

Defining the Derivative

William M. Faucette

University of West Georgia

Outline

1 Tangent Lines

2 Example

3 Rates of Change: Derivative at a Point

4 Example

Tangent Lines

Tangent Lines

Definition

Let f be a function defined on an interval I containing a . If $x \neq a$ is in I , then

$$Q = \frac{f(x) - f(a)}{x - a}$$

is a **difference quotient**.

Also, if $h \neq 0$ is chosen so that $a + h$ is in I , then

$$Q = \frac{f(a + h) - f(a)}{h}$$

is a difference quotient with increment h .

Tangent Lines

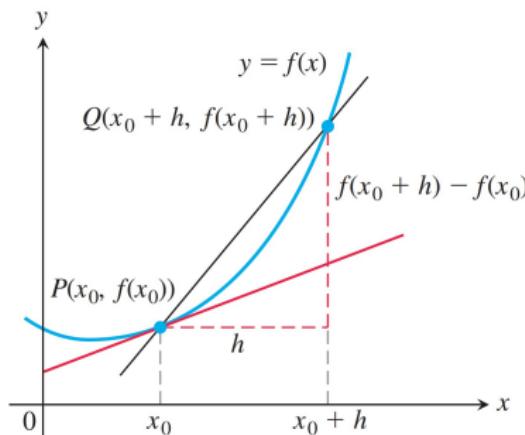


Figure: Slope of the tangent line at P

To find the slope of the tangent line to an arbitrary curve $y = f(x)$ at a point $P(x_0, f(x_0))$, we calculate the slope of the secant line through P and a nearby point $Q(x_0 + h, f(x_0 + h))$. We then investigate the limit of the slope as $h \rightarrow 0$.

Tangent Lines

Definition

Let $f(x)$ be a function defined in an open interval containing a . The tangent line to $f(x)$ at a is the line passing through the point $(a, f(a))$ having slope

$$m_{\tan} = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a}$$

provided this limit exists.

Tangent Lines

Definition

Equivalently, we may define the tangent line to $f(x)$ at a to be the line passing through the point $(a, f(a))$ having slope

$$m_{\tan} = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{x - a}$$

provided this limit exists.

Example

Example 1

Example

Find an equation for the tangent line to the curve $y = 4 - x^2$ at the point $(-1, 3)$. Then sketch the curve and tangent line together.

Example 1

Solution

We compute the slope of the tangent line:

$$\begin{aligned}\lim_{h \rightarrow 0} \frac{f(x_0 + h) - f(x_0)}{h} &= \lim_{h \rightarrow 0} \frac{f(-1 + h) - f(-1)}{h} \\&= \lim_{h \rightarrow 0} \frac{[4 - (-1 + h)^2] - 3}{h} \\&= \lim_{h \rightarrow 0} \frac{[4 - (1 - 2h + h^2)] - 3}{h} \\&= \lim_{h \rightarrow 0} \frac{2h - h^2}{h} = \lim_{h \rightarrow 0} \frac{h(2 - h)}{h} \\&= \lim_{h \rightarrow 0} (2 - h) = 2.\end{aligned}$$

Example 1

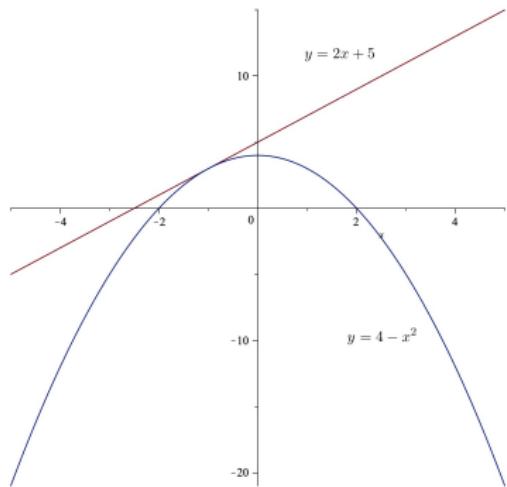


Figure: Sketch for Example 1

The equation of the tangent line is then

$$y - y_1 = m(x - x_1)$$

$$y - 3 = 2(x - (-1))$$

$$y = 2x + 5.$$

Rates of Change: Derivative at a Point

Rates of Change: Derivative at a Point

Recall the expression

$$\frac{f(a+h) - f(a)}{h}, \quad h \neq 0$$

is the **difference quotient of f at a with increment h** .

Rates of Change: Derivative at a Point

Definition

The **derivative of a function f at a point a** , denoted $f'(a)$, is

$$f'(a) = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h},$$

provided this limit exists.

Rates of Change: Derivative at a Point

The derivative has another interpretation in certain physical applications.

If we interpret the difference quotient as the average rate of change of the function f on the interval $[x_0, x_0 + h]$, then the derivative $f'(x_0)$ is the **instantaneous rate of change of f at x_0** .

Example

Example 2

Example

A rock falls $y = 16t^2$ feet during the first t seconds. What is the rock's exact speed after 1 second?

Example 2

Solution

With $f(t) = 16t^2$, the difference quotient

$$\frac{f(1+h) - f(1)}{h}$$

is the average velocity over the interval $[1, 1+h]$.

Example 2

Solution

If we then let $h \rightarrow 0$, we get the rock's exact speed:

$$\begin{aligned}\lim_{h \rightarrow 0} \frac{f(1 + h) - f(1)}{h} &= \lim_{h \rightarrow 0} \frac{16(1 + h)^2 - 16}{h} \\&= \lim_{h \rightarrow 0} \frac{16(1 + 2h + h^2) - 16}{h} \\&= \lim_{h \rightarrow 0} \frac{16 + 32h + 16h^2 - 16}{h} \\&= \lim_{h \rightarrow 0} \frac{32h + 16h^2}{h} = \lim_{h \rightarrow 0} \frac{h(32 + 16h)}{h} \\&= \lim_{h \rightarrow 0} 32 + 16h = 32 \text{ ft/s.}\end{aligned}$$