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Derivative of a Composite Function

Consider the function y = (3x + 1)2. We compute its derivative
using the Product Rule:

y =(3x+1)°
=(Bx+1)3x+1)
@ _d

d
v dX(3x+1)-(3x+1)+(3x+1)-a(3x+1)

=03)-Bx+1)+(Bx+1)-(3)
=6(3x + 1).

Notice that the derivative is not 2(3x 4 1). There is something
else happening here.
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Derivative of a Composite Function

Consider the function y = sin? x. We compute its derivative using
the Product Rule:

2

y =sin“ x
=sinx-sinx
dy d

. . . d .
b &(sm x) - (sinx) + (sinx) - a(sm x)
= (cos x) - (sin x) + (sin x) - (cos x)

= 25in X COS X.

Notice that the derivative is not 2sin x. There is something else
happening here.
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Derivative of a Composite Function

Let's do a little thought experiment. Recall that the derivative is a
rate of change.

Suppose your car gets 30 miles/gallon. Suppose gasoline is
$2.00/gallon. If you want to compute the cost of operating your
car per mile (rather than cost per gallon), you do what chemists
call dimensional analysis.
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Derivative of a Composite Function

We get
30 miles/gallon

15 miles/dollar = ——————.
miles/dollar 2 dollars/gallon

Or, if you look at it in a different way,

miles miles dollars

gallon 7 dollar ~ gallon”

You multiply the rates together.

Mark Faucette UWG 7/54



Derivative of a Composite Function

The Chain Rule

If f(u) is differentiable at the point u = g(x) and g(x) is
differentiable at x, then the composite function
(f o g)(x) = f(g(x)) is differentiable at x, and

(fog)(x)=""(g(x)) &'(x)
or, in Leibniz’s notation

dy dy du

dx  du dx’

where dy/du is evaluated at u = g(x).
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Proof of Chain Rule
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Proof of Chain Rule

Proof: Suppose f(u) is a differentiable function of u and u(x) is a
differentiable function of x.

Since f(u) is a differentiable function of u,

lim f(u+ Au) — f(u)
Au—0 Au

= f'(u).

Let

f(u+ Au) — f(u)
Au

Then €; goes to zero at Au — 0 and

— f'(u).

€1 —

f(u+ Au) — f(u) = (F(u) + €1)Au.
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Proof of Chain Rule

Since u(x) is a differentiable function of x,

. u(x+Ax) —u(x)
i, S

Let
u(x + Ax) — u(x)

Ax
Then e goes to zero at Ax — 0 and

€ = —u'(x).

u(x + Ax) — u(x) = (' (x) + e2) Ax.
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Proof of Chain Rule

So, we have

u(x + Ax) — u(x) = (U (x) + €2)Ax (2)

Let Au = u(x + Ax) — u(x). Since u is differentiable at x, it is
continuous at x. So as Ax goes to zero, Au goes to zero as well.

Substituting this into Equation 1 and using Equation 2, we get

f(u(x + Ax)) — f(u(x)) = (F(u(x)) + €1)Au

(F'(u(x) + &) (u'(x) + e2) Ax.
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Proof of Chain Rule

From the preceding slide, we have
f(u(x + Ax)) — f(u(x)) = (F'(u(x)) + €1)(v'(x) + €2) Ax.
Dividing by Ax and letting Ax — 0, we get
im fu(x + Ax)) — f(u(x))

Ax—0 Ax




The Chain Rule Using Leibniz's Notation
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The Chain Rule Using Leibniz's Notation

As with other derivatives that we have seen, we can express the
chain rule using Leibniz's notation. This makes the chain rule easy
to remember and shows you why Leibniz's notation is so useful.

Rule: Chain Rule Using Leibniz's Notation

If y is a function of u, and u is a function of x, then

ﬂ_dy du

dx  du dx’
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Examples
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Example 1

Compute the derivative of y = 2(8x — 1)3.
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Example 1

Solution

Let u = 8x — 1. This is the inside function. Let y = 2u3. This is
the outside function. By the Chain Rule

dy _dy du

dx du dx
—6u’-8
— 4812
— 48(8x — 1)%.

As x changes, the rate at which y changes is the rate at which y
changes with respect to u times the rate at which u changes with
respect to Xx.
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Example 2

Compute the derivative of y = tan3 x.
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Example 2

Let u = tanx. This is the inside function. Let y = u®. This is the
outside function. By the Chain Rule

dy _dy du
dx du dx
= 3u° - sec® x

= 3(tan x)? - sec® x

= 3tan? x sec? x.
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“Outside-Inside” Rule
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“Outside-Inside” Rule

If you write the Chain Rule this way

Y — (g(x)) &),

we can talk about the Chain Rule in these terms:
You take the derivative of the outside function f leaving the inside

function alone, and then multiply by the derivative of the inside
function. This is multiplying the rates together.
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Examples
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Example 3

Compute the derivative of

y=(4—- 3x)9.
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Example 3

Solution

Here, the inside function is u = 4 — 3x and the outside function is
y = u°. The derivative of the outside function is % =9u®. The

derivative of the inside function is % = —3. The derivative is then
dy . 8
=9(4 — 3x)8 . (=3)
= —27(4 — 3x)8.
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Example 4

Compute the derivative of

y = v/2x — x.
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Example 4

Solution

Here, the inside function is u = 2x — x? and the outside function is
y = \3/5 u'/3. The derivative of the outside function is

ZZ u_2/ 3. The derivative of the inside function is g” =2 - 2x
The der/vat/ve is then
dy _ 1 28
2-2
dx 3" (2=2x)
1

= 3(2x - x?)72/3 . (2 = 2x)
2 —2x
3(2x — x2)2/3°
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Problem-Solving Strategy: Applying the Chain Rule

To differentiate h(x) = f(g(x)), begin by identifying f(x) and
g(x).

Find f'(x) and evaluate it at g(x) to obtain f'(g(x)).

Find g’(x).

Write h'(x) = f'(g(x))g’(x).
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Problem-Solving Strategy: Applying the Chain Rule

When applying the chain rule to the composition of two or more
functions, keep in mind that we work our way from the outside
function in.

It is also useful to remember that the derivative of the composition
of two functions can be thought of as having two parts; the
derivative of the composition of three functions has three parts;
and so on.

Also, remember that we never evaluate a derivative at a derivative.
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Repeated Use of the Chain Rule
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Repeated Use of the Chain Rule

The Chain Rule must be used with each composed function. So, if
several functions are nested, you must use the Chain Rule each
time there is a new function.
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Example
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Example 5

Find dy/dt if

y =sin?(3t — 2).
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Example 5

Solution

Here we have three composed functions.

The inside function is x = 3t — 2. The middle function is
u = sin(x) The outside function is y = u®.

By the Chain Rule, the derivative is

dy dy du dx
i du-a-E:2u-cos(x)-(3)
= 2sin(x) - cos(x) - (3)

= 2sin(3t — 2) - cos(3t — 2) - (3)

= 65sin(3t — 2) cos(3t — 2).
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The Chain Rule with Powers of a Function
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The Chain Rule with Powers of a Function

If nis any real number and f is a power function f(u) = u”, the
Power Rule tells us that f/(u) = nu"~. If u is then some
differentiable function of x, the the Chain Rule tells us

d, . n,du

dx(u )= nu dx’

Your text calls this the Power Chain Rule.
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Example
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Example 6

Find dy/dx if
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Example 6

By the Power Chain Rule, we have
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Combining the Chain Rule with Other Rules
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Of course, all the rules you already know are applied when needed.
So you may need the Product Rule, Quotient Rule, and Chain Rule
in many combinations depending on the particular problem.
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Examples
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Example 7

Find the dy/dx if y = xe®*.
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Example 7

This is the product of two functions, so we apply the Product Rule:

dy d o d
&—aX'e + x dXe

2x

To find the derivative of €2 we must use the Chain Rule:

d d d
Y C > ix e

dx  dx dx
d
— (1) - 2x L a2x 2
(1)-e*+x-e dx( x)
=(1)- e +x-e*.2

= 2 4 2xe®* = (1 + 2x).

2x
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Example 8

Find the dy/dx if y = (2x — 5)71(x? — 5x)°.
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Example 8

This is the product of two functions, so we use the Product Rule:

dy _ . d
I [(2 5)71(x* — 5x)® + (2x — 5) 1&[(% —5x)°]

To take these two derivatives, we must use the Chain Rule:
d d
Y & [(2x 51— 5:° + (2x — 5) 1 L[ — 5x)]
= (—1)(2x —5)72. %(2X —5)- (x? —5x)°
d
+(2x = 5)71 - 6(x* — 5x)° - d—(x2 — 5x)

X
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Example 8

Continuing, we get

dy _ 5 d
i (—1)(2x —5)72. &(2x —5) - (x* —5x)°
+(2x = 5)71 - 6(x* — 5x)° - %(XZ — 5x)

= (~1)(2x = 5)72-(2) - (x* — 5x)°
+(2x = 5)71-6(x*> —5x)° - (2x — 5)
= —2(2x — 5)7%(x* — 5x)° + 6(x? — 5x)°
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Example 8

Continuing, we get

% = —2(2x — 5)72(x? — 5x)® + 6(x> — 5x)°
X2 — bx 5
_% [(x? — 5x) — 3(2x — 5)?]
_ 2(x? —5x)5 2 _ Bbx
= o5 (11x2 — 55x + 75).
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Example 9

Find the dy/dx if y = tan (S0X).
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Example 9

Solution

This is first the composition of two functions, so we must use the

Chain Rule:
dy cec? sinx\ d [sinx
dx X dx \ x /)~

Now we have to use the Quotient Rule to find the derivative of the
expression on the right.
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Example 9

Using the Quotient Rule, we get

& () 9 sin(x) - x — sin(x) % (x)

dx X x2
5 (sin x) cos(x) - x —sin(x) - 1
=se :
X 57"

. (sin x) (xcos(x) 2— sin(x)) .
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Example 10

Find the d?y/dx? if y = x(2x + 1)*.
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Example 10

We first compute % using the Product Rule and the Chain Rule:

dy d . d \
vl a(x)-(2x+1) +X&[(2X+ 1)%]
=(1)-(2x+1)4+x-4(2x+1)3-%(2x+1)

= (2x+1)* +x-4(2x +1)%-(2)
= (2x 4+ 1)* +8x(2x + 1)3

= (2x + 1)%[(2x + 1) + 8x]

= (2x +1)3(10x + 1).
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Example 10

Now we compute the second derivative:

d’y _d 3 3. d
2 = gl 17T (10x + 1) + (2x + 1)° - —=(10x + 1)

= 3(2x 4+ 1)2- %(2x +1)| - (10x + 1) + (2x + 1)* - (10)
= [3(2x + 1)*- (2)] - (10x + 1) + (2x + 1)3 - (10)

6(2x + 1)%(10x + 1) + 10(2x + 1)*

2(2x +1)?[3(10x + 1) 4 5(2x + 1)]

2(2x 4 1) (40x + 8) = 16(2x + 1) (5x +1)..
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