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Finite Limits as x → ±∞

Definition

We say a function f has a limit at infinity, if there exists a real
number L such that for all ϵ > 0, there exists N > 0 such that

|f (x)− L| < ϵ

for all x > N. In that case, we write

lim
x→∞

f (x) = L.
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Finite Limits as x → ±∞

Definition

We say a function f has a limit at negative infinity, if there
exists a real number L such that for all ϵ > 0, there exists N < 0
such that

|f (x)− L| < ϵ

for all x < N. In that case, we write

lim
x→−∞

f (x) = L.
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Examples
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Example 1

Example

The function f (x) = 1
x has the limit zero as x goes to infinity or to

minus infinity.

lim
x→∞

1

x
= 0

lim
x→−∞

1

x
= 0.
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Example 2

Example

lim
x→∞

(
8− 1

x2

)
= lim

x→∞
8− lim

x→∞

1

x2
= lim

x→∞
8− lim

x→∞

(
1

x

)2

= lim
x→∞

8−
(

lim
x→∞

1

x

)2

= 8− (0)2 = 8.
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Example 3

Example

lim
x→∞

1

2 + 1
x

=
limx→∞ 1

limx→∞
(
2 + 1

x

)
=

limx→∞ 1

(limx→∞ 2) + limx→∞
(
1
x

)
=

1

2 + 0
=

1

2
.
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Example 4

Example

lim
x→∞

2x + 3

5x + 7
= lim

x→∞

(
2x + 3

5x + 7

)
·

1
x
1
x

= lim
x→∞

(
2 + 3

x

5 + 7
x

)

=
limx→∞

(
2 + 3

x

)
limx→∞

(
5 + 7

x

)
=

limx→∞ 2 + limx→∞
3
x

limx→∞ 5 + limx→∞
7
x

=
2 + 0

5 + 0
=

2

5
.
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Example 5

Example

lim
x→∞

9x3 + x

2x4 + 5x2 − x + 6
= lim

x→∞

9x3 + x

2x4 + 5x2 − x + 6
· 1/x

4

1/x4

= lim
x→∞

9
x + 1

x3

2 + 5
x2

− 1
x3

+ 6
x4

=
limx→∞

9
x + limx→∞

1
x3

limx→∞ 2 + limx→∞
5
x2

− limx→∞
1
x3

+ limx→∞
6
x4

=
0 + 0

2 + 0− 0 + 0
= 0.
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Example 6

Example

Find (a) limx→∞ sin(1/x) and (b) limx→∞ x sin(1/x)
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Example 6

Solution

a Let t = 1/x. Then

lim
x→∞

sin(1/x) = lim
t→0+

sin(t) = 0.

b Let t = 1/x. Then

lim
x→−∞

x sin(1/x) = lim
t→0−

sin(t)

t
= 1.
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Example 7

Example

Find limx→∞

(
x −

√
x2 + 4

)
.
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Example 7

Solution

We compute

lim
x→∞

(
x −

√
x2 + 4

)
= lim

x→∞

(
x −

√
x2 + 4

)
· x +

√
x2 + 4

x +
√
x2 + 4

= lim
x→∞

x2 − (x2 + 4)

x +
√
x2 + 4

= lim
x→∞

−4

x +
√
x2 + 4

= 0.
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Horizontal Asymptotes
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Horizontal Asymptotes

If the distance between the graph of a function and some fixed line
approaches zero as a point on the graph moves increasingly far
from the origin, we say that the graph approaches the line
asymptotically and that the line is an asymptote of the graph.
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Horizontal Asymptotes

Definition

A line y = b is a horizontal asymptote of the graph of a function
y = f (x) if either

lim
x→∞

f (x) = b or lim
x→−∞

f (x) = b.
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Example 8

Example

Find the horizontal asymptotes, if any, of the function
f (x) = arctan x .
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Example 8

Solution

We need to compute limx→∞ arctan(x) and limx→−∞ arctan(x).
In order to do this, we will use the graph y = arctan(x).

Figure: Graph of y = arctan x
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Example 8

Figure: arctan(x) for x
positive

To compute
limx→∞ arctan(x), we draw
the unit circle with a line tan-
gent to the circle at the point
(1, 0). If x is the distance
from the x-axis upward along
the tangent line, the labeled
angle is then arctan(x).

From the sketch in the figure,
we see that if x be comes very,
very large, the angle arctan(x)
goes to π/2.
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Example 8

Figure: arctan(x) for x
negative

To compute limx→−∞ arctan(x), we
draw the unit circle with a line tan-
gent to the circle at the point (1, 0).
If x is minus the distance from the x-
axis downward along the tangent line,
the labeled angle is then arctan(x).

From the sketch in the figure, we see
that if x be comes very, very large,
the angle arctan(x) goes to −π/2.
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Example 9

Example

Find the horizontal asymptotes, if any, of the function f (x) = x
ex .
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Example 9

Solution

We compute the limit of f as x approaches infinity using the graph
of the function. From the graph, we see that x/ex goes to zero as
x goes to infinity.

Figure: Graph of y = x/ex
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Example 9

Solution

Figure: Graph of y = x/ex

So the line y=0—the x-axis—in an asymptote of the graph.

Mark Faucette UWG 25/51



Infinite Limits at Infinity
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Infinite Limits at Infinity

Definition

We say a function f has a infinite limit at infinity and write

lim
x→∞

f (x) = ∞

if for all M > 0, there exists an N > 0 such that

f (x) > M

for all x > N.
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Infinite Limits at Infinity

Definition

We say a function f has a negative infinite limit at infinity and
write

lim
x→∞

f (x) = −∞

if for all M < 0, there exists an N > 0 such that

f (x) < M

for all x > N.

Similarly we can define limits as x → −∞.
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End Behavior

Mark Faucette UWG 29/51



End Behavior

The behavior of a function as x → ±∞ is called the function’s end
behavior. At each of the function’s ends, the function could
exhibit one of the following types of behavior:

1 The function f (x) approaches a horizontal asymptote y = L.

2 The function f (x) → ∞ or f (x) → −∞.

3 The function does not approach a finite limit, nor does it
approach ∞ or −∞. In this case, the function may have some
oscillatory behavior.
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End Behavior Of Polynomial Functions
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End Behavior Of Polynomial Functions

To determine the limit of a rational function as x → ±∞, we first
divide the numerator and denominator by the highest power of x in
the denominator. Then take the limit as x → ±∞. The result
then depends on the degrees of the polynomials involved.
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End Behavior Of Polynomial Functions

Suppose we have a rational function f (x) = p(x)/q(x), where p
and q are polynomials. There are three possibilities:

1 If deg p < deg q, then there is a horizontal asymptote at
y = 0.

This is because
lim

x→±∞
f (x) = 0.
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End Behavior Of Polynomial Functions

Suppose we have a rational function f (x) = p(x)/q(x), where p
and q are polynomials. There are three possibilities:

2 If deg p = deg q, then there is a horizontal asymptote at
y = pn/qn, where pn is the leading coefficient of p and qn is
the leading coefficient of q.

This is because
lim

x→±∞
f (x) =

pn
qn

.
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End Behavior Of Polynomial Functions

Suppose we have a rational function f (x) = p(x)/q(x), where p
and q are polynomials. There are three possibilities:

3 If deg p > deg q, then there is no horizontal asymptote.

This is because
lim

x→±∞
f (x) = ±∞.
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Oblique Asymptotes
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Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater
than the degree of the denominator, the graph has an oblique
asymptote, a slanted line which the graph approaches as x goes
to infinity.

We find an equation for the asymptote by dividing the numerator
by the denominator to express f as a linear function plus a
remainder that goes to zero as x goes to ±∞.
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Example
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Example 15

Example

Find the oblique asymptote for the function

f (x) =
x3 + 1

x2
.
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Example 15

Solution

We do long division of polynomials:

x

x2
)

x3 + 1
− x3

1

From this, we see that

x3 + 1

x2
= x +

1

x2
.
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Example 15

Solution

Since
x3 + 1

x2
= x +

1

x2
.

We have

lim
x→±∞

x3 + 1

x2
− x = lim

x→±∞

1

x2
= 0.

We see that the function f (x) =
x3 + 1

x2
gets closer and closer to

the function g(x) = x for x very, very large.
So, the oblique asymptote is y = x.
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Procedure for Graphing y = f (x)
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Procedure for Graphing y = f (x)

1 Identify the domain of f and any symmetries the curve may
have.

2 Identify any asymptotes that may exist.

3 Find the derivatives y ′ and y ′′.

4 Find the critical points of f , if any, and identify the function’s
behavior at each one.

5 Find where the curve is increasing and where it is decreasing.

6 Find the inflection points, if any occur, and determine the
concavity of the curve.

7 Plot key points, such as the intercepts and the points found in
Steps 3–5, and sketch the curve together with any asymptotes
that exist.
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Example
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Example 4

Example

Graph the rational function

y =
2x2 + x − 1

x2 − 1

using all the steps in the graphing procedure on the preceding slide.
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Example 16

Solution

We first do the precalculus.
Our function is

y =
2x2 + x − 1

x2 − 1
.

Setting the denominator
x2 − 1

equal to zero and solving, we find the domain of this function is all
real numbers except x = ±1.
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Example 16

Solution

We simplify the function to get

2x2 + x − 1

x2 − 1
=

(2x − 1)(x + 1)

(x − 1)(x + 1)
=

2x − 1

x − 1
.

Setting x = 0, we find a y-intercept at y = 1.
Setting the numerator equal to zero, we find an x-intercept at
x = 1

2 .
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Example 16

Solution

Recall our function is

2x2 + x − 1

x2 − 1
=

(2x − 1)(x + 1)

(x − 1)(x + 1)
=

2x − 1

x − 1
.

Taking the limit as x → ∞, we find horizontal asymptote at y = 2.

There is a vertical asymptote at x = 1.

Since we canceled the factor x + 1, there is no asymptote at
x = −1. Instead, there is a hole in the graph at x = −1. (The
function has a removable discontinuity at x = −1.)
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Example 16

Solution

Taking the derivative, we get

y ′ =
(2x2 + x − 1)′(x2 − 1)− (2x2 + x − 1)(x2 − 1)′

(x2 − 1)2

=
(4x + 1)(x2 − 1)− (2x2 + x − 1)(2x)

(x2 − 1)2

=
(4x3 + x2 − 4x − 1)− (4x3 + 2x2 − 2x)

(x2 − 1)2

=
−x2 − 2x − 1

[(x − 1)(x + 1)]2
=

−(x + 1)2

(x − 1)2(x + 1)2
= − 1

(x − 1)2
.
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Example 164

Solution

Taking the second derivative, we get y ′′ = 2
(x−1)3

.

This derivative is never zero and is undefined at x = 1.

This derivative is negative for x < 1 and positive for x > 1.

So, f ′′ < 0 on the interval (−∞, 1) and f ′′ > 0 on the interval
(1,∞).

So, f is concave down on the interval (−∞, 1) and concave up on
the interval (1,∞).
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Solution

Sketching the graph from the information we’ve gotten, we get

Figure: Sketch of y = f (x)
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