
Problem Set #4 Solutions

Due Thursday, September 11

William M. Faucette

Problem 2.2.4. Define

T : M2×2(R) → P2(R) by T

(
a b
c d

)
= (a+ b) + (2d)x+ bx2.

Let

β =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
, and γ = {1, x, x2}.

Compute [T ]γβ.

Solution. For each matrix M ∈ β, we have to write T (M) as linear combination of γ.
First,

T

(
1 0
0 0

)
= 1 = 1 + 0x+ 0x2,

so the vector (1, 0, 0, 0) goes to the vector (1, 0, 0).
Second,

T

(
0 1
0 0

)
= 1 + x2 = 1 + 0x+ 1x2,

so the vector (0, 1, 0, 0) goes to the vector (1, 0, 1).
Third,

T

(
0 0
1 0

)
= 0 = 0 + 0x+ 0x2,

so the vector (0, 0, 1, 0) goes to the vector (0, 0, 0).
Lastly,

T

(
0 0
0 1

)
= 2x = 0 + 2x+ 0x2,

so the vector (0, 0, 0, 1, 0) goes to the vector (0, 2, 0).
So,

[T ]γβ =

1 1 0 0
0 0 0 2
0 1 0 0

 .
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Problem 2.2.8. Let V be an n-dimensional vector space with an ordered basis β. Define
T : V → Fn by T (x) = [x]β. Prove that T is linear.

Solution. Let β = (v1, v2, . . . , vn) be an ordered basis for V . Define T : V → Fn by
T (x) = [x]β. That is, if

x = a1v1 + a2v2 + · · ·+ anvn

then T (x) = [a1 a2 . . . an]
t.

Let x, y ∈ V and let

x = a1v1 + a2v2 + · · ·+ anvn

y = b1v1 + b2v2 + · · ·+ bnvn.

Then

T (x+ y) = [x+ y]β

= [a1 + b1 a2 + b2 . . . an + bn]
t

= [a1 a2 . . . an]
t + [b1 b2 . . . bn]

t

= T (x) + T (y).

Also, for λ ∈ F, t

T (λx) = T (λ(a1v1 + a2v2 + · · ·+ anvn))

= T (λa1v1 + λa2v2 + · · ·+ λanvn)

= [λa1 λa2 . . . λan]
t

= λ[a1 a2 . . . an]
t

= λT (x).

So, T is a linear transformation.
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Problem 2.2.9. Let V be the vector space of complex numbers over the field R. Define
T : V → V by T (z) = z, where z is the complex conjugate of z. Prove that T is linear,
and compute [T ]β, where β = {1, i}. (Recall by Exercise 38 of Section 2.1 that T is not
linear if V is regarded as a vector space over the field C.)

Solution. Let V be the vector space of complex numbers over the field R. Define
T : V → V by T (z) = z.

Let z, w ∈ C. Then

T (z + w) = z + w = z + w = T (z) + T (w).

and, for λ ∈ R,

T (λz) = λz = λ · z = λ · z = λT (z).

So, T is a linear transformation.
Using β = {1, i}, we see that T (1) = 1 and T (i) = −i, so

Tβ =

(
1 0
0 −1

)
.
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Problem 2.2.15. Let V and W be vector spaces, and let S be a subset of V . Define
S0 = {T ∈ L(V,W ) : T (x) = 0 for all x ∈ S}. Prove the following statements.

(a) S0 is a subspace of L(V,W ).

(b) If S1 and S2 are subsets of V and S1 ⊆ S2, then S0
2 ⊆ S0

1 .

(c) If V1 and V2 are subspaces of V , then (V1 + V2)
0 = V 0

1 ∩ V 0
2 .

Solution. Let V and W be vector spaces, and let S be a subset of V . Define S0 = {T ∈
L(V,W ) : T (x) = 0 for all x ∈ S}.

(a) Proof. Since T0(x) = 0 for all x ∈ V , we have that T0(x) = 0 for all x ∈ S. So,
T0 ∈ S0.

Suppose T ∈ S0 ∈ S0 and λ is a scalar. Then

(λT )(x) = λT (x) = λ · 0 = 0,

for all x ∈ S. Thus, λT ∈ S0.

Suppose T1, T2 ∈ S0. Then T1(x) = 0 and T2(x) = 0 for all x ∈ S. But then we have

(T1 + T2)(x) = T1(x) + T2(x) = 0 + 0 = 0

for all x ∈ S. Thus, T1 + T2 ∈ S0.

So, S0 is a subspace of L(V,W ) by Theorem 1.3.

(b) Proof. Let S1 and S2 be subsets of V with S1 ⊆ S2. Let T ∈ S0
2 . Then T (x) = 0 for

all x ∈ S2. Since S1 ⊆ S2, we have T (x) = 0 for all x ∈ S1. Hence, T ∈ S0
1 .

Since T ∈ S0
2 is arbitrary, S0

2 ⊆ S0
1 .

(c) Proof. Suppose V1 and V2 are subspaces of V .

Since Vi ⊂ V1+V2 for i = 1, 2, we have (V1+V2)
0 ⊆ V 0

i for i = 1, 2. So, (V1+V2)
0 ⊆

V 0
1 ∩ V 0

2 .

On the other hand, suppose T ∈ V 0
1 ∩ V 0

2 . Then T (x) = 0 for all x ∈ V1 and all
x ∈ V2. But every element of V1 + V2 is the sum of elements in V1 and V2, it follows
that T (x) = 0 for all x ∈ V1 + V2. That is, T ∈ (V1 + V2)

0.

The two inclusions show that (V1 + V2)
0 = V 0

1 ∩ V 0
2 .
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Problem 2.3.3. Let g(x) = 3 + x. Let T : P2(R) → P2(R) and U : P2(R) → R3 be the
linear transformations respectively defined by

T (f(x)) = f ′(x)g(x) + 2f(x) and U(a+ bx+ cx2) = (a+ b, c, a− b).

Let β and γ be the standard ordered bases of P2(R) and R3, respectively.

(a) Compute [U ]γβ, [T ]β, and [UT ]γβ directly. Then use Theorem 2.11 to verify your result.

(b) Let h(x) = 3 − 2x + x2. Compute [h(x)]β and [U(h(x))]γ . Then use [U ]γβ from (a)
and Theorem 2.14 to verify your result.

Solution. (a) We compute

U(1) = (1, 0, 1)

U(x) = (1, 0,−1)

U(x2) = (0, 1, 0).

[U ]γβ =

1 1 0
0 0 1
1 −1 0

 .

T (1) = 0 · (3 + x) + 2 · 1 = 2

T (x) = 1 · (3 + x) + 2 · x = 3 + 3x

T (x2) = 2x · (3 + x) + 2x2 = 6x+ 4x2.

From this we read off

[T ]β =

2 3 0
0 3 6
0 0 4

 .

We compute

(UT )(1) = U(T (1)) = U(2) = (2, 0, 2)

(UT )(x) = U(T (x)) = U(3 + 3x) = (6, 0, 0)

(UT )(x2) = U(T (x2)) = U(6x+ 4x2) = (6, 4,−6).

From this we read off

[UT ]γβ =

2 6 6
0 0 4
2 0 −6

 .

It’s easily checked that
[U ]γβ[T ]β = [UT ]γβ
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(b) We can read off [h(x)]β = (3,−2, 1).

We compute
U(h(x)) = U(3− 2x+ x2) = (1, 1, 5),

so that

[U(h(x))]γ =

1
1
5

 .

We check that

[U ]γβ[h(x)]β =

1 1 0
0 0 1
1 −1 0

 3
−2
1


=

1
1
5

 = [U(h(x))]γ .
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Problem 2.3.9. Find linear transformations U , T : F2 → F2 such that UT = T0 (the
zero transformation) but TU ̸= T0. Use your answer to find matrices A and B such that
AB = 0 but BA ̸= 0.

Solution. Let T (a, b) = (0, a+ b) and let U(a, b) = (a, a). Then

(UT )(a, b) = U(T (a, b)) = U(0, a+ b) = (0, 0)

and
(TU)(a, b) = T (U(a, b)) = T (a, a)) = (0, 2a).

So, we see that UT = T0 and TU ̸= T0.
If β is the standard basis for F2, we compute

[T ]β =

(
0 0
1 1

)
and [U ]β =

(
1 0
1 0

)
.
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Problem 2.3.11. Let V be a vector space, and let T : V → W be linear. Prove that
T 2 = T0 if and only if R(T ) ⊆ N(T ).

Solution. Proof. Let V be a vector space, and let T : V → W be linear.

(⇒) Suppose T 2 = T0. Let v ∈ V .

T (T (v)) = T 2(v) = 0.

So, T (v) ∈ N(T ). This shows that R(T ) ⊆ N(T ).

(⇐) Suppose R(T ) ⊆ N(T ). Let v ∈ V . Then

T 2(v) = T (T (v)) = 0,

since T (v) ∈ R(T ) ⊆ N(T ). Since v ∈ V is arbitrary, T 2 = T0.
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Problem 2.3.13. Let A and B be n×n matrices. Recall that the trace of A is defined by

tr(A) =
n∑

i=1

Aii.

Prove that tr(AB) = tr(BA) and tr(A) = tr(At).

Solution. Let A = [aij ] and B = [bij ] be n× n matrices. Then AB = [cij ] where

cij =
n∑

ℓ=1

aiℓbℓj .

and BA = [dij ] where

dij =
n∑

ℓ=1

biℓaℓj .

Then

tr(AB) =
n∑

i=1

cii =
n∑

i=1

n∑
k=1

aikbki

=

n∑
k=1

n∑
i=1

bkiaik =
∑

dii = tr(BA).

Finally, we note that At = [aji], so tr(At) =
∑n

i=1 aii = tr(A).
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