Derivatives of Trigonometric Functions

William M. Faucette

University of West Georgia

Mark Faucette UWG 1/46



Outline

BEEREREBEBEN

Derivative of the Sine Function

Derivative of the Cosine Function

Derivatives of the Other Trigonometric Functions
Derivative of tan(x)

Derivative of cot(x)

Derivative of sec(x)

Derivative of csc(x)

Summary of Derivatives of Trigonometric Functions
Examples

Higher-Order Derivatives

Mark Faucette UWG 2/46



Derivative of the Sine Function
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Derivative of the Sine Function

We recall the formulas from precalculus for sine and cosine of a
sum:

sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
cos(x + y) = cos(x) cos(y) — sin(x) sin(y)

We will use these to find the derivative of the sine function and the
cosine function.
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Derivative of the Sine Function

Let f(x) = sinx. To compute the derivative of the sine function,
we apply the definition of the derivative:

sin(x 4+ h) — sin(x)

o S0 = i, h
i [sin(x) cos(h) + cos(x)sin(h)] — sin(x)
~ 5 h
~lim sin(x) cos(h) — sin(x) + cos(x) sin(h)
h—0 h
— lim sin(x)(cos(h) — 1) + cos(x) sin(h)
h—0 h

(Continued on the next slide)
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Derivative of the Sine Function

Continuing the computation ...

im sin(x)(cos(h) — 1) + cos(x) sin(h)

h—0 h

— lim sin(x)(cos(h) — 1)
h—0 h

. cos(x) sin(h)
h—0 h

= sn(e) iy | 2 | cost) i [ 52

h

Fortunately, we computed these two limits in Section 2.3.
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Derivative of the Sine Function

Finishing the computation with the values of the two limits
computed earlier, we get

9 sin(x) = sin(x) lim [(’}3‘1} + cos(x) lim Hh)]
— sin(x)(0) + cos(x)(1)

= cos(x).
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Derivative of the Cosine Function
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Derivative of the Cosine Function

Let f(x) = cosx. To compute the derivative of the sine function,
we apply the definition of the derivative:

cos(x + h) — cos(x)

ot = ]
~lim [cos(x) cos(h) — sin(x) sin(h)] — cos(x)
h—0 h
— lim cos(x) cos(h) — cos(x) — sin(x)sin(h)
h—0 h
i cos(x)(cos(h) — 1) — sin(x) sin(h)
~ h50 h
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Derivative of the Cosine Function

Let f(x) = cosx. To compute the derivative of the sine function,
we apply the definition of the derivative:

im cos(x)(cos(h) — 1) — sin(x) sin(h)
h—0 h

o [ oo 20
= ot iy | 5] i oy [ 57

= cos(x)(0) — sin(x)(1)
= —sin(x).
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Derivative of the Cosine Function

This gives us

Derivatives of sin(x) and cos(x)

% sin(x) = cos(x)
o cos(x) = —sin(x).
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Derivatives of the Other Trigonometric Functions
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Derivatives of the Other Trigonometric Functions

To compute the derivatives of the remaining trigonometric
functions, we use their definitions and the Quotient Rule.

Recall the definitions of the other four trigonometric functions:

_ sin(x) cec(x) — 1
tan(x) = cos(x) (x) cos(x)

_ cos(x) csclx) — 1
COt(X) = Sin(X) ( ) sin(x)
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Derivative of tan(x)
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Derivative of tan(x)

We compute the derivative of tan(x):

o0 = (20)

_ 2 sin(x) - cos(x) — sin(x) - & cos(x)
cos?(x)
_ cos(x) - cos(x) — sin(x) - (—sin(x))
cos?(x)
_ cos?(x) + sin?(x) _ 1
cos?(x) cos?(x)
= sec?®(x).
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Derivative of cot(x)
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Derivative of cot(x)

We compute the derivative of cot(x):

% ot = 3 (29)

% cos(x) - sin(x) — cos(x) - % sin(x)

sin(x)
_ - sin(x) - sin(x) — cos(x) - cos(x)
sin?(x)
_ —(sin?(x) + cos?(x)) _ -1
sin?(x) sin?(x)

= —csc?(x).
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Derivative of sec(x)

Mark Faucette UWG 18/46



Derivative of sec(x)

We compute the derivative of sec(x):

%sec(x) _ % <Cosl(x))

B %(1) - cos(x) — (1)% cos(x)

cos?(x)
_(0)- cos(x) — (1)(—sin(x))
cos?(x)
_ sin(x)
cos?(x)

1 sin(x)




Derivative of csc(x)
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Derivative of csc(x)

We compute the derivative of csc(x):

d d 1
0= 5 ()
_ %(1) -sin(x) — (1)% sin(x)
sin?(x)

_(0)- sin(x? — (1)(cos(x))




Summary of Derivatives of Trigonometric
Functions
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Summary of Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions

d . d

. sin(x) = cos(x) . cot(x) = — csc?(x)

o cos(x) = —sin(x) o sec(x) = sec(x) tan(x)
% tan(x) = sec?(x) = csc(x) = — csc(x) cot(x)
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Examples
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Example 1

Find dy/dx if

y = x? cos x.
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Example 1

We use the Product Rule:

v _d
dx  dx
= 2x cos x + x*(—sinx)

d
(x?) - cosx + x2 - a(cosx)

— 2xcos x — x°sin x.
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Example 2

Find dy/dx if

COSs X

Y= 1+sinx
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Example 2

We use the Quotient Rule:

dy _ %(COSX) (1 +sinx) — cosx - %(1 + sin x)

dx (1 +sinx)?
—sinx - (14 sinx) — cos x - cos x
(1 +sinx)?
—sinx — (sin? x + cos? x)
(1+sinx)?
—sinx —1 1+sinx 1

T (I+sinx)2 (1+sinx)2 l+sinx
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Example 3

Find dy/dx if

y = x? cos x — 2xsin x — 2 Cos X.
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Example 3

We compute:

d d
d—i = &( % cosx — 2xsin x — 2cos x)

d d d
—&( cosx)—&(2xsmx)—&(2cosx)

= [2x cosx + x%(—sin x)] = [2sinx 4 2x cos x] — 2(—sin x)

= —x%sinx.
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Example 4

Find dy/dx if

y = (secx + tan x)(sec x — tan x).
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Example 4

We compute

dy d
= a(secx%—tanx) - (sec x — tan x)+

d
+ (secx +tanx) - d—(secx — tanx)
x

= (sec xtan x + sec® x) - (sec x — tan x)+

+ (secx + tan x) - (sec x tan x — sec? x)

B;

= sec2 X tanx — secxtan2 X +sec” x — sec2 X tan x+

= seczxtanx = sec3x =+ secxtan2 X — seczxtanx
=0.
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Example 4

We could have saved ourselves a lot of work by remembering that
(sec x + tan x)(sec x — tan x) = sec? x — tan® x = 1.

So the derivative is quite clearly zero.
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Example 5

Example

Graph the curve

y = 1+ cosx,
over the interval —37” < x < 27, together with the tangent lines at
X = —73—r and x = 37”

Label the curve and tangent line with its equation.
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Example 5

3 dy .
We first compute

Ix = —sinx
2 (5) - (-5)- %
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Example 5

At x = —7%, the slope is ? and the point is (—%, %) The
equation of that tangent line is

At x = 37” the slope is 1 and the point is (37”, 1). The equation of
that tangent line is

—l=x-"
y X =5

The sketch of the curve and the two tangent lines are on the next
slide.
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Example 5

y=1+cosz
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Example 6

Example

Find all points on the curve y = tanx, —% < x < 5. where the
tangent line is parallel to the line y = 2x. Sketch the curve and
tangent(s) together, labeling each with its equation.
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Example 6

Solution

The slope of the line y = 2x is 2, so we have to find all the values
of x in the interval (—m/2,7/2) for % tan x = sec? x equals 2.

We solve

1
cosx:j:—:j:\/—E
V2 2

x::I:z

4
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Example 6

For x = —m /4, we get the point (—m/4,—1) and the line is

v
1:2( —)
y+ X—|-4

For x = m/4, we get the point (7 /4,1) and the line is

T
—1:2( ——).
y x—

The curve and the two tangent lines are graphed on the next slide.
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Example 6

34

y = tanz
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Higher-Order Derivatives
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Example 6

The higher-order derivatives of sin x and cos x follow a repeating
pattern. By following the pattern, we can find any higher-order
derivative of sin x and cos x.

See the table on the next slide.
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Example 6

Higher Derivatives of sin x and cos x

y =sinx
d
d—y:cosx
Ix
ﬂ = —sinx
dx2
d3
d_x}3/ = —COS X
d4
d_Xi/ =sinx
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Yy = Cos X
% = —sinx
% = —cosx
% =sinx
%:cosx
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Example 6

For y = sin x, find
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Example 6

Since the derivatives of sin x repeat after a cycle of length 4, we

know that

d59y 3 d4-14+3y
dx59  dx414+3
d3y
dx3
= — COS X.
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