

Problem Set #8 Solutions

Due Thursday October 9

William M. Faucette

Problem 3.4.1. Label the following statements as true or false.

- (a) If $(A'|b')$ is obtained from $(A|b)$ by a finite sequence of elementary column operations, then the systems $Ax = b$ and $A'x = b'$ are equivalent.
- (b) If $(A'|b')$ is obtained from $(A|b)$ by a finite sequence of elementary row operations, then the systems $Ax = b$ and $A'x = b'$ are equivalent.
- (c) If A is an $n \times n$ matrix with rank n , then the reduced row echelon form of A is I_n .
- (d) Any matrix can be put in reduced row echelon form by means of a finite sequence of elementary row operations.
- (e) If $(A|b)$ is in reduced row echelon form, then the system $Ax = b$ is consistent.
- (f) Let $Ax = b$ be a system of m linear equations in n unknowns for which the augmented matrix is in reduced row echelon form. If this system is consistent, the the dimension of the solution set of $Ax = 0$ is $n - r$, where r equals the number of nonzero rows in A .
- (g) If a matrix A is transformed by elementary row operations into a matrix A' in reduced row echelon form, then the number of nonzero rows in A' equals the rank of A .

Solution. (a) False. This is true for row operations, not column operations.

- (b) True. This is true for row operations.
- (c) True.
- (d) True.
- (e) False.
- (f) True.
- (g) True.

Problem 3.4.2. Use Gaussian elimination to solve the following systems of linear equations.

$$(b) \begin{cases} x_1 - 2x_2 - x_3 = 1 \\ 2x_1 - 3x_2 + x_3 = 6 \\ 3x_1 - 5x_2 = 7 \\ x_1 + 5x_3 = 9 \end{cases}$$

$$(f) \begin{cases} x_1 + 2x_2 - x_3 + 3x_4 = 2 \\ 2x_1 + 4x_2 - x_3 + 6x_4 = 5 \\ x_2 + 2x_4 = 3 \end{cases}$$

Solution. (b) The augmented coefficient matrix for this system is

$$\left(\begin{array}{ccc|c} 1 & -2 & -1 & 1 \\ 2 & -3 & 1 & 6 \\ 3 & -5 & 0 & 7 \\ 1 & 0 & 5 & 9 \end{array} \right)$$

Add -2 times row 1 to row 2, add -3 times row 1 to row 3, and add -1 times row 1 to row 4. We get

$$\left(\begin{array}{ccc|c} 1 & -2 & -1 & 1 \\ 0 & 1 & 3 & 4 \\ 0 & 1 & 3 & 4 \\ 0 & 2 & 6 & 8 \end{array} \right)$$

Add 2 times row 2 to row 1, add -1 times row 2 to row 3, and add -2 times row 2 to row 4. We get

$$\left(\begin{array}{ccc|c} 1 & 0 & 5 & 9 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

We have one free variable x_3 . The solution is

$$x_1 = 9 - 5x_3$$

$$x_2 = 4 - 3x_3$$

$$x_3 = x_3$$

(f) The augmented coefficient matrix for this system is

$$\left(\begin{array}{cccc|c} 1 & 2 & -1 & 3 & 2 \\ 2 & 4 & -1 & 6 & 5 \\ 0 & 1 & 0 & 2 & 3 \end{array} \right)$$

Add -2 times row 1 to row 2. We get

$$\left(\begin{array}{cccc|c} 1 & 2 & -1 & 3 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 & 3 \end{array} \right)$$

Swap row 2 and row 3. We get

$$\left(\begin{array}{cccc|c} 1 & 2 & -1 & 3 & 2 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right)$$

Add -2 times row 2 to row 1. We get

$$\left(\begin{array}{cccc|c} 1 & 0 & -1 & -1 & -4 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right)$$

Add 1 times row 3 to row 1. We get

$$\left(\begin{array}{cccc|c} 1 & 0 & 0 & -1 & -3 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right)$$

We have one free variable x_4 . The solution is

$$\begin{aligned} x_1 &= -3 + x_4 \\ x_2 &= 3 - 2x_4 \\ x_3 &= 1 \\ x_4 &= x_4. \end{aligned}$$

Problem 3.4.4. For each of the systems that follow, apply Exercise 3 to determine whether the system is consistent. If the system is consistent, find all solutions. Finally, find a basis for the solution set of the corresponding homogeneous system.

(b)

$$\begin{aligned} x_1 + x_2 - 3x_3 + x_4 &= -2 \\ x_1 + x_2 + x_3 - x_4 &= 2 \\ x_1 + x_2 - x_3 &= 0 \end{aligned}$$

Solution. (b) We form the augmented coefficient matrix

$$\left(\begin{array}{cccc|c} 1 & 1 & -3 & 1 & -2 \\ 1 & 1 & 1 & -1 & 2 \\ 1 & 1 & -1 & 0 & 0 \end{array} \right)$$

Performing Gauss-Jordan elimination, we get

$$\left(\begin{array}{cccc|c} 1 & 1 & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

Since the rank of the coefficient matrix and the rank of the augmented coefficient matrix are equal, there is a solution.

From the reduced row echelon form, we can read off the solution space

$$\left\{ \begin{pmatrix} 1 - x_2 + \frac{1}{2}x_4 \\ x_2 \\ 1 + \frac{1}{2}x_4 \\ x_4 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} \right\}.$$

From this, we can read off the solution space to the associated homogeneous system:

$$\left\{ x_2 \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 1 \end{pmatrix} \right\}.$$

Problem 3.4.5. Let the reduced row echelon form of A be

$$\begin{pmatrix} 1 & 0 & 2 & 0 & -2 \\ 0 & 1 & -5 & 0 & -3 \\ 0 & 0 & 0 & 1 & 6 \end{pmatrix}$$

Determine A if the first, second, and fourth columns of A are

$$\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \text{ and } \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix},$$

respectively.

Solution. To solve this, start with the original matrix A :

$$A = \begin{pmatrix} 1 & 0 & a & 1 & d \\ -1 & -1 & b & -2 & e \\ 3 & 1 & c & 0 & f \end{pmatrix}.$$

We want the reduced row echelon form of A be

$$R = \begin{pmatrix} 1 & 0 & 2 & 0 & -2 \\ 0 & 1 & -5 & 0 & -3 \\ 0 & 0 & 0 & 1 & 6 \end{pmatrix}.$$

Now we perform Gauss-Jordan elimination. For the matrix A , add row 1 to row 2 and add -3 times row 1 to row 3:

$$\begin{pmatrix} 1 & 0 & a & 1 & d \\ 0 & -1 & a+b & -1 & d+e \\ 0 & 1 & c-3a & -3 & f-3d \end{pmatrix}.$$

Next, swap row 2 and row 3 and add row 2 to row 3:

$$\begin{pmatrix} 1 & 0 & a & 1 & d \\ 0 & 1 & c-3a & -3 & f-3d \\ 0 & 0 & b-2a+c & -4 & e-2d+f \end{pmatrix}.$$

Since the $(3, 3)$ entry must now be zero, we set $c = 2a - b$ and recompute:

$$\begin{pmatrix} 1 & 0 & a & 1 & d \\ 0 & 1 & -a-b & -3 & f-3d \\ 0 & 0 & 0 & -4 & e-2d+f \end{pmatrix}.$$

Next, multiply row 3 by $-1/4$:

$$\begin{pmatrix} 1 & 0 & a & 1 & d \\ 0 & 1 & -a - b & -3 & f - 3d \\ 0 & 0 & 0 & 1 & -\frac{1}{4}e + \frac{1}{2}d - \frac{1}{4}f \end{pmatrix}.$$

Next, add -1 times row 3 to row 1 and 3 times row 3 to row 2:

$$\begin{pmatrix} 1 & 0 & a & 0 & \frac{1}{2}d + \frac{1}{4}e + \frac{1}{4}f \\ 0 & 1 & -a - b & 0 & \frac{1}{4}f - \frac{3}{2}d - \frac{3}{4}e \\ 0 & 0 & 0 & 1 & -\frac{1}{4}e + \frac{1}{2}d - \frac{1}{4}f \end{pmatrix}.$$

Comparing this to the reduced row echelon form given in the problem, we see that

$$\begin{cases} a = 2 \\ -a - b = -5 \end{cases}$$

So, $a = 2$ and $b = 3$.

Now, looking at the last column and comparing it to the reduced row echelon form given in the problem, we see that

$$\begin{cases} \frac{1}{2}d + \frac{1}{4}e + \frac{1}{4}f = -2 \\ \frac{1}{4}f - \frac{3}{2}d - \frac{3}{4}e = -3 \\ -\frac{1}{4}e + \frac{1}{2}d - \frac{1}{4}f = 6. \end{cases}$$

Solving this by your favorite method yields $d = 4$, $e = -7$, and $f = -9$.

So, we see

$$A = \begin{pmatrix} 1 & 0 & 2 & 1 & 4 \\ -1 & -1 & 3 & -2 & -7 \\ 3 & 1 & 1 & 0 & -9 \end{pmatrix}.$$