

Limits Involving Infinity; Asymptotes of Graphs

William M. Faucette

University of West Georgia

Outline

- 1 Finite Limits as $x \rightarrow \pm\infty$
- 2 Examples
- 3 Horizontal Asymptotes
- 4 Infinite Limits at Infinity
- 5 End Behavior
- 6 End Behavior Of Polynomial Functions
- 7 Oblique Asymptotes
- 8 Example
- 9 Procedure for Graphing $y = f(x)$
- 10 Example

Finite Limits as $x \rightarrow \pm\infty$

Finite Limits as $x \rightarrow \pm\infty$

Definition

We say a function f has a **limit at infinity**, if there exists a real number L such that for all $\epsilon > 0$, there exists $N > 0$ such that

$$|f(x) - L| < \epsilon$$

for all $x > N$. In that case, we write

$$\lim_{x \rightarrow \infty} f(x) = L.$$

Finite Limits as $x \rightarrow \pm\infty$

Definition

We say a function f has a **limit at negative infinity**, if there exists a real number L such that for all $\epsilon > 0$, there exists $N < 0$ such that

$$|f(x) - L| < \epsilon$$

for all $x < N$. In that case, we write

$$\lim_{x \rightarrow -\infty} f(x) = L.$$

Examples

Example 1

Example

The function $f(x) = \frac{1}{x}$ has the limit zero as x goes to infinity or to minus infinity.

$$\lim_{x \rightarrow \infty} \frac{1}{x} = 0$$

$$\lim_{x \rightarrow -\infty} \frac{1}{x} = 0.$$

Example 2

Example

$$\begin{aligned}\lim_{x \rightarrow \infty} \left(8 - \frac{1}{x^2} \right) &= \lim_{x \rightarrow \infty} 8 - \lim_{x \rightarrow \infty} \frac{1}{x^2} = \lim_{x \rightarrow \infty} 8 - \lim_{x \rightarrow \infty} \left(\frac{1}{x} \right)^2 \\ &= \lim_{x \rightarrow \infty} 8 - \left(\lim_{x \rightarrow \infty} \frac{1}{x} \right)^2 = 8 - (0)^2 = 8.\end{aligned}$$

Example 3

Example

$$\begin{aligned}\lim_{x \rightarrow \infty} \frac{1}{2 + \frac{1}{x}} &= \frac{\lim_{x \rightarrow \infty} 1}{\lim_{x \rightarrow \infty} (2 + \frac{1}{x})} \\ &= \frac{\lim_{x \rightarrow \infty} 1}{(\lim_{x \rightarrow \infty} 2) + \lim_{x \rightarrow \infty} (\frac{1}{x})} \\ &= \frac{1}{2 + 0} = \frac{1}{2}.\end{aligned}$$

Example 4

Example

$$\begin{aligned}\lim_{x \rightarrow \infty} \frac{2x + 3}{5x + 7} &= \lim_{x \rightarrow \infty} \left(\frac{2x + 3}{5x + 7} \right) \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \rightarrow \infty} \left(\frac{2 + \frac{3}{x}}{5 + \frac{7}{x}} \right) \\&= \frac{\lim_{x \rightarrow \infty} (2 + \frac{3}{x})}{\lim_{x \rightarrow \infty} (5 + \frac{7}{x})} \\&= \frac{\lim_{x \rightarrow \infty} 2 + \lim_{x \rightarrow \infty} \frac{3}{x}}{\lim_{x \rightarrow \infty} 5 + \lim_{x \rightarrow \infty} \frac{7}{x}} = \frac{2 + 0}{5 + 0} = \frac{2}{5}.\end{aligned}$$

Example 5

Example

$$\begin{aligned}\lim_{x \rightarrow \infty} \frac{9x^3 + x}{2x^4 + 5x^2 - x + 6} &= \lim_{x \rightarrow \infty} \frac{9x^3 + x}{2x^4 + 5x^2 - x + 6} \cdot \frac{1/x^4}{1/x^4} \\&= \lim_{x \rightarrow \infty} \frac{\frac{9}{x} + \frac{1}{x^3}}{2 + \frac{5}{x^2} - \frac{1}{x^3} + \frac{6}{x^4}} \\&= \frac{\lim_{x \rightarrow \infty} \frac{9}{x} + \lim_{x \rightarrow \infty} \frac{1}{x^3}}{\lim_{x \rightarrow \infty} 2 + \lim_{x \rightarrow \infty} \frac{5}{x^2} - \lim_{x \rightarrow \infty} \frac{1}{x^3} + \lim_{x \rightarrow \infty} \frac{6}{x^4}} \\&= \frac{0 + 0}{2 + 0 - 0 + 0} = 0.\end{aligned}$$

Example 6

Example

Find **(a)** $\lim_{x \rightarrow \infty} \sin(1/x)$ and **(b)** $\lim_{x \rightarrow \infty} x \sin(1/x)$

Example 6

Solution

a Let $t = 1/x$. Then

$$\lim_{x \rightarrow \infty} \sin(1/x) = \lim_{t \rightarrow 0^+} \sin(t) = 0.$$

b Let $t = 1/x$. Then

$$\lim_{x \rightarrow -\infty} x \sin(1/x) = \lim_{t \rightarrow 0^-} \frac{\sin(t)}{t} = 1.$$

Example 7

Example

$$\text{Find } \lim_{x \rightarrow \infty} \left(x - \sqrt{x^2 + 4} \right).$$

Example 7

Solution

We compute

$$\begin{aligned}\lim_{x \rightarrow \infty} \left(x - \sqrt{x^2 + 4} \right) &= \lim_{x \rightarrow \infty} \left(x - \sqrt{x^2 + 4} \right) \cdot \frac{x + \sqrt{x^2 + 4}}{x + \sqrt{x^2 + 4}} \\ &= \lim_{x \rightarrow \infty} \frac{x^2 - (x^2 + 4)}{x + \sqrt{x^2 + 4}} \\ &= \lim_{x \rightarrow \infty} \frac{-4}{x + \sqrt{x^2 + 4}} \\ &= 0.\end{aligned}$$

Horizontal Asymptotes

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a point on the graph moves increasingly far from the origin, we say that the graph approaches the line asymptotically and that the line is an **asymptote** of the graph.

Horizontal Asymptotes

Definition

A line $y = b$ is a **horizontal asymptote** of the graph of a function $y = f(x)$ if either

$$\lim_{x \rightarrow \infty} f(x) = b \quad \text{or} \quad \lim_{x \rightarrow -\infty} f(x) = b.$$

Example 8

Example

Find the horizontal asymptotes, if any, of the function
 $f(x) = \arctan x$.

Example 8

Solution

We need to compute $\lim_{x \rightarrow \infty} \arctan(x)$ and $\lim_{x \rightarrow -\infty} \arctan(x)$. In order to do this, we will use the graph $y = \arctan(x)$.

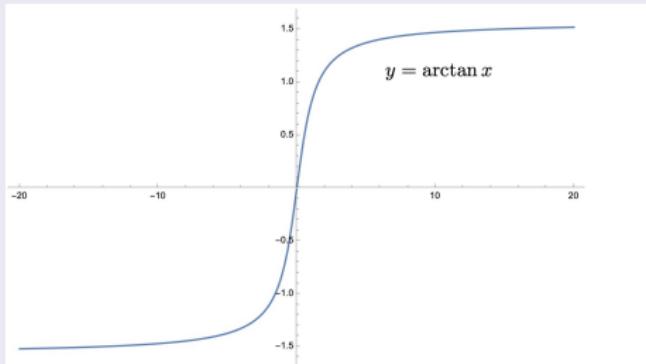


Figure: Graph of $y = \arctan x$

Example 8

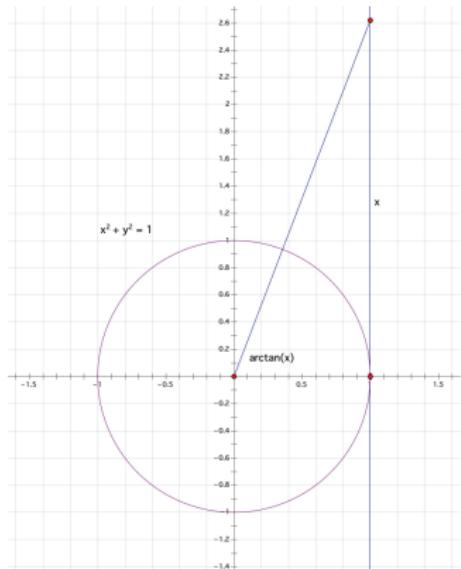


Figure: $\arctan(x)$ for x positive

To compute $\lim_{x \rightarrow \infty} \arctan(x)$, we draw the unit circle with a line tangent to the circle at the point $(1, 0)$. If x is the distance from the x -axis upward along the tangent line, the labeled angle is then $\arctan(x)$.

From the sketch in the figure, we see that if x becomes very, very large, the angle $\arctan(x)$ goes to $\pi/2$.

Example 8



Figure: $\arctan(x)$ for x negative

To compute $\lim_{x \rightarrow -\infty} \arctan(x)$, we draw the unit circle with a line tangent to the circle at the point $(1, 0)$. If x is minus the distance from the x -axis downward along the tangent line, the labeled angle is then $\arctan(x)$.

From the sketch in the figure, we see that if x be comes very, very large, the angle $\arctan(x)$ goes to $-\pi/2$.

Example 9

Example

Find the horizontal asymptotes, if any, of the function $f(x) = \frac{x}{e^x}$.

Example 9

Solution

We compute the limit of f as x approaches infinity using the graph of the function. From the graph, we see that x/e^x goes to zero as x goes to infinity.

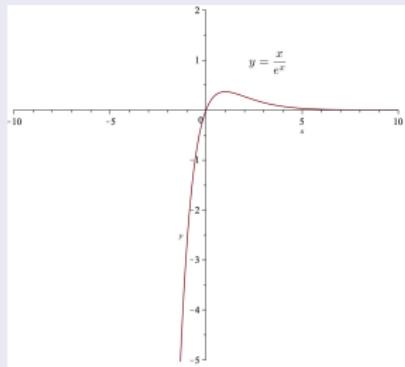


Figure: Graph of $y = x/e^x$

Example 9

Solution

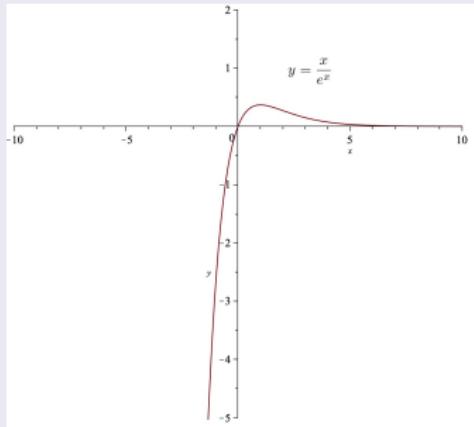


Figure: Graph of $y = x/e^x$

So the line $y=0$ —the x -axis—is an asymptote of the graph.

Infinite Limits at Infinity

Infinite Limits at Infinity

Definition

We say a function f has a **infinite limit at infinity** and write

$$\lim_{x \rightarrow \infty} f(x) = \infty$$

if for all $M > 0$, there exists an $N > 0$ such that

$$f(x) > M$$

for all $x > N$.

Infinite Limits at Infinity

Definition

We say a function f has a **negative infinite limit at infinity** and write

$$\lim_{x \rightarrow \infty} f(x) = -\infty$$

if for all $M < 0$, there exists an $N > 0$ such that

$$f(x) < M$$

for all $x > N$.

Similarly we can define limits as $x \rightarrow -\infty$.

End Behavior

End Behavior

The behavior of a function as $x \rightarrow \pm\infty$ is called the function's **end behavior**. At each of the function's ends, the function could exhibit one of the following types of behavior:

- 1 The function $f(x)$ approaches a horizontal asymptote $y = L$.
- 2 The function $f(x) \rightarrow \infty$ or $f(x) \rightarrow -\infty$.
- 3 The function does not approach a finite limit, nor does it approach ∞ or $-\infty$. In this case, the function may have some oscillatory behavior.

End Behavior Of Polynomial Functions

End Behavior Of Polynomial Functions

To determine the limit of a rational function as $x \rightarrow \pm\infty$, we first divide the numerator and denominator by the highest power of x in the denominator. Then take the limit as $x \rightarrow \pm\infty$. The result then depends on the degrees of the polynomials involved.

End Behavior Of Polynomial Functions

Suppose we have a rational function $f(x) = p(x)/q(x)$, where p and q are polynomials. There are three possibilities:

- 1 If $\deg p < \deg q$, then there is a horizontal asymptote at $y = 0$.

This is because

$$\lim_{x \rightarrow \pm\infty} f(x) = 0.$$

End Behavior Of Polynomial Functions

Suppose we have a rational function $f(x) = p(x)/q(x)$, where p and q are polynomials. There are three possibilities:

- 2 If $\deg p = \deg q$, then there is a horizontal asymptote at $y = p_n/q_n$, where p_n is the leading coefficient of p and q_n is the leading coefficient of q .

This is because

$$\lim_{x \rightarrow \pm\infty} f(x) = \frac{p_n}{q_n}.$$

End Behavior Of Polynomial Functions

Suppose we have a rational function $f(x) = p(x)/q(x)$, where p and q are polynomials. There are three possibilities:

- 3 If $\deg p > \deg q$, then there is no horizontal asymptote.

This is because

$$\lim_{x \rightarrow \pm\infty} f(x) = \pm\infty.$$

Oblique Asymptotes

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the denominator, the graph has an **oblique asymptote**, a slanted line which the graph approaches as x goes to infinity.

We find an equation for the asymptote by dividing the numerator by the denominator to express f as a linear function plus a remainder that goes to zero as x goes to $\pm\infty$.

Example

Example 15

Example

Find the oblique asymptote for the function

$$f(x) = \frac{x^3 + 1}{x^2}.$$

Example 15

Solution

We do long division of polynomials:

$$\begin{array}{r} x \\ x^2) \overline{x^3 + 1} \\ - x^3 \\ \hline 1 \end{array}$$

From this, we see that

$$\frac{x^3 + 1}{x^2} = x + \frac{1}{x^2}.$$

Example 15

Solution

Since

$$\frac{x^3 + 1}{x^2} = x + \frac{1}{x^2}.$$

We have

$$\lim_{x \rightarrow \pm\infty} \frac{x^3 + 1}{x^2} - x = \lim_{x \rightarrow \pm\infty} \frac{1}{x^2} = 0.$$

We see that the function $f(x) = \frac{x^3 + 1}{x^2}$ gets closer and closer to the function $g(x) = x$ for x very, very large.

So, the oblique asymptote is $y = x$.

Procedure for Graphing $y = f(x)$

Procedure for Graphing $y = f(x)$

- 1 Identify the domain of f and any symmetries the curve may have.
- 2 Identify any asymptotes that may exist.
- 3 Find the derivatives y' and y'' .
- 4 Find the critical points of f , if any, and identify the function's behavior at each one.
- 5 Find where the curve is increasing and where it is decreasing.
- 6 Find the inflection points, if any occur, and determine the concavity of the curve.
- 7 Plot key points, such as the intercepts and the points found in Steps 3–5, and sketch the curve together with any asymptotes that exist.

Example

Example 4

Example

Graph the rational function

$$y = \frac{2x^2 + x - 1}{x^2 - 1}$$

using all the steps in the graphing procedure on the preceding slide.

Example 16

Solution

We first do the precalculus.

Our function is

$$y = \frac{2x^2 + x - 1}{x^2 - 1}.$$

Setting the denominator

$$x^2 - 1$$

equal to zero and solving, we find the domain of this function is all real numbers except $x = \pm 1$.

Example 16

Solution

We simplify the function to get

$$\frac{2x^2 + x - 1}{x^2 - 1} = \frac{(2x - 1)(x + 1)}{(x - 1)(x + 1)} = \frac{2x - 1}{x - 1}.$$

Setting $x = 0$, we find a y -intercept at $y = 1$.

Setting the numerator equal to zero, we find an x -intercept at $x = \frac{1}{2}$.

Example 16

Solution

Recall our function is

$$\frac{2x^2 + x - 1}{x^2 - 1} = \frac{(2x - 1)(x + 1)}{(x - 1)(x + 1)} = \frac{2x - 1}{x - 1}.$$

Taking the limit as $x \rightarrow \infty$, we find horizontal asymptote at $y = 2$.

There is a vertical asymptote at $x = 1$.

Since we canceled the factor $x + 1$, there is no asymptote at $x = -1$. Instead, there is a hole in the graph at $x = -1$. (The function has a removable discontinuity at $x = -1$.)

Example 16

Solution

Taking the derivative, we get

$$\begin{aligned}y' &= \frac{(2x^2 + x - 1)'(x^2 - 1) - (2x^2 + x - 1)(x^2 - 1)'}{(x^2 - 1)^2} \\&= \frac{(4x + 1)(x^2 - 1) - (2x^2 + x - 1)(2x)}{(x^2 - 1)^2} \\&= \frac{(4x^3 + x^2 - 4x - 1) - (4x^3 + 2x^2 - 2x)}{(x^2 - 1)^2} \\&= \frac{-x^2 - 2x - 1}{[(x - 1)(x + 1)]^2} = \frac{-(x + 1)^2}{(x - 1)^2(x + 1)^2} = -\frac{1}{(x - 1)^2}.\end{aligned}$$

Example 164

Solution

Taking the second derivative, we get $y'' = \frac{2}{(x-1)^3}$.

This derivative is never zero and is undefined at $x = 1$.

This derivative is negative for $x < 1$ and positive for $x > 1$.

So, $f'' < 0$ on the interval $(-\infty, 1)$ and $f'' > 0$ on the interval $(1, \infty)$.

So, f is concave down on the interval $(-\infty, 1)$ and concave up on the interval $(1, \infty)$.

Solution

Sketching the graph from the information we've gotten, we get

Figure: Sketch of $y = f(x)$

