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Finite Sums and Sigma Notation
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Finite Sums and Sigma Notation

If we are going to be adding up more and more terms, we need
some notation to deal with this. The notation is sigma notation
and it looks like this:

n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an−1 + an

The sum on the right is the sum represented by the sigma notation
on the left.
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Finite Sums and Sigma Notation

The letter k is the index of the sum.

Figure: Anatomy of a Summation
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Examples of Sigma Notation
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Examples of Sigma Notation

8∑
k=1

k = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36

4∑
k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
=

25

12

5∑
k=1

2k = 21 + 22 + 23 + 24 + 25 = 62
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Algebra Rules for Finite Sums
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Algebra Rules for Finite Sums

1. Sum Rule:
∑n

k=1(ak + bk) =
∑n

k=1 ak +
∑n

k=1 bk

2. Difference Rule:
∑n

k=1(ak − bk) =
∑n

k=1 ak −
∑n

k=1 bk

3. Constant Multiple Rule:
∑n

k=1 cak = c
∑n

k=1 ak

4. Constant Value Rule:
∑n

k=1 c = n · c
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An Important Formula
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An Important Formula

Example

n∑
k=1

k =
n(n + 1)

2
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An Important Formula

Proof

Let
S = 1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) + n

Now reverse the order of the summands in S :

S = n + (n − 1) + (n − 2) + · · ·+ 3 + 2 + 1
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An Important Formula

Proof.

We have

S = 1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) + n,

S = n + (n − 1) + (n − 2) + · · ·+ 3 + 2 + 1.

Now, add the two sums from top to bottom

2S =

n times︷ ︸︸ ︷
(n + 1) + (n + 1) + · · ·+ (n + 1) + (n + 1)

= n(n + 1).

Dividing the equation by 2 gives the result.
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More Important Formulas
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More Important Formulas

The first n squares:
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6

The first n cubes:
n∑

k=1

k3 =

(
n(n + 1)

2

)2
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Limits of Finite Sums
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Limits of Finite Sums

Start with the function f (x) = x2 on the interval [0, 1].

We divide the interval into n pieces of equal width. These points
are

0,
1

n
,
2

n
,
3

n
, . . . ,

n − 2

n
,
n − 1

n
, 1.

The set of these points is called a partition of the interval [0, 1].

For notation, x0 = 0, x1 = 1/n, x2 = 2/n, etc. In general, we have
xk = k/n.
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Limits of Finite Sums

We now need to choose a point in the kth interval where we will
evaluate the function to get the height of the rectangle.

It doesn’t matter which point you pick, so we’ll pick the right
endpoint, k/n. The height of the kth rectangle is then f (k/n).

The area of the kth rectangle is then f (kn ) ·
1
n =

(
k
n

)2 · 1
n = k2

n3
.

The sum of the areas of these n rectangles is then

n∑
k=1

k2

n3
.
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Limits of Finite Sums

We’ll use our list of important formulas and the properties of sums
to write this sum in closed form.

n∑
k=1

k2

n3
=

1

n3

n∑
k=1

k2

=
1

n3
n(n + 1)(2n + 1)

6

=
(n + 1)(2n + 1)

6n2
.

Mark Faucette UWG 19/42



Limits of Finite Sums

Since the estimate of the area should get better as we divide the
interval into more and more pieces, we take the limit as n goes to
infinity.

lim
n→∞

(n + 1)(2n + 1)

6n2
= lim

n→∞

2n2 + 3n + 1

6n2

= lim
n→∞

2n2 + 3n + 1

6n2
· 1/n

2

1/n2

= lim
n→∞

2 + 3 1
n + 1

n2

6

=
2 + 3(0) + (0)

6

=
1

3
.

This is the area under the graph of y = x2 over the interval [0, 1].
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Riemann Sums
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Riemann Sums

Start with a bounded function f (x) defined on an interval [a, b].

We choose a partition P = {x1, x2, . . . , xn−1, xn} between a and b
so that

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

The partition P divides the interval [a, b] into n closed subintervals

[x0, x1], [x1, x2], . . . , [xn−1, xn].

The kth subinterval is [xk−1, xk ]. We denote its width by
∆xk = xk − xk−1.

The largest value of ∆xk is the mesh or norm of the partition. It
is denoted ∥P∥.
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Riemann Sums

In the interval [xk−1, xk ], we choose a point x∗k . This is the point
where we will evaluate f to get the height of the kth rectangle.
So, the height of the kth rectangle is f (x∗k ).

The area of the kth rectangle is f (x∗k )∆xk , and the sum of the
areas of the n rectangles is

SP =
n∑

k=1

f (x∗k )∆xk ,

which is the Riemann sum for f on the interval [a, b] with
respect to the partition P.

This man’s name is pronounced “Rē′· mŏn”.

Mark Faucette UWG 23/42



Riemann Sums

If all the subintervals have the same width, the partition is called
regular. In this case, we denote the width of each rectangle is
given by

∆x =
b − a

n
.

Also, in the case of a regular partition, we have

xk = a+ k ∆x = a+ k
b − a

n
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Area and Estimating with Finite Sums
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Area and Estimating with Finite Sums

Suppose we have a function f (x) which is non-negative on the
interval [a, b]. How do we find the area under the graph y = f (x)
over the interval [a, b]?

Figure: Graph of y = f (x) on [a, b]
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Area and Estimating with Finite Sums

We look at the graph y = 1− x2 on the interval [0, 1].

First, divide the interval [0, 1] into two equal subintervals [0, 0.5]
and [0.5, 1].

One each subinterval, we will use the left endpoint to establish the
height of a rectangle over the subinterval by finding the value of
the function there.
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Area and Estimating with Finite Sums

The first left endpoint, x = 0, gives us a value of y(0) = 1. We
construct a rectangle with height 1 over the interval [0, 0.5]. We
what we have done is to assume the function has the constant
value 1 on this small interval.

The second left endpoint, x = 0.5, gives us a value of
y(0.5) = 3/4. We construct a rectangle with height 3/4 over the
interval [0.5, 1]. We what we have done is to assume the function
has the constant value 3/4 on this small interval.
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Area and Estimating with Finite Sums

The sum of the areas of the two rectangles is

1

2
· 1 + 1

2
· 3
4
=

7

8
.

This is an approximation for the area under the curve y = 1− x2

over the interval [0, 1].
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Area and Estimating with Finite Sums

To get a better estimate of the area, we divide the interval [0, 1]
into four subintervals: [0, 1/4], [1/4, 1/2],[1/2, 3/4], and [3/4, 1].

Figure: Approximating Area
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Area and Estimating with Finite Sums

The first left endpoint, x = 0, gives us a value of y(0) = 1. We
construct a rectangle with height 1 over the interval [0, 1/4]. We
what we have done is to assume the function has the constant
value 1 on this small interval.

The second left endpoint, x = 1/4, gives us a value of
y(1/4) = 15/16. We construct a rectangle with height 15/16 over
the interval [1/4, 1/2]. We what we have done is to assume the
function has the constant value 15/16 on this small interval.

The third left endpoint, x = 1/2, gives us a value of y(1/2) = 3/4.
We construct a rectangle with height 3/4 over the interval
[1/2, 3/4]. We what we have done is to assume the function has
the constant value 3/4 on this small interval.
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Area and Estimating with Finite Sums

The fourth left endpoint, x = 3/4, gives us a value of
y(3/4) = 7/16. We construct a rectangle with height 3/4 over the
interval [0.5, 1]. We what we have done is to assume the function
has the constant value 7/16 on this small interval.

The sum of the areas of the four rectangles is

1

4
· 1 + 1

4
· 15
16

+
1

4
· 3
4
+

1

4
· 7

16
=

25

32
.

This is a better approximation for the area under the curve
y = 1− x2 over the interval [0, 1].
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Area and Estimating with Finite Sums

If you use the point in each subinterval on which the function has
its maximum on that subinterval, then the sum is called an upper
sum. This estimate is larger than (or equal to) the area under the
curve.

If you use the point in each subinterval on which the function has
its minimum on that subinterval, then the sum is called a lower
sum. This estimate is smaller than (or equal to) the area under
the curve.

The area under the curve is somewhere between the lower sum and
the upper sum.
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Area and Estimating with Finite Sums

You can actually choose any point in each subinterval. Most
customarily, one uses the left endpoint, the right endpoint, or the
midpoint of the subinterval. You will (in general) get different
estimates for the area under the curve.
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Area and Estimating with Finite Sums

How do you get better and better estimates? You divide the
interval into more and more subintervals.

Figure: Table of Lower Sums, Midpoint Sums, and Upper Sums

In particular, it appears the area under the curve y = 1− x2 over
the interval [0, 1] is 2/3.
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Distance Traveled
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Distance Traveled

Suppose we’re given the velocity function v(t) for a particle
moving along an axis. If we graph this function, we get the graph
y = v(t).

Figure: Graph y = v(t)
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Distance Traveled

If we divide the interval [1, 4] into subintervals, the width of each
subintervals if ∆t, a change in time, and the height of the
approximating rectangle is a velocity. The product of time and
velocity is distance.

This interprets the area under the graph y = v(t) as the distance
traveled between t = 1 and t = 4.
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Displacement versus Distance Traveled

If we divide the interval [0, 1] into subintervals, the width of each
subintervals if ∆t, a change in time, and the height of the
approximating rectangle is a velocity. The product of time and
velocity is distance.

This interprets the area above the graph y = v(t) as the negative
of the distance traveled between t = 0 and t = 1. The sign tells
you that the object is traveling in the opposite direction on the
axis.
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Displacement versus Distance Traveled
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Displacement versus Distance Traveled

If we add these two numbers together, we get the displacement of
the object over the interval [0, 5]. That is, you get the distance
between where the object started and where it ended. This adds
distance to the right and subtracts distance to the left
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Displacement versus Distance Traveled

If we subtract these two numbers, you get the the distance
traveled by the object over the interval [0, 5]. That is, you get the
distance the object traveled to the right plus the distance traveled
to the left. Here, we just ignore the direction of travel and add the
distances together.

The displacement and the distance traveled are generally not the
same thing.
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