Problem Set #4 Solutions
Due Thursday, September 11

William M. Faucette

Problem 2.2.4. Define

T : Maya(R) = P3(R) by T (“CL b) = (a+b) + (2d)z + ba?.
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Compute [T 5.

Let

Solution. For each matrix M € /3, we have to write T'(M) as linear combination of .
First,

T<1 0) =1=1+ 0z + 022,

0 0
so the vector (1,0,0,0) goes to the vector (1,0,0).
Second,
(0 ) 11400t 102
0 0) a ’
so the vector (0,1,0,0) goes to the vector (1,0,1).
Third,
0 0\ . 9
T<1 0> =0=04+0z + 022,
so the vector (0,0, 1,0) goes to the vector (0,0,0).
Lastly,
(% 9 Zor =04 22+ 022,
0 1
so the vector (0,0,0,1,0) goes to the vector (0,2,0).
So,
1 1 0 0
v _
Ty ={0 0 0 2
01 0 0



Problem 2.2.8. Let V' be an n-dimensional vector space with an ordered basis 8. Define
T:V —F" by T(x) = [z]s. Prove that T is linear.

Solution. Let § = (vi,v2,...,v,) be an ordered basis for V. Define T' : V. — F" by
T(x) = [z]z. That is, if
T = aivl + avy + -+ apvy
then T'(x) = a1 as ... anl’.
Let z, y € V and let

T = aivi + agvy + -+ + apvy
Yy = bivr + bavy + - - - 4+ bpuy,.

Then
T(x+y)=[z+yls
:[a1+b1 as +by ... an—i-bn]t
=lay as ... ay]' +[by by ... byl
=T(z)+T(y).

Also, for A e F, t

T(Az) = T(Aajv1 + aguy + - -+ + apvy))
= T(Aayvy + Aagua + - - - + Aapvy)

= [)\al )\ag e )\an]t
= )\[al as ... an]t
= \T'(z).

So, T is a linear transformation.



Problem 2.2.9. Let V be the vector space of complex numbers over the field R. Define
T:V — V by T(z) = z, where Z is the complex conjugate of z. Prove that T is linear,
and compute [T|g, where 8 = {1,i}. (Recall by Exercise 38 of Section 2.1 that T" is not
linear if V' is regarded as a vector space over the field C.)

Solution. Let V be the vector space of complex numbers over the field R. Define
T:V—=VbyT(z)=z2.
Let z, w € C. Then

and, for A € R,

So, T' is a linear transformation.
Using 8 = {1,i}, we see that T'(1) = 1 and T'(i) = —i, so

1 0
n=(y %)



Problem 2.2.15. Let V and W be vector spaces, and let S be a subset of V. Define
SO ={T € L(V,W):T(z) =0 for all z € S}. Prove the following statements.

(a)
(b)
()

So is a subspace of L(V,W).
If 57 and Sy are subsets of V and S C Ss, then SS - S?.

If Vi and Vi are subspaces of V, then (V4 + V5)? = V2N VY.

Solution. Let V and W be vector spaces, and let S be a subset of V. Define S° = {T ¢
LWV, W) :T(z) =0 for all z € S}.

(a)

Proof. Since Ty(z) = 0 for all z € V, we have that Ty(xz) = 0 for all z € S. So,
Ty € SO,

Suppose T € 8% € SV and ) is a scalar. Then
(AT (z) =T (x) =X-0=0,

for all z € S. Thus, AT € S°.
Suppose Ty, Ty € S°. Then Ty(x) = 0 and Ta(x) = 0 for all z € S. But then we have

(Tl —i—Tg)(Z’) = Tl(.%') —i—TQ(l') =0+0=0

for all z € S. Thus, T} + T € S°.

So, S° is a subspace of £(V, W) by Theorem 1.3. O
Proof. Let S1 and S be subsets of V' with S1 C S5. Let T € Sg. Then T'(z) = 0 for
all z € Sp. Since S; C Sy, we have T'(x) = 0 for all x € S;. Hence, T € SY.

Since T € S9 is arbitrary, S9 C SY.

Proof. Suppose V7 and Vs are subspaces of V.

Since V; C V4 + Vi for i = 1,2, we have (V4 +V2)? C VO for i = 1,2. So, (V1 +V2)° C
V10 N ‘/20‘

On the other hand, suppose T' € VY N VY. Then T(z) = 0 for all x € V; and all

x € Vo. But every element of Vi + V5 is the sum of elements in Vi and Vb, it follows
that T'(x) = 0 for all € V; + V4. That is, T € (Vi + V2)°.

The two inclusions show that (V; + V2)0 = V2N V3. O



Problem 2.3.3. Let g(z) = 3 +z. Let T : P3(R) — P»(R) and U : Py(R) — R? be the
linear transformations respectively defined by

T(f(z)) = f'(x)g(x) + 2f(x) and U(a + bx + cx?) = (a + b,c,a — b).
Let 3 and 7 be the standard ordered bases of Py(R) and R?, respectively.
(a) Compute [U]}, [T, and [UT]} directly. Then use Theorem 2.11 to verify your result.

(b) Let h(z) = 3 — 2z + 2. Compute [h(z)]s and [U(h(z))]y. Then use [U]g from (a)
and Theorem 2.14 to verify your result.

Solution. (a) We compute

0-(3+2)+2-1=2
Tx)=1-3+z)+2-2=3+3z
2z - (3 + x) + 222 = 62 + 42°.

From this we read off

We compute

(UT)(1) =U(T(1)
(UT)(2) = U(T(2)) = U(3 + 3z) = (6,0,0)
(UT)(z*) = U(T(a?

From this we read off

It’s easily checked that



(b) We can read off [h(z)]g = (3,-2,1).

We compute
U(h(x)) = U(3 - 2z +2°) = (1,1,5),

so that

We check that

1 1 0 3
U]3lh(x)]s = (0 0 1) (2)
1 -1 0 1
1
- (1) = [U(h(x))],
5



Problem 2.3.9. Find linear transformations U, T : F? — F? such that UT = Ty (the
zero transformation) but TU # Ty. Use your answer to find matrices A and B such that
AB =0 but BA # 0.

Solution. Let T'(a,b) = (0,a + b) and let U(a,b) = (a,a). Then
(UT)(a,b) =U(T(a,b)) = U(0,a+b) =(0,0)

and
(TU)(a,b) =T(U(a,b)) =T(a,a)) = (0,2a).

So, we see that UT = Ty and TU # Ty.
If B is the standard basis for F2, we compute

= (7)) waw- () §)-



Problem 2.3.11. Let V be a vector space, and let T : V' — W be linear. Prove that
T? =T, if and only if R(T) C N(T).

Solution. Proof. Let V be a vector space, and let T : V' — W be linear.
(=) Suppose T? =Ty. Let v € V.
T(T(v)) = T*(v) = 0.
So, T'(v) € N(T'). This shows that R(T) C N(T).

(<) Suppose R(T) C N(T). Let v € V. Then

since T'(v) € R(T) C N(T). Since v € V is arbitrary, T2 = Ty. O



Problem 2.3.13. Let A and B be n x n matrices. Recall that the trace of A is defined by
n
tr(A) = Z Aji.
i=1

Prove that tr(AB) = tr(BA) and tr(A) = tr(A?).

Solution. Let A = [a;;] and B = [b;;] be n x n matrices. Then AB = [¢;;] where

n
Cij = Z Qigby.-
=1
and BA = [d;;] where
n
dij =Y biag;.
=1

Then

tr(AB) = Zn: Cii = Zn: zn:aikbki
i=1

i=1 k=1

= i i bria;, = Z diy; = tr(BA).

k=1 1i=1

Finally, we note that A" = [aj], so tr(A) = D1 | ai; = tr(A).



