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Derivative of a Composite Function

Consider the function y = (3x + 1)2. We compute its derivative
using the Product Rule:

y = (3x + 1)2

= (3x + 1)(3x + 1)

dy

dx
=

d

dx
(3x + 1) · (3x + 1) + (3x + 1) · d

dx
(3x + 1)

= (3) · (3x + 1) + (3x + 1) · (3)
= 6(3x + 1).

Notice that the derivative is not 2(3x + 1). There is something
else happening here.
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Derivative of a Composite Function

Consider the function y = sin2 x . We compute its derivative using
the Product Rule:

y = sin2 x

= sin x · sin x
dy

dx
=

d

dx
(sin x) · (sin x) + (sin x) · d

dx
(sin x)

= (cos x) · (sin x) + (sin x) · (cos x)
= 2 sin x cos x .

Notice that the derivative is not 2 sin x . There is something else
happening here.
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Derivative of a Composite Function

Let’s do a little thought experiment. Recall that the derivative is a
rate of change.

Suppose your car gets 30 miles/gallon. Suppose gasoline is
$2.00/gallon. If you want to compute the cost of operating your
car per mile (rather than cost per gallon), you do what chemists
call dimensional analysis.
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Derivative of a Composite Function

We get

15 miles/dollar =
30 miles/gallon

2 dollars/gallon
.

Or, if you look at it in a different way,

30
miles

gallon
= 15

miles

dollar
· 2 dollars

gallon
.

You multiply the rates together.
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Derivative of a Composite Function

The Chain Rule

If f (u) is differentiable at the point u = g(x) and g(x) is
differentiable at x , then the composite function
(f ◦ g)(x) = f (g(x)) is differentiable at x , and

(f ◦ g)′(x) = f ′(g(x)) · g ′(x)

or, in Leibniz’s notation

dy

dx
=

dy

du
· du
dx

,

where dy/du is evaluated at u = g(x).
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Proof of Chain Rule
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Proof of Chain Rule

Proof: Suppose f (u) is a differentiable function of u and u(x) is a
differentiable function of x .

Since f (u) is a differentiable function of u,

lim
∆u→0

f (u +∆u)− f (u)

∆u
= f ′(u).

Let

ϵ1 =
f (u +∆u)− f (u)

∆u
− f ′(u).

Then ϵ1 goes to zero at ∆u → 0 and

f (u +∆u)− f (u) = (f ′(u) + ϵ1)∆u.
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Proof of Chain Rule

Since u(x) is a differentiable function of x ,

lim
∆x→0

u(x +∆x)− u(x)

∆x
= u′(x).

Let

ϵ2 =
u(x +∆x)− u(x)

∆x
− u′(x).

Then ϵ2 goes to zero at ∆x → 0 and

u(x +∆x)− u(x) = (u′(x) + ϵ2)∆x .
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Proof of Chain Rule

So, we have

f (u +∆u)− f (u) = (f ′(u) + ϵ1)∆u (1)

u(x +∆x)− u(x) = (u′(x) + ϵ2)∆x (2)

Let ∆u = u(x +∆x)− u(x). Since u is differentiable at x , it is
continuous at x . So as ∆x goes to zero, ∆u goes to zero as well.

Substituting this into Equation 1 and using Equation 2, we get

f (u(x +∆x))− f (u(x)) = (f ′(u(x)) + ϵ1)∆u

= (f ′(u(x)) + ϵ1)(u
′(x) + ϵ2)∆x .
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Proof of Chain Rule

From the preceding slide, we have

f (u(x +∆x))− f (u(x)) = (f ′(u(x)) + ϵ1)(u
′(x) + ϵ2)∆x .

Dividing by ∆x and letting ∆x → 0, we get

lim
∆x→0

f (u(x +∆x))− f (u(x))

∆x

= lim
∆x→0

[
(f ′(u(x)) + ϵ1)(u

′(x) + ϵ2)
]

= lim
∆x→0

[
(f ′(u(x)) + ϵ1)

]
lim

∆x→0

[
(u′(x) + ϵ2)

]
= lim

∆u→0

[
(f ′(u(x)) + ϵ1)

]
lim

∆x→0

[
(u′(x) + ϵ2)

]
= f ′(u(x))u′(x),

since ϵ1 → 0 as ∆u → 0 and ϵ2 → 0 as ∆x → 0. □
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The Chain Rule Using Leibniz’s Notation
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The Chain Rule Using Leibniz’s Notation

As with other derivatives that we have seen, we can express the
chain rule using Leibniz’s notation. This makes the chain rule easy
to remember and shows you why Leibniz’s notation is so useful.

Rule: Chain Rule Using Leibniz’s Notation

If y is a function of u, and u is a function of x , then

dy

dx
=

dy

du
· du
dx

.
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Examples
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Example 1

Example

Compute the derivative of y = 2(8x − 1)3.
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Example 1

Solution

Let u = 8x − 1. This is the inside function. Let y = 2u3. This is
the outside function. By the Chain Rule

dy

dx
=

dy

du
· du
dx

= 6u2 · 8
= 48u2

= 48(8x − 1)2.

As x changes, the rate at which y changes is the rate at which y
changes with respect to u times the rate at which u changes with
respect to x.
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Example 2

Example

Compute the derivative of y = tan3 x .
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Example 2

Solution

Let u = tan x. This is the inside function. Let y = u3. This is the
outside function. By the Chain Rule

dy

dx
=

dy

du
· du
dx

= 3u2 · sec2 x
= 3(tan x)2 · sec2 x
= 3 tan2 x sec2 x .
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“Outside-Inside” Rule

Mark Faucette UWG 21/54



“Outside-Inside” Rule

If you write the Chain Rule this way

dy

dx
= f ′(g(x)) · g ′(x),

we can talk about the Chain Rule in these terms:

You take the derivative of the outside function f leaving the inside
function alone, and then multiply by the derivative of the inside
function. This is multiplying the rates together.
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Examples
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Example 3

Example

Compute the derivative of

y = (4− 3x)9.
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Example 3

Solution

Here, the inside function is u = 4− 3x and the outside function is
y = u9. The derivative of the outside function is dy

du = 9u8. The

derivative of the inside function is du
dx = −3. The derivative is then

dy

dx
= 9u8 · (−3)

= 9(4− 3x)8 · (−3)

= −27(4− 3x)8.
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Example 4

Example

Compute the derivative of

y =
3
√

2x − x2.
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Example 4

Solution

Here, the inside function is u = 2x − x2 and the outside function is
y = 3

√
u = u1/3. The derivative of the outside function is

dy
du = 1

3u
−2/3. The derivative of the inside function is du

dx = 2− 2x.
The derivative is then

dy

dx
=

1

3
u−2/3 · (2− 2x)

=
1

3
(2x − x2)−2/3 · (2− 2x)

=
2− 2x

3(2x − x2)2/3
.
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Problem-Solving Strategy: Applying the Chain Rule

1 To differentiate h(x) = f (g(x)), begin by identifying f (x) and
g(x).

2 Find f ′(x) and evaluate it at g(x) to obtain f ′(g(x)).

3 Find g ′(x).

4 Write h′(x) = f ′(g(x))g ′(x).
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Problem-Solving Strategy: Applying the Chain Rule

Remark

When applying the chain rule to the composition of two or more
functions, keep in mind that we work our way from the outside
function in.

It is also useful to remember that the derivative of the composition
of two functions can be thought of as having two parts; the
derivative of the composition of three functions has three parts;
and so on.

Also, remember that we never evaluate a derivative at a derivative.
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Repeated Use of the Chain Rule
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Repeated Use of the Chain Rule

The Chain Rule must be used with each composed function. So, if
several functions are nested, you must use the Chain Rule each
time there is a new function.
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Example
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Example 5

Example

Find dy/dt if
y = sin2(3t − 2).
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Example 5

Solution

Here we have three composed functions.

The inside function is x = 3t − 2. The middle function is
u = sin(x) The outside function is y = u2.

By the Chain Rule, the derivative is

dy

dt
=

dy

du
· du
dx

· dx
dt

= 2u · cos(x) · (3)

= 2 sin(x) · cos(x) · (3)
= 2 sin(3t − 2) · cos(3t − 2) · (3)
= 6 sin(3t − 2) cos(3t − 2).
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The Chain Rule with Powers of a Function
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The Chain Rule with Powers of a Function

If n is any real number and f is a power function f (u) = un, the
Power Rule tells us that f ′(u) = nun−1. If u is then some
differentiable function of x , the the Chain Rule tells us

d

dx
(un) = nun−1 du

dx
.

Your text calls this the Power Chain Rule.
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Example
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Example 6

Example

Find dy/dx if

y =

(
x2

8
+ x − 1

x

)4

.
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Example 6

Solution

By the Power Chain Rule, we have

dy

dx
= 4

(
x2

8
+ x − 1

x

)3

· d
dx

(
1

8
x2 + x − x−1

)
= 4

(
x2

8
+ x − 1

x

)3

·
(
1

4
x + 1− (−x−2)

)
= 4

(
x2

8
+ x − 1

x

)3

·
(
x

4
+ 1 +

1

x2

)
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Combining the Chain Rule with Other Rules
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Of course, all the rules you already know are applied when needed.
So you may need the Product Rule, Quotient Rule, and Chain Rule
in many combinations depending on the particular problem.
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Examples
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Example 7

Example

Find the dy/dx if y = xe2x .
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Example 7

Solution

This is the product of two functions, so we apply the Product Rule:

dy

dx
=

d

dx
x · e2x + x · d

dx
e2x

To find the derivative of e2x we must use the Chain Rule:

dy

dx
=

d

dx
x · e2x + x · d

dx
e2x

= (1) · e2x + x · e2x d
dx

(2x)

= (1) · e2x + x · e2x · 2
= e2x + 2xe2x = e2x(1 + 2x).
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Example 8

Example

Find the dy/dx if y = (2x − 5)−1(x2 − 5x)6.
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Example 8

Solution

This is the product of two functions, so we use the Product Rule:

dy

dx
=

d

dx
[(2x − 5)−1](x2 − 5x)6 + (2x − 5)−1 d

dx
[(x2 − 5x)6]

To take these two derivatives, we must use the Chain Rule:

dy

dx
=

d

dx
[(2x − 5)−1](x2 − 5x)6 + (2x − 5)−1 d

dx
[(x2 − 5x)6]

= (−1)(2x − 5)−2 · d
dx

(2x − 5) · (x2 − 5x)6

+ (2x − 5)−1 · 6(x2 − 5x)5 · d
dx

(x2 − 5x)
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Example 8

Solution

Continuing, we get

dy

dx
= (−1)(2x − 5)−2 · d

dx
(2x − 5) · (x2 − 5x)6

+ (2x − 5)−1 · 6(x2 − 5x)5 · d
dx

(x2 − 5x)

= (−1)(2x − 5)−2 · (2) · (x2 − 5x)6

+ (2x − 5)−1 · 6(x2 − 5x)5 · (2x − 5)

= −2(2x − 5)−2(x2 − 5x)6 + 6(x2 − 5x)5
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Example 8

Solution

Continuing, we get

dy

dx
= −2(2x − 5)−2(x2 − 5x)6 + 6(x2 − 5x)5

= −2(x2 − 5x)5

(2x − 5)2
[
(x2 − 5x)− 3(2x − 5)2

]
=

2(x2 − 5x)5

(2x − 5)2
(11x2 − 55x + 75).
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Example 9

Example

Find the dy/dx if y = tan
(
sin x
x

)
.
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Example 9

Solution

This is first the composition of two functions, so we must use the
Chain Rule:

dy

dx
= sec2

(
sin x

x

)
· d
dx

(
sin x

x

)
.

Now we have to use the Quotient Rule to find the derivative of the
expression on the right.
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Example 9

Solution

Using the Quotient Rule, we get

dy

dx
= sec2

(
sin x

x

)
·

d
dx sin(x) · x − sin(x) ddx (x)

x2

= sec2
(
sin x

x

)
· cos(x) · x − sin(x) · 1

x2

= sec2
(
sin x

x

)(
x cos(x)− sin(x)

x2

)
.
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Example 10

Example

Find the d2y/dx2 if y = x(2x + 1)4.
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Example 10

Solution

We first compute dy
dx using the Product Rule and the Chain Rule:

dy

dx
=

d

dx
(x) · (2x + 1)4 + x

d

dx
[(2x + 1)4]

= (1) · (2x + 1)4 + x · 4(2x + 1)3 · d
dx

(2x + 1)

= (2x + 1)4 + x · 4(2x + 1)3 · (2)
= (2x + 1)4 + 8x(2x + 1)3

= (2x + 1)3[(2x + 1) + 8x ]

= (2x + 1)3(10x + 1).
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Example 10

Solution

Now we compute the second derivative:

d2y

dx2
=

d

dx
[(2x + 1)3] · (10x + 1) + (2x + 1)3 · d

dx
(10x + 1)

=

[
3(2x + 1)2 · d

dx
(2x + 1)

]
· (10x + 1) + (2x + 1)3 · (10)

=
[
3(2x + 1)2 · (2)

]
· (10x + 1) + (2x + 1)3 · (10)

= 6(2x + 1)2(10x + 1) + 10(2x + 1)3

= 2(2x + 1)2 [3(10x + 1) + 5(2x + 1)]

= 2(2x + 1)2 (40x + 8) = 16(2x + 1)2 (5x + 1) .
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