
Problem Set #6 Solutions

Due Thursday, September 25

William M. Faucette

Problem 2.6.1. Label the following statements as true or false. Assume that all vector
spaces are finite-dimensional.

(a) Every linear transformation is a linear functional.

(b) A linear functional defined on a field may be represented as a 1× 1 matrix.

(c) Every vector space is isomorphic to its dual space.

(d) Every vector space is the dual of some other vector space.

(e) If T is an isomorphism from V into V ∗ and β is a finite ordered basis for V , then
T (β) = β∗.

(f) If T is a linear transformation from V to W , then the domain of (T t)t is (V ∗)∗.

(g) If V is isomorphic to W , then V ∗ is isomorphic to W ∗.

(h) The derivative of a function may be considered as a linear functional on the vector
space of differentiable functions.

Solution. (a) False. A linear functional is a linear transformation from V into F.

(b) False. Let T : C → R be a linear functional. Since C has dimension 2 as a vector
space over R, its matrix is a 1× 2 matrix.

(c) This is true for finite dimensional vector spaces since V and V ∗ have the same di-
mension. For infinite dimensional vector spaces, this is false.

Let V be the real vector space of all sequences (an) of real numbers where an = 0
for all but finite many n ∈ N. Then V is countable. However, V ∗ consists of all
sequences of real numbers, and this set is uncountable.

(d) True. It’s true that (V ∗)∗ = V , so every vector space is the dual of some other vector
space.
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(e) False. An isomorphism T : V → V ∗ can be given taking any basis of V to any basis
for V ∗. It does not have to take β to β∗.

(f) True.

(g) This is true if V and W are finite dimensional. They have the same dimension.

(h) False. Whereas differentiation is a linear map, it does not go into F, so it’s not a
linear functional.
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Problem 2.6.4. Let V = R3, and define f1, f2, f3 ∈ V ∗ as follows:

f1(x, y, z) = x− 2y, f2(x, y, z) = x+ y + z, f3(x, y, z) = y − 3z.

Prove that {f1, f2, f3} is a basis for V ∗, and then find a basis for V for which it is the dual
basis.

Solution. Proof. Since V ∗ has the same dimension as V—three—we need only show f1,
f2, and f3 are linearly independent.

Suppose there are scalars a1, a2, a3 ∈ R so that a1f1 + a2f2 + a3f3 = 0. Then

0 = a1f1 + a2f2 + a3f3

= a1(x− 2y) + a2(x+ y + z) + a3(y − 3z)

= (a1 + a2)x+ (−2a1 + a2 + a3)y + (a2 − 33)z.

This gives us a linear homogeneous system of three equations in three unknowns:

a1 + a2 = 0

−2a1 + a2 + a3 = 0

a2 − 33 = 0.

Solving this using standard techniques from College Algebra gives the only solution as
a1 = a2 = a3 = 0. So, f1, f2, f3 are linearly independent. Thus {f1, f2, f3} is a basis for
V ∗.

To find a basis for V dual to this one, we need to solve

x− 2y = 1

x+ y + z = 0

y − 3z = 0.

This gives b1 = (2/5,−3/10,−1/10).
We need to solve

x− 2y = 0

x+ y + z = 1

y − 3z = 0.

This gives b2 = (3/5, 3/10, 1/10).
We need to solve

x− 2y = 0

x+ y + z = 0

y − 3z = 1.

This gives b3 = (1/5, 1/10,−3/10).
The basis {b1,b2,b3) is the dual basis for V .
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Problem 2.6.5. Let V = P1(R), and, for p(x) ∈ V , define f1, f2 ∈ V ∗ by

f1(p(x)) =

∫ 1

0
p(t) dt and f2(p(x)) =

∫ 2

0
p(t) dt.

Prove that {f1, f2} is a basis for V ∗, and find a basis for V for which it is the dual basis.

Solution. We know that dim (A∗) = dim (V ) = 2, so we only need to show f1 and f2 are
linearly independent to show they are a basis.

Suppose c1f1 + c2f2 = 0. Then

0 = (c1f1 + c2f2)(1)

= c1

∫ 1

0
1 dt+ c2

∫ 2

0
1 dt

= c1 + 2c2

and

0 = (c1f1 + c2f2)(t)

= c1

∫ 1

0
t dt+ c2

∫ 2

0
t dt

=
1

2
c1 + 2c2

Solving the system  c1 + 2c2 = 0

1

2
c1 + 2c2 = 0

we see c1 = c2 = 0, so f1 and f2 are linearly independent.
To find a dual basis, we must find polynomials p1 = a + bt and p2 = c + dt, so that

fi(pj) = δij for 1 ≤ i, j ≤ 2.
We compute

f1(p1(t)) =

∫ 1

0
a+ bt dt = a+

1

2
b

f1(p2(t)) =

∫ 1

0
c+ dt dt = c+

1

2
d

f2(p1(t)) =

∫ 2

0
a+ bt dt = 2a+ 2b

f2(p2(t)) =

∫ 2

0
c+ dt dt = 2c+ 2d.
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We solve the system of equations

a+
1

2
b = 1

c+
1

2
d = 0

2a+ 2b = 0

2c+ 2d = 1

Solving, we get a = 2, b = −2, c = −1
2 , and d = 1. So, the dual basis is

p1(x) = 2− 2x

p2(x) = −1

2
+ x.
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Problem 2.6.8. Show that every plane through the origin in R3 may be identified with
the null space of a vector in (R3)∗. State an analogous result for R2.

Solution. Let Π be a plane through the origin in R3. Then Π has an equation of the form
a1x+ a2y+ a3z = 0. Define LΠ : R3 → R by LΠ(x1, x2, x3) = a1x1+ a2x2+ a3x3. It’s easy
to check that LΠ is linear, so LΠ ∈ (R3)∗ and N(LΠ) = Π.
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Problem 3.1.1. Label the following statements as true or false.

(a) An elementary matrix is always square.

(b) The only entries of an elementary matrix are zeros and ones.

(c) The n× n identity matrix is an elementary matrix.

(d) The product of two n× n elementary matrices is an elementary matrix.

(e) The inverse of an elementary matrix is an elementary matrix.

(f) The sum of two n× n elementary matrices is an elementary matrix.

(g) The transpose of an elementary matrix is an elementary matrix.

(h) If B is a matrix that can be obtained by performing an elementary row operation
on a matrix A, then B can also be obtained by performing an elementary column
operation on A.

(i) If B is a matrix that can be obtained by performing an elementary row operation on
a matrix A, then A can be obtained by performing an elementary row operation on
B.

Solution. (a) True. An elementary matrix is defined to be an n× n matrix.

(b) False. The matrix

(
1 0
2 1

)
is an elementary matrix that adds twice row one to row

two.

(c) True. If you start with In (for n ≥ 2) and add zero times row one to row two, you
get In. This elementary matrix does nothing.

(d) False. An elementary matrix is a matrix obtained from In by a single elementary row
operation. The product of two of these performs two elementary row operations. In
general, this will not be the result of a single elementary row operation.

(e) True. The inverse operation of an elementary row operation is another elementary
row operation, so the inverse of an elementary matrix is another elementary matrix.

(f) False. The matrices

(
1 0
0 1

)
and

(
0 1
1 0

)
are both elementary matrices, but their

sum

(
1 1
1 1

)
is not—it’s not invertible and every elementary matrix is invertible.

(g) True.
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(h) False. Let A =

(
1 0
0 0

)
and B =

(
1 0
1 0

)
. If we add the first row of A to the second

row of A, we get B. However, any elementary column operation on A will leave the
second row all zero, so you cannot get B.

(i) True.

8



Problem 3.1.2. Let

A =

1 2 3
1 0 1
1 −1 1

 , B =

1 0 3
1 −2 1
1 −3 1

 , C =

1 0 3
0 −2 −2
1 −3 1

 .

Find an elementary operation that transforms A into B and an elementary operation that
transforms B into C. By means of several additional operations, transform C into I3.

Solution. Start with A. If we add −2 times column 1 to column 2, you get B.
Start with B. If we add −1 times row 1 to row 2, you get C.
Start with C: 1 0 3

0 −2 −2
1 −3 1


Add −1 times row 1 to row 3: 1 0 3

0 −2 −2
0 −3 −2


Multiply row 2 by −1/2: 1 0 3

0 1 1
0 −3 −2


Add 3 times row 2 to row 3: 1 0 3

0 1 1
0 0 1


Now, add −3 times row 3 to row 1 and add −1 times row 3 to row 2. This gives the identity
matrix.
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Problem 3.1.3. Use the proof of Theorem 3.2 to obtain the inverse of each of the following
elementary matrices.

(a)

0 0 1
0 1 0
1 0 0



(b)

1 0 0
0 3 0
0 0 1



(c)

 1 0 0
0 1 0
−2 0 1


Solution. (a) This is the elementary matrix the interchanges row 1 and row 3. This

elementary row operation is its own inverse, so this matrix is its own inverse.

(b) This is the elementary matrix of the elementary operation that multiplies row 2 by 3.

The inverse operation multiplies row 2 by 1
3 . So the inverse matrix is

1 0 0
0 1

3 0
0 0 1

 .

(c) This is the elementary matrix of the elementary operation that adds −2 times row 1
to row 3. The inverse operation adds 2 times row 1 to row 3. So the inverse matrix

is

1 0 0
0 1 0
2 0 1

 .

10



Problem 3.1.5. Prove that E is an elementary matrix if and only if Et is.

Solution. We consider the three types of elementary matrix operations.
The matrix E is obtained from In by swapping row i and row j if and only if Et is

obtained from In by swapping column i and column j.
The matrix E is obtained from In by multiplying row i by λ if and only if Et is obtained

from In by by multiplying column i by λ.
The matrix E is obtained from In by adding k times row i to row j if and only if Et is

obtained from In by adding k times column i to column j.
So, we see E is an elementary matrix if and only if Et is.
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