
Problem Set #5 Solutions

Due Thursday, September 18

William M. Faucette

Problem 2.4.4. Let A and B be n × n invertible matrices. Prove that AB is invertible
and (AB)−1 = B−1A−1.

Solution. Proof. Let A and B be n× n invertible matrices.
Then

(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I

(B−1A−1)(AB) = B−1(A−1A)B = B−1B = I.

So, AB is invertible and (AB)−1 = B−1A−1.
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Problem 2.4.5. Let A be invertible. Prove that At is invertible and (At)−1 = (A−1)t.

Solution. Proof. Let A be an invertible matrix.
Then

At(A−1)t = (A−1A)t = It = I

(A−1)tAt = (AA−1)t = It = I

So, At is invertible and (At)−1 = (A−1)t.
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Problem 2.4.9. Let A and B be n×n matrices such that AB is invertible. Prove that A
and B are invertible. Give an example to show that arbitrary matrices A and B need not
be invertible if AB is invertible.

Solution. Proof. Let A and B be n× n matrices such that AB is invertible.
Let M be the inverse matrix of AB.
Let v ∈ Fn and suppose Bv = 0. Then

0 = MA(0) = MA(Bv) = M(AB)v = v,

so we see that B has nullity zero and rank n. This says B is invertible.
Now, suppose v ∈ Fn and suppose Av = 0. Since B has rank n, there exists w ∈ Fn so

that B(w) = v.
0 = Av = A(B(w)) = (AB)(w).

Since AB is invertible, this implies that w = 0, so that v = B(w) = 0. It follows that A
has nullity zero and rank n. This says A is invertible.

Let

A =

(
1 2 0
1 1 0

)
and B =

1 1
2 1
0 0

 .

Then

AB =

(
1 1
2 1

)
,

which is invertible, but neither A nor B is invertible (since neither is a square matrix).
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Problem 2.4.10. Let A and B be n× n matrices such that AB = In.

(a) Use Exercise 9 to conclude that A and B are invertible.

(b) Prove A = B−1 (and hence B = A−1). (We are, in effect, saying that for square
matrices, a “one-sided” inverse is a “two-sided” inverse.)

(c) State and prove analogous results for linear transformations defined on finite-dimensional
vector spaces.

Solution. Let A and B be n× n matrices such that AB = In.

(a) Proof. By Exercise 9, since In = AB is invertible, A and B are invertible.

(b) Proof. Since AB = In, we know from (a) that B is invertible.

A = AIn = A(BB−1) = (AB)B−1 = InB
−1 = B−1.

(c)

Proposition. Let V and W be finite dimensional vector spaces of the same dimension
and let T : V → W , U : W → V be linear transformations satisfying TU = IW , where
IW : W → W is the identity map. Then T and U are invertible and T = U−1.

Proof. Let V and W be finite dimensional vector spaces of the same dimension and
let T : V → W , U : W → V be linear transformations from satisfying TU = IW ,
where IW : W → W is the identity map. Let w ∈ W and suppose U(w) = 0. Then

0 = T (0) = T (U(w)) = (TU)(w) = IW (w) = w.

From this we see that U is injective. Since dim (V ) = dim (W ) and U is injective,
it follows from the Dimension Theorem (Theorem 2.3) that U is surjective as well.
Hence U has an inverse U−1. Then

U−1 = IWU−1 = (TU)U−1 = T (UU−1) = TI = T.

So, T = U−1.

4



Problem 2.5.2. For each of the following pairs of ordered bases β and β′ for R2, find the
change of coordinate matrix that changes β′-coordinates into β-coordinates.

(a) β = {e1, e2} and β′ = {(a1, a2), (b1, b2)}

(d) β = {(−4, 3), (2,−1)} and β′ = {(2, 1), (−4, 1)}

Solution. (a) Let Q change of coordinate matrix that changes β′-coordinates into β-
coordinates. The jth column of Q is the image of Q[β′(j)] written in terms of β-
coordinates. However, this is exactly how β′ is given here in the problem. So,

Q =

(
a1 b1
a2 b2

)

(d) Let Q change of coordinate matrix that changes β′-coordinates into β-coordinates.
The jth column of Q is the image of Q[β′(j)] written in terms of β-coordinates. So,
we must write (2, 1) and (−4, 1) in terms of the basis β.

We need to solve (
−4 2
3 −1

)(
a
b

)
=

(
2
1

)
We solve this to get

(
a
b

)
=

(
2
5

)
.

Similarly, we need to solve (
−4 2
3 −1

)(
a
b

)
=

(
−4
1

)

We solve this to get

(
a
b

)
=

(
−1
−4

)
. So,

Q =

(
2 −1
5 −4

)
.
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Problem 2.5.3. For each of the following pairs of ordered bases β and β′ for P2(R), find
the change of coordinate matrix that changes β′-coordinates into β-coordinates.

(a) β = {x2, x, 1} and β′ = {a2x2 + a1x+ a0, b2x
2 + b1x+ b0, c2x

2 + c1x+ c0}

Solution. (a) Once again, we have to write each vector in the β′-basis as coordinate
vectors with respect to the β-basis. But we can read this off immediately. The
change of basis matrix is a2 b2 c2

a1 b1 c1
a0 b0 c0

 .
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Problem 2.5.7. In R2, let L be the line y = mx, where m ̸= 0. Find an expression for
T (x, y), where

(a) T is the reflection of R2 about L.

(b) T is the projection on L along the line perpendicular to L. (See the definition of
projection in the exercises of Section 2.1.)

Solution. (a) Let β be the standard basis for R2 and let β′ be the basis {(1,m), (−m, 1)}.
Then we have

[I]ββ′ =

(
1 −m
m 1

)
.

With respect to the basis β′, the reflection has matrix

[R]β′ =

(
1 0
0 −1

)
.

The reflection matrix with respect to the standard basis is then

[R]β = [I]ββ′ [R]β′ [I]β
′

β

= [I]ββ′ [R]β′

(
[I]ββ′

)−1

=

(
1 −m
m 1

)(
1 0
0 −1

)( 1
1+m2

m
1+m2

− m
1+m2

1
1+m2

)

=

(
1−m2

1+m2
2m

1+m2

2m
1+m2

m2−1
1+m2

)
.

(b) Let β be the standard basis for R2 and let β′ be the basis {(1,m), (−m, 1)}. Then
we have

[I]ββ′ =

(
1 −m
m 1

)
.

With respect to the basis β′, the projection has matrix

[P ]β′ =

(
1 0
0 0

)
.
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The reflection matrix with respect to the standard basis is then

[P ]β = [I]ββ′ [P ]β′ [I]β
′

β

= [I]ββ′ [P ]β′

(
[I]ββ′

)−1

=

(
1 −m
m 1

)(
1 0
0 0

)( 1
1+m2

m
1+m2

− m
1+m2

1
1+m2

)

=

(
1

1+m2
m

1+m2

m
1+m2

m2

1+m2

)
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Problem 2.5.10. Prove that if A and B are similar n× n matrices, then tr(A) = tr(B).
Hint: Use Exercise 13 of Section 2.3.

Solution. Proof. Section 2.3, Exercise 13 says tr(AB) = tr(BA).
Suppose A and B are similar matrices. Then there is an invertible matrix Q so that

B = Q−1AQ. By Exercise 13 of Section 2.3, we have

tr(B) = tr(Q−1AQ)

= tr(AQ−1Q)

= tr(A).

Since A and B are arbitrary similar matrices, this shows the traces of any two similar
matrices are equal.
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Problem 2.5.11. Let V be a finite-dimensional vector space with ordered bases α, β,
and γ.

(a) Prove that ifQ andR are the change of coordinate matrices that change α-coordinates
into β-coordinates and β-coordinates into γ-coordinates, respectively, then RQ is the
change of coordinate matrix that changes α-coordinates into γ-coordinates.

(b) Prove that if Q changes α-coordinates into β-coordinates, then Q−1 changes β-
coordinates into α-coordinates.

Solution. Let V be a finite-dimensional vector space with ordered bases α, β, and γ.

(a) Proof. Suppose Q and R are the change of coordinate matrices that change α-
coordinates to β-coordinates and β-coordinates to γ-coordinates, respectively. Then
for any v ∈ V , we have

[v]β = Q[v]α and [v]γ = R[v]β.

Then changes α-coordinates into γ-coordinates.

[v]γ = R[v]β = R(Q[v]α) = (RQ)[v]α.

Hence, RQ changes α-coordinates into γ-coordinates.

(b) Proof. Suppose Q changes α-coordinates into β-coordinates. Then for any v ∈ V ,
we have

[v]β = Q[v]α.

Then

Q−1[v]β = Q−1(Q[v]α) = (Q−1Q)[v]α = [v]α.

Hence, Q−1 changes β-coordinates into α-coordinates.
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