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The Tangent Problem and Differential Calculus
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The Tangent Problem and Differential Calculus

Definition

The average rate of change of y = f (x) with respect to x over
the interval [x1, x2] is

∆y

∆x
=

f (x2)− f (x1)

x2 − x1
=

f (x1 + h)− f (x1)

h
, h ̸= 0.
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The Tangent Problem and Differential Calculus

On the graph y = f (x), the average rate of change over the
interval [x1, x2] is the slope of the line between the points
(x1, f (x1)) and (x2, f (x2)). This is a secant line to the graph.

See the sketch on the next slide.
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The Tangent Problem and Differential Calculus

Figure: Sketch of a Secant Line
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The Tangent Problem and Differential Calculus

The secant to the function f (x) through the points (a, f (a)) and
(x , f (x)) is the line passing through these points. Its slope is given
by

msec =
f (x)− f (a)

x − a
.

This is the average rate of change of f on the interval between a
and x .
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The Tangent Problem and Differential Calculus

A tangent line to a curve meets the curve at only one point.

In order to find the slope of the tangent line, we look at the slopes
of a secant lines from a fixed point P0 on the curve to a variable
point P on the curve.

Then we will let the point P get closer and closer to P0 and
observe what happens to the slopes.
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The Tangent Problem and Differential Calculus

The slope of the tangent line to the graph at a measures the rate
of change of the function at a.

This value also represents the derivative of the function f (x) at a,
or the rate of change of the function at a. This derivative is
denoted by f ′(a).

Differential calculus is the field of calculus concerned with the
study of derivatives and their applications.
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Example

Mark Faucette UWG 10/36



Example 1

Example

Find the slope of the tangent line to the parabola

y = f (x) = x2 − x

at the point P0(3, 6) by analyzing slopes of secant lines through
P0(3, 6). Write an equation for the tangent line to the parabola at
this point.
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Example 1

Solution

We compute the slopes of secant lines through P0(3, 6) and
P(3 + h, f (3 + h)).

f (3 + h)− f (3)

h
=

[(3 + h)2 − (3 + h)]− [32 − 3]

h

=
[9 + 6h + h2 − (3 + h)]− [6]

h

=
6 + 5h + h2 − 6

h

=
h(5 + h)

h
= 5 + h.
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Example 1

Solution

We form a table for values of h getting closer and closer to zero.
This corresponds to the point P getting closer and closer to the
point P0.

h Slope of Secant Line

1 6
0.1 5.1
0.01 5.01
0.001 5.001
0.0001 5.0001
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Example 1

Solution

As h gets closer and closer to zero, P is getting closer and closer
to the point P0. The secant lines between P0 and P get closer and
closer to a tangent line at P0. So, the slopes of the secant lines
between P0 and P get closer and closer to the slope of the tangent
line at P0.

Looking at the table, we see that the slopes of the secants lines are
getting closer and closer to 5. So, the slope of the tangent line is 5.
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Example 1

Solution

The equation of the tangent line to the curve y = f (x) = x2 − x
at the point (3, 6) is

y − 6 = 5(x − 3)

y − 6 = 5x − 15

y = 5x − 9.
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Rates of Change and Tangent Lines
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Rates of Change and Tangent Lines

The average rate of change of f on the interval [x , x + h] is defined
to be

f (x + h)− f (x)

h
.

As h gets closer and closer to zero, the average rate of change of
the function f on the interval [x , x + h] gets closer and closer to
the actual rate of change of the function f at x . This is the
instantaneous rate of change of f at x .
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Rates of Change and Tangent Lines

The instantaneous rate of change of a function f at x = a is the
slope of the tangent line to the graph y = f (x) at the point
(a, f (a)).

First, we have to make precise what it means for the average
values of a function to get “closer and closer” to something as h,
the length of the interval, gets “closer and closer” to zero.

This involves the concept of a limit. We will take up this concept
in the next section.
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Average and Instantaneous Velocity
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Average and Instantaneous Velocity

Suppose a moving object has traveled a distance f (t) at time t.
The average velocity during the time interval [t1, t2] is the change
in distance divided by the change in time. The unit of measure is
length per unit time.

Average velocity

When f (t) measures the distance traveled at time t, the average
velocity over the interval [t1, t2] is

f (t2)− f (t1)

t2 − t1
.
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Example 1
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Example 1

Example

A solid object dropped from rest near the surface of the earth and
allowed to fall freely will fall according to the following equation:

s(t) = 16t2

where t is measured in seconds and s(t) is measured in feet. What
is the object’s average velocity during the first 2 sec of fall? During
the time between t = 1 sec and t = 2 sec.
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Example 1

Solution

The object’s average velocity during the first 2 sec of fall is

s(2)− s(0)

2− 0
=

16(2)2 − 16(0)2

2− 0
=

64

2
= 32 ft/s.

The object’s average velocity during the time between t = 1 sec
and t = 2 sec.

s(2)− s(1)

2− 1
=

16(2)2 − 16(1)2

2− 1

=
64− 16

2− 1
= 48 ft/s.
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Example 2
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Example 2

Example

A solid object dropped from rest near the surface of the earth and
allowed to fall freely will fall according to the following equation:

s(t) = 16t2

where t is measured in seconds and s(t) is measured in feet.
Find the velocity of the falling rock in Example 1 between time
t = 1 and t = 1 + h.
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Example 2

Solution

The velocity of the falling rock in Example 1 between time t = 1
and t = 1 + h is

s(1 + h)− s(1)

(1 + h)− 1
=

16(1 + h)2 − 16(1)2

(1 + h)− 1

=
16(1 + 2h + h2)− 16

h

=
16 + 32h + 16h2 − 16

h
=

32h + 16h2

h

=
h(32 + 16h)

h
= 32 + 16h.
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Example 2

Solution

For values of h getting closer and closer to zero, we get

h Average velocity on [1, 1 + h]

1 48
0.1 33.6
0.01 32.16
0.001 32.016
0.0001 32.0016
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The Area Problem and Integral Calculus
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The Area Problem and Integral Calculus

We now turn our attention to a classic question from calculus.
Many quantities in physics—for example, quantities of work—may
be interpreted as the area under a curve.

This leads us to ask the question: How can we find the area
between the graph of a function and the x-axis over an interval.

See the sketch on the next slide.
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The Area Problem and Integral Calculus

Figure: The Area Problem
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As with the velocity question, we first try to approximate the
solution.

We approximate the area by dividing up the interval [a, b] into
smaller intervals in the shape of rectangles. The approximation of
the area comes from adding up the areas of these rectangles.

See the sketch on the next slide.
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The Area Problem and Integral Calculus

Figure: The Area Problem
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The Area Problem and Integral Calculus

As the widths of the rectangles become smaller (approach zero),
the sums of the areas of the rectangles approach the area between
the graph of f (x) and the x-axis over the interval [a, b].

Once again, we find ourselves taking a limit.

Limits of this type serve as a basis for the definition of the definite
integral. Integral calculus is the study of integrals and their
applications.
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Other Aspects of Calculus
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Other Aspects of Calculus

So far, we have studied functions of one variable only. Such
functions can be represented visually using graphs in two
dimensions; however, there is no good reason to restrict our
investigation to two dimensions.

We might want to graph real-value functions of two variables or
determine volumes of solids.
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Other Aspects of Calculus

These are only a few of the types of questions that can be asked
and answered using multivariable calculus.

Informally, multivariable calculus can be characterized as the study
of the calculus of functions of two or more variables.

However, before exploring these and other ideas, we must first lay
a foundation for the study of calculus in one variable by exploring
the concept of a limit.
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