

Related Rates

William M. Faucette

University of West Georgia

Outline

- 1 Related Rates
- 2 Related Rates Equations
- 3 Example 1
- 4 Related Rates Problem Strategy
- 5 Example 2
- 6 Example 3
- 7 Example 4
- 8 Example 5
- 9 Example 6

Related Rates

Related Rates Equations

Related Rates Equations

Suppose we are filling a spherical balloon with air. At any particular time, we can compute the volume and radius of the balloon. We also have the relationship

$$V = \frac{4}{3}\pi r^3. \tag{1}$$

As we remarked above, we can treat both V and r as functions of t .

Related Rates Equations

Suppose both V and r are differentiable with respect to t . Then we can take the derivative of Equation (1) with respect to t to get

$$\frac{dV}{dt} = \frac{4}{3}\pi \cdot 3r^2 \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}.$$

This gives a relationship between $\frac{dV}{dt}$, the rate at which the volume of the balloon is changing; $\frac{dr}{dt}$, the rate at which the radius is changing; and the radius of the balloon, r .

This is an example of a **related rate equation**, since it relates the rates of change to one another.

Example 1

Example 1

Example

If the original 24 m edge length x of a cube decreases at the rate of 5 m/min, when $x = 3$ m, at what rate does the cube's

- a surface area change?
- b volume change?

Example 1

Solution

If x is the edge length of the cube, then the surface area and volume of the cube are given by

a $S = 6x^2$

b $V = x^3$,

respectively.

Example 1

Solution

The surface area of the cube is given by the equation $S = 6x^2$. If we treat both S and x as differentiable functions of time t and take the derivative (with respect to t), we get

$$\frac{dS}{dt} = 12x \frac{dx}{dt}.$$

Example 1

Solution

We are told the edge length of the cube decreases at a rate of 5 m/min, so $dx/dt = -5$ m/min. So, when $x = 3$ m, we compute

$$\frac{dS}{dt} = 12x \frac{dx}{dt} = 12 \cdot 3 \cdot (-5) = -180.$$

So, the surface area is decreasing at a rate of 180 m^2/min .

Example 1

Solution

The volume of the cube is given by the equation $V = x^3$. If we treat both V and x as differentiable functions of time t and take the derivative (with respect to t), we get

$$\frac{dV}{dt} = 3x^2 \frac{dx}{dt}.$$

Example 1

Solution

We are told the edge length of the cube decreases at a rate of 5 m/min , so $\frac{dx}{dt} = -5 \text{ m/min}$. So, where $x = 3 \text{ m}$, we compute

$$\frac{dV}{dt} = 3x^2 \frac{dx}{dt} = 3 \cdot 3^2 \cdot (-5) = -135.$$

So, the volume is decreasing at a rate of $135 \text{ m}^3/\text{min}$.

Related Rates Problem Strategy

Related Rates Problem Strategy

- 1 *Read the problem.* You should read the problem several times. Try to put it into your own words so you know what it is saying and what it is asking.
- 2 *Draw a picture and name the variables and constants.* Use t for time. Assume that all variables are differentiable functions of t .
- 3 *Write down the numerical information* Write down what you know and what you are looking for in terms of the variables or derivatives of the variables.

Related Rates Problem Strategy

- 4 *Write an equation that relates the variables.* You may have to combine two or more equations to get a single equation that relates the variable whose rate you want to the variables whose rates you know.
- 5 *Differentiate with respect to t .* Then express the rate you want in terms of the rates and variables whose values you know.
- 6 *Evaluate.* Use known values to find the unknown rate.

Example 2

Example 2

Example

The length ℓ of a rectangle is decreasing at the rate of 2 cm/s while the width w is increasing at the rate of 2 cm/s. When $\ell = 12$ cm and $w = 5$ cm, find the rates of change of **(a)** the area, **(b)** the perimeter, and **(c)** the lengths of the diagonals of the rectangle. Which of these quantities are decreasing, and which are increasing?

See the sketch on the next slide.

Example 2

Example

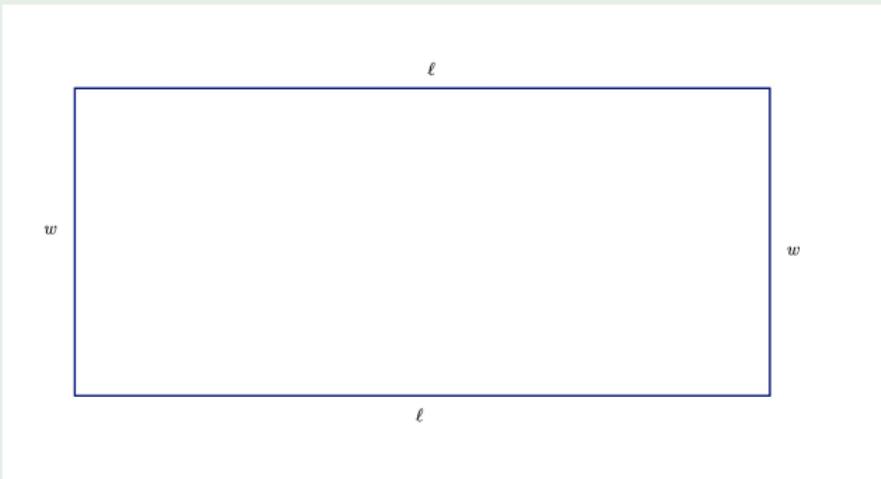


Figure: Sketch for Example 2 with w and ℓ labeled

Example 2

Solution

We are told that the length ℓ of a rectangle is decreasing at the rate of 2 cm/s and the width w of a rectangle is increasing at the rate of 2 cm/s. So,

$$\frac{d\ell}{dt} = -2, \quad \frac{dw}{dt} = 2.$$

We are told that $\ell = 12$ and $w = 5$ at the instant in which we are interested.

Example 2

Solution

The area of the rectangle is given by

$$A = \ell w.$$

Taking the derivative with respect to time t and substituting what we know, we find

$$\begin{aligned}\frac{dA}{dt} &= \frac{d\ell}{dt}w + \ell\frac{dw}{dt} \\ &= (-2)(5) + (12)(2) \\ &= 14.\end{aligned}$$

So, the area is increasing at $14 \text{ cm}^2/\text{s}$.

Example 2

Solution

The perimeter of the rectangle is given by

$$P = 2\ell + 2w.$$

Taking the derivative with respect to time t and substituting what we know, we find

$$\begin{aligned}\frac{dP}{dt} &= 2\frac{d\ell}{dt} + 2\frac{dw}{dt} \\ &= 2(-2) + 2(2) \\ &= 0.\end{aligned}$$

So, the perimeter is not changing at this moment.

Example 2

Solution

The length of the diagonal of the rectangle is given by

$$d^2 = \ell^2 + w^2. \quad (2)$$

Using Equation 2 and the values we are given for ℓ and w , we compute

$$\begin{aligned} d^2 &= \ell^2 + w^2 \\ &= (12)^2 + (5)^2 \\ &= 169, \end{aligned}$$

So, $d = 13$ at the moment in which we are interested.

Example 2

Solution

The length of the diagonal of the rectangle is given by

$$d^2 = \ell^2 + w^2.$$

Taking the derivative with respect to time t and substituting what we know, we find

$$2d \frac{dd}{dt} = 2\ell \frac{d\ell}{dt} + 2w \frac{dw}{dt}.$$

Example 2

Solution

Now, substituting the values we know and solving, we get

$$2d \frac{dd}{dt} = 2\ell \frac{d\ell}{dt} + 2w \frac{dw}{dt}$$

$$2(13) \frac{dd}{dt} = 2(12)(-2) + 2(5)(2)$$

$$26 \frac{dd}{dt} = -28$$

$$\frac{dd}{dt} = -\frac{28}{26} = -\frac{14}{13}.$$

So, the length of the diagonal is decreasing at $\frac{14}{13}$ cm/s.

Example 3

Example 3

Example

A 13-ft ladder is leaning against a house when its base starts to slide away (see accompanying figure). By the time the base is 12 ft from the house, the base is moving at the rate of 5 ft/s.

- 1 How fast is the top of the ladder sliding down the wall then?
- 2 At what rate is the area of the triangle formed by the ladder, wall, and ground changing then?
- 3 At what rate is the angle θ between the ladder and the ground changing then?

See the sketch on the next slide.

Example 3

Example

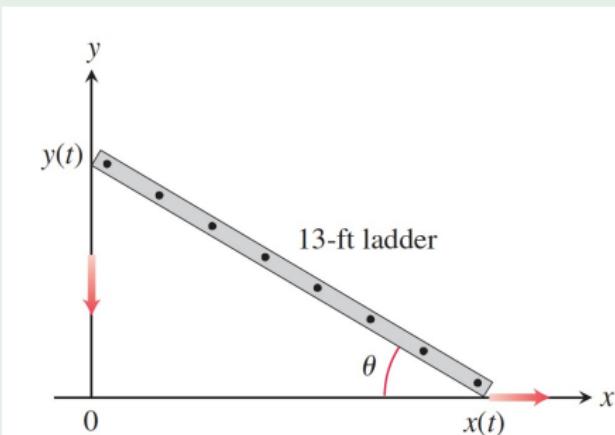


Figure: Sketch for Example 3

Example 3

Solution

In this problem, the picture is already drawn and the variables are already labeled for us. The function $x(t)$ is the distance from the foot of the ladder to the building. The function $y(t)$ is the distance from the top of the ladder to the ground.

Since the ladder is 13 feet long, the Pythagorean theorem gives us

$$x^2 + y^2 = 13^2 = 169. \quad (3)$$

Example 3

Solution

We are told that $dx/dt = 5$ when $x = 12$. From Equation 3,

$$x^2 + y^2 = 169,$$

we find that when $x = 12$, we compute that $y = 5$.

The rate at which the top of the ladder is sliding down the wall is dy/dt . This is what we want to find.

Example 3

Solution

Taking the derivative with respect to t , we get

$$\begin{aligned}x^2 + y^2 &= 169 \\2x \frac{dx}{dt} + 2y \frac{dy}{dt} &= 0.\end{aligned}$$

Example 3

Solution

Substituting $\frac{dx}{dt} = 5$, $x = 12$, and $y = 5$, and solving for dy/dt , we get

$$\begin{aligned}2x \frac{dx}{dt} + 2y \frac{dy}{dt} &= 0 \\2(12)(5) + 2(5) \frac{dy}{dt} &= 0 \\\frac{dy}{dt} &= -12.\end{aligned}$$

So, the top of the ladder is sliding down the wall at 12 ft/s.

Example 3

Solution

The area of the triangle formed by the ladder, the ground, and the building is

$$A = \frac{1}{2}xy.$$

Taking the derivative with respect to t , we get

$$\frac{dA}{dt} = \frac{1}{2} \frac{dx}{dt}y + \frac{1}{2}x \frac{dy}{dt}.$$

Example 3

Solution

We substitute $dx/dt = 5$, $x = 12$, and $y = 5$, from the problem and $dy/dt = -12$ from our first computation. Solving for dA/dt , we get

$$\begin{aligned}\frac{dA}{dt} &= \frac{1}{2}(5)(5) + \frac{1}{2}(12)(-12) \\ &= \frac{25}{2} - \frac{7}{2} \\ &= -\frac{119}{2}.\end{aligned}$$

So, the area of the triangle is decreasing at a rate of $\frac{119}{2} = 59.5 \text{ ft}^2/\text{s}$.

Example 3

Solution

If θ is the angle between the base of the ladder and the ground, then

$$\tan \theta = \frac{y}{x}.$$

We note that when $x = 12$, and $y = 5$, $\tan \theta = 5/12$ and $\sec \theta = 13/12$.

Refer to the sketch of the triangle on next slide.

Example 3

Example

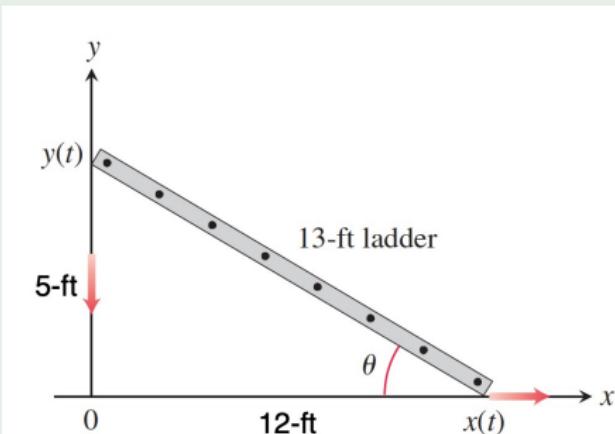


Figure: Sketch for Example 3

Example 3

Solution

Taking the derivative with respect to t , substituting the values we know, and solving for $d\theta/dt$, we get

$$\tan \theta = \frac{y}{x}$$

$$\sec^2 \theta \frac{d\theta}{dt} = \frac{x \frac{dy}{dt} - y \frac{dx}{dt}}{x^2}$$

$$\left(\frac{13}{12}\right)^2 \frac{d\theta}{dt} = \frac{(12)(-12) - (5)(5)}{(12)^2}$$

$$\left(\frac{13}{12}\right)^2 \frac{d\theta}{dt} = -\frac{169}{144}$$

$$\frac{d\theta}{dt} = -1.$$

Example 3

Solution

So, when the base is 12 ft from the house and the base is moving at the rate of 5 ft/s, the angle θ between the ladder and the ground is decreasing at a rate of 1 rad/s.

Example 4

Example 4

Example

Sand falls from a conveyor belt at the rate of $10 \text{ m}^3/\text{min}$ onto the top of a conical pile. The height of the pile is always three-eighths of the base diameter. How fast are the **(a)** height and **(b)** radius changing when the pile is 4 m high? Answer in centimeters per minute.

Example 4

Solution

We have sketched the conical pile of sand in the figure on the next slide.

We have also labeled as variables the radius r and height h of the pile.

Let V be the volume of the cone.

Example 4

Solution

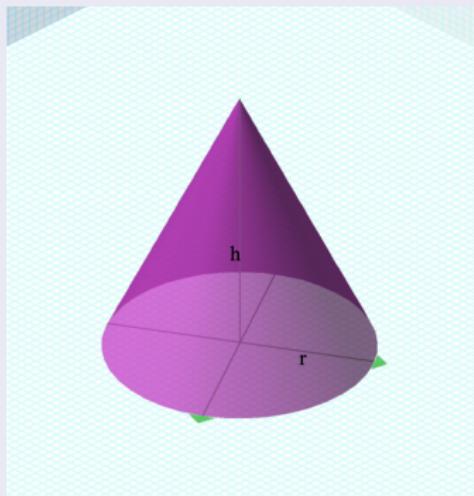


Figure: *Sketch for Example 4*

Example 4

Solution

We are told that the volume is increasing at a rate of $10 \text{ m}^3/\text{min}$, so $dV/dt = 10$.

We are also told the height of the pile is always three-eighths of the base diameter, so $h = (3/8) \cdot 2r = 3r/4$.

When the pile is 4 m high, $4 = 3r/4$, we have that $r = 16/3$.

Example 4

Solution

The volume of the cone is $V = \frac{\pi}{3}r^2h$. We substitute $h = 3r/4$ into this equation to get

$$V = \frac{\pi}{3}r^2h = \frac{\pi}{3}r^2 \left(\frac{3}{4}r\right) = \frac{\pi}{4}r^3.$$

Taking the derivative of this equation with respect to t gives us

$$\frac{dV}{dt} = \frac{\pi}{4}3r^2 \frac{dr}{dt} = \frac{3\pi}{4}r^2 \frac{dr}{dt}.$$

Example 4

Solution

We have the related rate equation

$$\frac{dV}{dt} = \frac{3\pi}{4} r^2 \frac{dr}{dt}.$$

Substituting $dV/dt = 10$ and $r = 16/3$ into this equation and solving, we get

$$10 = \frac{3\pi}{4} \left(\frac{16}{3} \right)^2 \frac{dr}{dt} = \frac{64\pi}{3} \frac{dr}{dt}$$
$$\frac{dr}{dt} = \frac{15}{32\pi} \approx 0.1492 \text{ m/min.}$$

Example 4

Solution

Taking the derivative of the equation $h = \frac{3}{4}r$ with respect to t , we get

$$\frac{dh}{dt} = \frac{3}{4} \frac{dr}{dt}.$$

Substituting $dr/dt = \frac{15}{32\pi}$, we get

$$\frac{dh}{dt} = \frac{3}{4} \cdot \frac{15}{32\pi} = \frac{45}{128\pi} \approx 0.1119.$$

So, the radius of the pile is increasing at a rate of approximately 14.92 cm/min. The height of the pile is increasing at a rate of approximately 11.19 cm/min.

Example 5

Example 5

Example

A spherical balloon is inflated with helium at the rate of $100\pi \text{ ft}^3/\text{min}$. How fast is the balloon's radius increasing at the instant the radius is 5 ft? How fast is the surface area increasing?

Example 5

Solution

We really don't need a picture of a sphere.

Let r be the radius of the balloon, V the volume of the balloon, and S the surface area of the balloon. Then

$$V = \frac{4}{3}\pi r^3 \quad \text{and} \quad S = 4\pi r^2.$$

Example 5

Solution

We are told the volume of the balloon is increasing at a rate of $100\pi \text{ ft}^3/\text{min}$, so $dV/dt = 100\pi$.

We are asked to find dr/dt and dS/dt when $r = 5$.

Example 5

Solution

Taking the derivative of $V = \frac{4}{3}\pi r^3$ with respect to t gives us

$$\frac{dV}{dt} = \frac{4}{3}\pi \cdot 3r^2 \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}.$$

Example 5

Solution

Substituting $dV/dt = 100\pi$ and $r = 5$ and solving for dr/dt , we get

$$\begin{aligned}\frac{dV}{dt} &= 4\pi r^2 \frac{dr}{dt} \\ 100\pi &= 4\pi(5)^2 \frac{dr}{dt} \\ \frac{dr}{dt} &= 1.\end{aligned}$$

So, the radius is changing at the rate of 1 ft/min.

Example 5

Solution

Taking the derivative of $S = 4\pi r^2$ with respect to t gives us

$$\frac{dS}{dt} = 4\pi \cdot 2r \frac{dr}{dt} = 8\pi r \frac{dr}{dt}.$$

Example 5

Solution

Substituting $dr/dt = 1$ and $r = 5$ and solving for dS/dt , we get

$$\begin{aligned}\frac{dS}{dt} &= 8\pi r \frac{dr}{dt} \\ &= 8\pi(5)(1) \\ &= 40\pi.\end{aligned}$$

So, the surface area is increasing at the rate of $40\pi \text{ ft}^2/\text{min}$.

Example 6

Example 6

Example

The coordinates of a particle in the metric xy -plane are differentiable functions of time t with $dx/dt = -1$ m/s and $dy/dt = -5$ m/s. How fast is the particle's distance from the origin changing as it passes through the point $(5, 12)$.

Example 6

Solution

We don't really need a picture here either. The distance d from the point (x, y) to the origin is $d = \sqrt{x^2 + y^2}$, but we will square this equation to get

$$d^2 = x^2 + y^2.$$

Taking the derivative with respect to t , we get

$$2d \frac{dd}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}.$$

Example 6

Solution

We know that $dx/dt = -1 \text{ m/s}$, $dy/dt = -5 \text{ m/s}$, and when the particle passes through the point $(5, 12)$, we have $x = 5$, $y = 12$, so $d = 13$.

Example 6

Solution

Substituting these values and solving for $\frac{dd}{dt}$ we get

$$2d \frac{dd}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}$$

$$2(13) \frac{dd}{dt} = 2(5)(-1) + 2(12)(-5)$$

$$26 \frac{dd}{dt} = -130$$

$$\frac{dd}{dt} = -\frac{130}{26} = -5.$$

So, the distance from the particle to the origin is decreasing at a rate of 5 m/s.