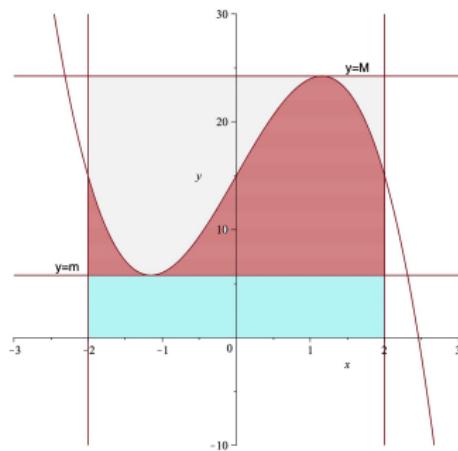
$$f(c) = \frac{1}{b-a} \int_a^b f(x).$$

This is the Mean Value Theorem for Integrals.

The Mean Value Theorem for Integrals

Here's a sketch which explains the Mean Value Theorem for Integrals.

Figure: Sketch for Mean Value Theorem for Integrals



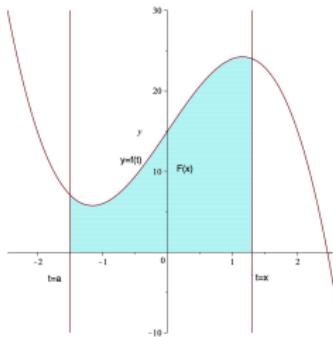
The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

If f is continuous on $[a, b]$, then $F(x) = \int_a^x f(t) dt$ is continuous on $[a, b]$ and differentiable on (a, b) and its derivative is $f(x)$.

Figure: Sketch of $F(x)$



The Fundamental Theorem of Calculus, Part I

Proof.

By definition,

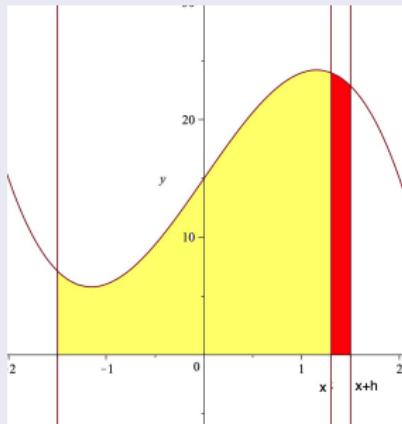
$$\begin{aligned} F'(x) &= \lim_{h \rightarrow 0} \frac{F(x+h) - F(x)}{h} \\ &= \lim_{h \rightarrow 0} \frac{\int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt}{h} = \lim_{h \rightarrow 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt \end{aligned}$$

See the sketch on the next slide.

The Fundamental Theorem of Calculus, Part I

Proof.

Figure: Sketch of $F(x + h) - F(x)$



The Fundamental Theorem of Calculus, Part I

Proof.

By the Mean Value Theorem for Integrals, there exists c_h lying between x and $x + h$, depending on h , so that

$$f(c_h) = \frac{1}{h} \int_x^{x+h} f(t) dt.$$

The Fundamental Theorem of Calculus, Part I

Proof (cont.)

So,

$$\begin{aligned}F'(x) &= \lim_{h \rightarrow 0} \frac{1}{h} \int_x^{x+h} f(t) dt \\&= \lim_{h \rightarrow 0} f(c_h) \\&= f(x).\end{aligned}$$

Since c_h is between x and $x + h$, as h goes to 0, c_h goes to x . By continuity, $f(c_h)$ goes to $f(x)$. \square

The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I, tells you something very important.

It tells you that every continuous function has an antiderivative.

Examples

Example 1

Example

Define

$$F(x) = \int_0^x e^{t^2} dt.$$

By the Fundamental Theorem of Calculus, Part I, $F(x)$ is differentiable everywhere and $F'(x) = e^{x^2}$.

Example 2

Example

Define

$$F(x) = \int_0^{3x} \sin(t) dt.$$

Let $u = 3x$. Then

$$F(u) = \int_0^u \sin(t) dt.$$

By the Fundamental Theorem of Calculus, Part I, $F(u)$ is differentiable everywhere and $F'(u) = \sin(u)$.

By the Chain Rule, $F(x)$ is differentiable everywhere and

$$\frac{dF}{dx} = \frac{dF}{du} \frac{du}{dx} = \sin(u) \cdot 3 = 3 \sin(3x).$$

Fundamental Theorem of Calculus, Part 2

Fundamental Theorem of Calculus, Part 2

Theorem

If f is continuous over $[a, b]$ and F is any antiderivative of f on $[a, b]$, then

$$\int_a^b f(x) dx = F(b) - F(a).$$

This means if the integrand f is continuous on $[a, b]$ and you want to evaluate $\int_a^b f(x) dx$, all you have to do is to find any antiderivative F of f , evaluate $F(b)$, evaluate $F(a)$, and subtract.

Fundamental Theorem of Calculus, Part 2

Proof.

Let f be continuous on the interval $[a, b]$ and let F be any antiderivative of f on $[a, b]$.

By the Fundamental Theorem of Calculus, Part I,

$$G(x) = \int_a^x f(t) dt$$

is also an antiderivative of f .

Fundamental Theorem of Calculus, Part 2

Proof (cont.)

One corollary of the Mean Value Theorem tells us that any two antiderivatives of a continuous function must differ by a constant. So, $G(x) = F(x) + C$ for some constant C .

If we evaluate $G(a)$, we get $G(a) = \int_a^a f(t) dt = 0$, so $0 = G(a) = F(a) + C$. This tells us that $C = -F(a)$.

Then $G(x) = \int_a^x f(t) dt = F(x) - F(a)$. In particular,

$$G(b) = \int_a^b f(t) dt = F(b) - F(a).$$

This concludes the proof. \square

Examples

Example 3

Example

Evaluate

$$\int_0^{\pi} (1 + \cos x) dx$$

Example 3

Solution

First, we find an antiderivative of $1 + \cos x$.

$$\int (1 + \cos x) dx = x + \sin x + C.$$

By the Fundamental Theorem of Calculus, Part 2,

$$\begin{aligned}\int_0^\pi (1 + \cos x) dx &= x + \sin x|_0^\pi \\ &= (\pi + \sin \pi) - (0 + \sin 0) = \pi.\end{aligned}$$

Example 4

Example

Evaluate the integral

$$\int_{-\sqrt{3}}^{\sqrt{3}} (x+1)(x^2+4) \, dx$$

Example 4

Solution

$$\begin{aligned} \int_{-\sqrt{3}}^{\sqrt{3}} (x+1)(x^2+4) \, dx &= \int_{-\sqrt{3}}^{\sqrt{3}} (x^3 + x^2 + 4x + 4) \, dx \\ &= \left(\frac{1}{4}x^4 + \frac{1}{3}x^3 + 2x^2 + 4x \right) \bigg|_{-\sqrt{3}}^{\sqrt{3}} \\ &= \left(\frac{1}{4}(\sqrt{3})^4 + \frac{1}{3}(\sqrt{3})^3 + 2(\sqrt{3})^2 + 4(\sqrt{3}) \right) \\ &\quad - \left(\frac{1}{4}(-\sqrt{3})^4 + \frac{1}{3}(-\sqrt{3})^3 + 2(-\sqrt{3})^2 + 4(-\sqrt{3}) \right) \\ &= 10\sqrt{3}. \end{aligned}$$

Example 5

Example

Evaluate

$$\int_0^{\pi/6} (\sec x + \tan x)^2 \, dx$$

Example 5

Solution

First, we do a little precalculus.

$$\begin{aligned}(\sec x + \tan x)^2 &= \sec^2 x + 2 \sec x \tan x + \tan^2 x \\&= \sec^2 x + 2 \sec x \tan x + (\sec^2 x - 1) \\&= 2 \sec^2 x + 2 \sec x \tan x - 1.\end{aligned}$$

Example 5

Solution

By the Fundamental Theorem of Calculus, Part 2,

$$\begin{aligned}\int_0^{\pi/6} (\sec x + \tan x)^2 \, dx &= \int_0^{\pi/6} 2 \sec^2 x + 2 \sec x \tan x - 1 \, dx \\&= (2 \tan x + 2 \sec x - x) \Big|_0^{\pi/6} \\&= \left(2 \tan \left(\frac{\pi}{6}\right) + 2 \sec \left(\frac{\pi}{6}\right) - \left(\frac{\pi}{6}\right)\right) \\&\quad - (2 \tan 0 + 2 \sec 0 - 0) \\&= 2 \cdot \frac{\sqrt{3}}{3} + 2 \cdot \frac{2\sqrt{3}}{3} - \frac{\pi}{6} - 2 \\&= 2\sqrt{3} - \frac{\pi}{6} - 2.\end{aligned}$$

Example 6

We have a dash of *déjà vu*:

Example

Evaluate the integral

$$\int_a^b mx \, dx$$

Example 6

Solution

We use the Fundamental Theorem of Calculus, Part 2:

$$\begin{aligned}\int_a^b mx \, dx &= \frac{1}{2}mx^2 \Big|_a^b \\ &= \frac{1}{2}mb^2 - \frac{1}{2}ma^2.\end{aligned}$$