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The Exponential Rule
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The Exponential Rule

When we apply the definition of derivative to the function
f (x) = ax for a > 0, a ̸= 1, we get

df

dx
= lim

h→0

f (x + h)− f (x)

h
= lim

h→0

ax+h − ax

h

= lim
h→0

axah − ax

h
= lim

h→0

ax(ah − 1)

h

= lim
h→0

ax · a
h − 1

h
= ax

(
lim
h→0

ah − 1

h

)
.

So, the derivative of ax is some constant times ax .

We note that this constant is f ′(0).
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Derivatives of Exponential Functions

We examine the limit

lim
h→0

ah − 1

h
.

For a = 2, this limit is approximately 0.69.

For a = 3, this limit is approximately 1.10.

It makes sense that for some value between 2 and 3, this limit is 1.
We define e to be this value. So,

lim
h→0

eh − 1

h
= 1.
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Derivatives of Exponential Functions

By our choice of e, we have the following:

Derivative of the Natural Exponential Function

d

dx
(ex) = ex .
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Derivative of the Natural Logarithm Function
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Derivative of the Natural Logarithm Function

Suppose y = ln(x). Since the natural logarithm and the
exponential functions are inverse functions, we have

x = ey .

We take the derivative of this implicitly, treating y as a function of
x . This gives us

d

dx
x =

d

dx
ey

1 = ey
dy

dx
dy

dx
=

1

ey
=

1

x
.
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Derivative of the Natural Logarithm Function

This gives us the following important result:

Derivative of the ln(x)

d

dx
ln(x) =

1

x
, x > 0.
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Derivative of the Natural Logarithm Function

We can extend this result using the Chain Rule. If u is a
differentiable function of x , then

Derivative of the ln(u)

d

dx
ln(u) =

1

u

du

dx
, u > 0.
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Examples
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Example 3

Example

Find dy/dx .

1 y =
1

ln 3x
2 y = ln(sin x)

3 y = x ln
√
x
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Example 3

Solution

1
dy

dx
=

0 · ln 3x − 1 · 1
3x · 3

(ln 3x)2
=

−1

x(ln 3x)2
.

2
dy

dx
=

1

sin x
· cos x = cot x .

3
dy

dx
= (1) ln

√
x + x · 1√

x
· 1
2
x−1/2 = ln(

√
x) +

1

2
.
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Example 4

Example

Find the derivative of
y = (x2 ln x)4.
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Example 4

Solution

We take the derivative using the Power Rule, the Chain Rule, and
the Product Rule.

dy

dx
= 4(x2 ln x)3 ·

[
2x ln x + x2 · 1

x

]
= 4(x2 ln x)3 (2x ln x + x)

= 4x(x2 ln x)3 (2 ln x + 1) .
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Derivative of au and loga(u)
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Derivative of au and loga u

Suppose y = ax . Then ln(y) = ln(ax) = x ln a, by the Power Rule
for logarithms. Raising e to this power gives

y = e ln y = ex ln a.

Taking the derivative using the Chain Rule, we get

dy

dx
= ex ln a · d

dx
(x ln a)

= ex ln a · ln a
= ax ln a.
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Derivative of au and loga(u)

This gives us the following important result:

Derivative of ax

d

dx
ax = ax ln a, x > 0.
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Derivative of au and loga(u)

We can extend this result using the Chain Rule:

Derivative of au

If u is a differentiable function of x , then au is a differentiable
function of x wherever u > 0, and

d

dx
au = au ln a · du

dx
.
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Derivative of au and loga u

Suppose y = loga x . Then ay = x since loga x and ax are inverse
functions. Taking the derivative of ay = x , treating y as a
differentiable function of x , we get

d

dx
ay =

d

dx
x

ay ln a · dy
dx

= 1

dy

dx
=

1

ay ln a

=
1

x ln a
.
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Derivative of au and loga(u)

This gives us the following important result:

Derivative of loga x

d

dx
loga x =

1

x ln a
, x > 0.
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Derivative of au and loga u

We can extend this result using the Chain Rule:

Derivative of loga u

If u is a differentiable function of x , then loga u is a differentiable
function of x wherever u > 0, and

d

dx
loga u =

1

u ln a
· du
dx
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Example
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Example 5

Example

Find dy/dx .

1 y = 2x

2 y = log4 x + log4 x
2

3 y = 3log2 x
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Solution

1 dy/dx = 2x ln 2

2 dy/dx = 1
x ln 4 + 1

x2 ln 4
· 2x = 3

x ln 4

3 dy/dx = 3log2 x ln 3 · 1

x ln 2
=

3log2 x ln 3

x ln 2
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Logarithmic Differentiation
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Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve
products, quotients, and powers can often be found more quickly if
we take the natural logarithm of both sides before differentiating.
This enables us to use the laws of logarithms to simplify the
formulas before differentiating. The process, called logarithmic
differentiation.

Mark Faucette UWG 27/46



Example
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Example 6

Example

Use logarithmic differentiation to find the derivative of dy/dx if
y =

√
(x2 + 1)(x − 1)2.
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Solution

We start by taking the natural logarithm of both sides of the
equation and using the rules of logarithms:

ln y = ln

(√
(x2 + 1)(x − 1)2

)
=

1

2
ln
[
(x2 + 1)(x − 1)2

]
=

1

2

[
ln(x2 + 1) + ln

(
(x − 1)2

)]
=

1

2

[
ln(x2 + 1) + 2 ln (x − 1)

]
=

1

2
ln(x2 + 1) + ln (x − 1) .
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Example 6

Solution

Now, take the derivative implicitly with respect to x:

ln y =
1

2
ln(x2 + 1) + ln (x − 1)

1

y

dy

dx
=

1

2
· 1

x2 + 1
· (2x) + 1

x − 1

=
x

x2 + 1
+

1

x − 1
.
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Example 6

Solution

Finally, multiply both sides by y to solve for dy
dx .

1

y

dy

dx
=

x

x2 + 1
+

1

x − 1

dy

dx
= y

[
x

x2 + 1
+

1

x − 1

]
=
√

(x2 + 1)(x − 1)2
[

x

x2 + 1
+

1

x − 1

]
=

x(x − 1)√
x2 + 1

+
√
x2 + 1.
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Irrational Exponents and the Power Rule (General
Version)
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Irrational Exponents and the Power Rule (General Version)

If we want to define what it means to take a real number x > 0 to
any real power n, we certainly want ln(xn) = n ln x . This motivates
the following definition.

Definition

For any x > 0 and for any real number n,

xn = en ln x .
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General Power Rule for Derivatives

General Power Rule for Derivatives

For any x > 0 and for any real number n,

d

dx
xn = nxn−1.

If x ≤ 0, then the formula holds whenever the derivative, xn, and
xn−1 exist.
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General Power Rule for Derivatives

Proof.

If n is any real number, then xn = en ln x , by definition. Taking the
derivative with respect to x , we get

d

dx
xn =

d

dx
en ln x

= en ln x · n
x

= xn · n
x

= nxn−1.
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Example
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Example 7

Example

Use logarithmic differentiation to find the derivative of

y =
x
√
x2 + 1

(x + 1)2/3
.
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Solution

We start by taking the natural logarithm of both sides of the
equation and using the rules fo logarithms:

ln y = ln

(
x
√
x2 + 1

(x + 1)2/3

)
= ln(x) +

1

2
ln(x2 + 1)− 2

3
ln(x + 1).
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Example 7

Solution

Now, take the derivative implicitly with respect to x:

ln y = ln(x) +
1

2
ln(x2 + 1)− 2

3
ln(x + 1)

1

y

dy

dx
=

1

x
+

1

2
· 1

x2 + 1
· 2x − 2

3
· 1

x + 1

=
1

x
+

x

x2 + 1
− 2

3(x + 1)
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Example 7

Solution

Finally, multiply both sides by y to solve for dy
dx .

1

y

dy

dx
=

1

x
+

x

x2 + 1
− 2

3(x + 1)

dy

dx
= y

[
1

x
+

x

x2 + 1
− 2

3(x + 1)

]
=

x
√
x2 + 1

(x + 1)2/3

[
1

x
+

x

x2 + 1
− 2

3(x + 1)

]
=

√
x2 + 1

(x + 1)2/3
+

x2

(x + 1)2/3
√
x2 + 1

− 2x
√
x2 + 1

3(x + 1)5/3
.
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The Number e Expressed as a Limit
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The Number e Expressed as a Limit

Earlier in the course, we defined e to be the number so that

lim
h→0

eh − 1

h
= 1.

We also noted then that e is between 2 and 3.
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The Number e Expressed as a Limit

Theorem

The number e can be calculated as the limit

e = lim
x→0

(1 + x)1/x .
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Proof.

If f (x) = ln x , then f ′(x) = 1
x , so f ′(1) = 1. By the definition of

the derivative

f ′(1) = lim
x→0

f (1 + x)− f (1)

x

= lim
x→0

ln(1 + x)− ln(1)

x

= lim
x→0

1

x
ln(1 + x)

= lim
x→0

ln[(1 + x)1/x ].
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The Number e Expressed as a Limit

Proof.

But we know that f ′(1) = 1, so

lim
x→0

ln[(1 + x)1/x ] = 1

lim
x→0

e ln[(1+x)1/x ] = e1

lim
x→0

(1 + x)1/x = e.
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