
Problem Set #3 Solutions

Due Thursday, September 4

William M. Faucette

Problem 1.6.14. Find bases for the following subspaces of F5:

W1 = {(a1, a2, a3, a4, a5) ∈ F5 : a1 − a3 − a4 = 0}

and
W2 = {(a1, a2, a3, a4, a5) ∈ F5 : a2 = a3 = a4 and a1 + a5 = 0}.

What are the dimensions of W1 and W2?

Solution. One basis for W1 is


1
0
1
0
0

 ,


0
1
0
0
0

 ,


1
0
0
1
0

 ,


0
0
0
0
1


 .

The dimension of W1 is four.
One basis for W2 is 


1
0
0
0
−1

 ,


0
1
1
1
0


 .

The dimension of W2 is two.

1



Problem 1.6.15. The set of all n × n matrices having trace equal to zero is a subspace
W of Mn×n(F). Find a basis for W . What is the dimension of W?

Solution. The dimension of W is n2 − 1.
As usual, for 1 ≤ i, j ≤ n, let Eij be the matrix with 1 in the ij entry and zeroes

elsewhere.
One basis for the vector space of n×n matrices having trace equal to zero is as follows:

{Eij | i ̸= j} ∪ {Eii − Ei+1,i+1 | 1 ≤ i < n}

For n = 3, this is the set
0 1 0
0 0 0
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 ,

0 0 0
0 0 0
0 1 0

 ,

1 0 0
0 −1 0
0 0 0

 ,

0 0 0
0 1 0
0 0 −1


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Problem 1.6.16. The set of all upper triangular n × n matrices is a subspace W of
Mn×n(F). Find a basis for W . What is the dimension of W?

Solution. The dimension of W is n(n+ 1)/2.
As usual, for 1 ≤ i, j ≤ n, let Eij be the matrix with 1 in the ij entry and zeroes

elsewhere.
One basis for the vector space of n×n matrices having trace equal to zero is as follows:

{Eij | 1 ≤ i ≤ j ≤ n}

For n = 3, this is the set
1 0 0
0 0 0
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 0 0
0 0 1

 ,


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Problem 1.6.17. The set of all skew-symmetric n × n matrices is a subspace W of
Mn×n(F). Find a basis for W . What is the dimension of W?

Solution. The dimension of W is n(n− 1)/2.
As usual, for 1 ≤ i, j ≤ n, let Eij be the matrix with 1 in the ij entry and zeroes

elsewhere. For 1 ≤ i < j ≤ n, let Bij = Eij − Eji

One basis for the vector space of n×n matrices having trace equal to zero is as follows:

{Bij | 1 ≤ i < j ≤ n}

For n = 3, this is the set
 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0


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Problem 2.1.5. Prove that

T : P2(R) → P3(R)
T (f(x)) = xf(x) + f ′(x).

is a linear transformation, and find bases for both N(T ) and R(T ). Then compute the
nullity and rank of T , and verify the dimension theorem. Finally, use the appropriate
theorems in this section to determine whether T is one-to-one or onto.

Solution. Let f(x) and g(x) ∈ P2(R) and let λ ∈ R. Then

T (f + g)(x)) = x(f + g)(x) + (f + g)′(x)

= x[f(x) + g(x)] + [f ′(x) + g′(x)]

= xf(x) + xg(x) + f ′(x) + g′(x)

= (xf(x) + f ′(x)) + (xg(x) + g′(x))

= T (f) + T (g)

and

T ((λf)(x)) = T (λf(x))

= x[λf(x)] + [λf(x)]′

= λ[xf(x)] + λf ′(x)

= λ[xf(x) + f ′(x)]

= λT (f(x)).

Since f , g ∈ P2(R) and λ ∈ R are arbitrary, T is a linear transformation.
The polynomial ax3 + bx2 + cx + d lies in the image of T if and only if b = d. So,

dim (R(T )) = 3.
If T (ax2 + bx+ c) = 0, then a = b = c = 0, so T is injective and dim (N(T )) = 0.
So, dim (N(T )) = 0 and dim (R(T )) = 3, so the dimension theorem is fulfilled.
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Problem 2.1.6. Prove that

T : Mn×n(F) → F

T (A) = tr(A) =

n∑
i=1

Aii.

is a linear transformation, and find bases for both N(T ) and R(T ). Then compute the
nullity and rank of T , and verify the dimension theorem. Finally, use the appropriate
theorems in this section to determine whether T is one-to-one or onto.

Solution. Let M , N ∈ Mn×n(F) and a, b ∈ F. By Exercise 6 in Section 1.3,

T (aM + bN) = aT (M) + bT (N).

Since M , N ∈ Mn×n(F) and a, b ∈ F are arbitrary, T is a linear transformation.
The null space of T is given by the single equation

∑n
i=1Aii = 0, so dim (N(T )) = n2−1.

The function T is clearly surjective, so dim (R(T )) = 1. So, dim (N(T )) = n2 − 1 and
dim (R(T )) = 1, so the dimension theorem is fulfilled.
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Problem 2.1.14. Let V and W be vector spaces and T : V → W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V
onto linearly independent subsets of W .

(b) Suppose that T is one-to-one and that S is a subset of V . Prove that S is linearly
independent if and only if T (S) is linearly independent.

(c) Suppose β = {v1, v2, . . . , vn} is a basis for V and T is one-to-one and onto. Prove
that T (β) = {T (v1), T (v2), . . . , T (vn)} is a basis for W .

Solution. Let V and W be vector spaces and T : V → W be linear.

(a) Proof. (⇒) Suppose T is one-to-one. Let T (v1), . . . , T (vn) ∈ W for some linearly
independent vectors v1, . . . , vn ∈ V . Suppose a1T (v1)+a2T (v2)+ · · ·+anT (vn) = 0.
Since T is linear, we have

T (a1v1 + a2v2 + · · · anvn) = 0,

and since T is one-to-one, this implies that

a1v1 + a2v2 + · · · anvn = 0.

Since v1, . . . , vn ∈ V are linear independent in V , we have a1 = a2 = · · · = an = 0.
It follows that T (v1), . . . , T (vn) ∈ W are linearly independent.

(⇐) Suppose T carries linearly independent subsets of V onto linearly independent
subsets. Suppose v, w ∈ V with v ̸= w. Then the vector v − w ∈ V is nonzero and
hence the set {v −w} is linearly independent. By hypothesis, {T (v −w)} is linearly
independent, so T (v−w) ̸= 0. That is T (v) ̸= T (w). This proves T is one-to-one.

(b) Proof. Suppose T is one-to-one and S is a subset of V .

(⇒) Suppose S is linearly independent. Let T (v1), T (v2), . . . , T (vn) ∈ T (S) for some
v1, . . . , vn ∈ S By part (a), T (v1), T (v2), . . . , T (vn) are linearly independent. So,
T (S) is linearly independent.

(⇐) Suppose T (S) is linearly independent. By part (a), since T (v1), T (v2), . . . ,
T (vn) are linearly independent, v1, v2, . . . , vn are linearly independent. Hence, S is
linearly independent.
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(c) Proof. Suppose β = {v1, v2, . . . , vn} is a basis for V and T is one-to-one and onto.
By part (b), T (β) = {T (v1), T (v2), . . . , T (vn)} is linearly independent.

Let w ∈ W be arbitrary. Since T is onto, there exists v ∈ V so that T (v) = w. Since
β is a basis for V , we can write v uniquely as a linear combination

v = a1v1 + a2v2 + · · ·+ anvn.

But then

w = T (v) = T (a1v1 + a2v2 + · · ·+ anvn)

= a1T (v1) + a2T (v2) + · · ·+ anT (vn).

Since w ∈ W is arbitrary, T (β) spans W .

Thus, T (β) is a basis for W .
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