
Problem Set #2 Solutions

Due Thursday, August 28

William M. Faucette

Problem 1.3.12. An m×n matrix A is called upper triangular if all entries lying below
the diagonal entries are zero, that is, if Aij = 0 whenever i > j. Prove that the upper
triangular matrices form a subspace of Mm×n(F).

Solution. We only have to show that the set of upper triangular matrices is closed under
the two operations of addition and scalar multiplication and that the zero matrix is upper
triangular (which is clear).

For A, B upper triangular matrices and λ ∈ F we have

(A+B)ij = Aij +Bij = 0 for i > j

and
(λA)ij = λAij = 0 for i > j.

Since the set of upper triangular matrices is closed under the vector space operations (and
contains the zero matrix), the set of upper triangular matrices form a subspace of Mm×n(F)
by Theorem 1.3.
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Problem 1.3.13. Let S a nonempty set and F a field. Prove that for any s0 ∈ S,
{f ∈ F(S,F) : f(s0) = 0}, is a subspace of F(S,F).

Solution. Let S a nonempty set and F a field. Let

V = {f ∈ F(S,F) : f(s0) = 0}.

Let f , g ∈ V and let λ ∈ F. Then

(f + g)(s0) = f(s0) + g(s0) = 0 + 0 = 0 and

(λf)(s0) = λf((s0) = λ · 0 = 0.

Also the zero function is in S. So V is a vector subspace of F(S,F) by Theorem 1.3.
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Problem 1.3.20. Prove that if W is a subspace of a vector space V and w1, w2, . . . , wn

are in W, then a1w1 + a2w2 + · · ·+ anwn ∈ W for any scalars a1, a2, . . . , an.

Solution. Proof. Let V be a vector space and W ⊆ V a subspace.
Let w1, w2, . . . , wn ∈ W and a1, a2, . . . , an be scalars. Since W is a vector space, it is

closed under scalar multiplication, so aiwi ∈ W for all i, 1 ≤ i ≤ n. Since W is a vector
space, it is also closed under vector addition, so

∑n
i=1 aiwi ∈ W .

So, we see that a1w1 + a2w2 + · · ·+ anwn ∈ W .
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Problem 1.3.31. Let W be a subspace of a vector space V over a field F. For any v ∈ V
the set {v}+W = {v+w : w ∈ W} is called the coset of W containing v. It is customary
to denote this coset by v +W rather than {v}+W .

(a) Prove that v +W is a subspace of V if and only if v ∈ W .

(b) Prove that v1 +W = v2 +W if and only if v1 − v2 ∈ W .

Addition and scalar multiplication by scalars of F can be defined in the collection
S = {v +W : v ∈ V } of all cosets of W as follows:

(v1 +W ) + (v2 +W ) = (v1 + v2) +W

for all v1, v2 ∈ V and
a(v +W ) = av +W

for all v ∈ V and a ∈ F.

(c) Prove that the preceding operations are well defined; that is, show that if
v1 +W = v′1 +W and v2 +W = v′2 +W , then

(v1 +W ) + (v2 +W ) = (v′1 +W ) + (v′2 +W )

and
a(v1 +W ) = a(v′1 +W )

for all a ∈ F.

(d) Prove that the set S is a vector space with the operations defined in (c). This vector
space is called the quotient space of V modulo W and is denoted by V/W .

Solution. Let W be a subspace of a vector space V over a field F. For any v ∈ V the set
{v} +W = {v + w : w ∈ W} is called the coset of W containing v. It is customary to
denote this coset by v +W rather than {v}+W .

(a) For v ∈ V , v +W is a subspace if and only if it contains 0. v +W contains 0 if and
only there exists w ∈ W so that v+w = 0. This happens if and only if v = −w ∈ W .
So, v +W is a subspace if and only if v ∈ W .

(b) Suppose v1 + W = v2 + W for elements v1, v2 ∈ V . Then for some w ∈ W ,
v1 + 0 = v2 +w. That is v1 − v2 ∈ W . Conversely, suppose v1 − v2 = w0 ∈ W . Then
v1 + w = v2 + (w0 + w), so we see that v1 +W = v2 +W .

(c) Let u+W = u′ +W and v+W = v′ +W . Then u− u′ ∈ W and v− v′ ∈ W . Hence
(u+ v)− (u′ + v′) = (u− u′) + (v − v′) ∈ W . Thus, (u+ v) +W = (u′ + v′) +W .

Let v + W = v′ + W . Then v − v′ ∈ W so that a(v − v′) = av − av′ ∈ W . Thus
av +W = av′ +W .
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(d) This is a routine verification of the eight defining properties of a vector space. The
proof uses only the fact that V itself is a vector space and the defining properties
there.
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Problem 1.4.10. Show that if

M1 =

(
1 0
0 0

)
, M2 =

(
0 0
0 1

)
, and M3 =

(
0 1
1 0

)
,

then the span of {M1,M2,M3} is the set of all symmetric 2× 2 matrices.

Solution. By definition, the span of the set {M1,M2,M3} is the set of all matrices of the
form

aM1 + bM2 + cM3 = a

(
1 0
0 0

)
+ b

(
0 0
0 1

)
+ c

(
0 1
1 0

)
=

(
a b
b c

)
.

where a, b, and c ∈ F.
We see this is exactly the set of symmetric 2× 2 matrices.
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Problem 1.5.6. In Mm×n(F), let Eij denote the matrix whose only nonzero entry is 1
in the ith row and jth column. Prove that {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is linearly
independent.

Solution. Proof. Suppose
∑

λijE
ij = 0, the zero matrix. We compute that this sum is
λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n
...

...
...

λm1 λm2 · · · λmn

 .

This is the zero matrix if and only if λij = 0 for all i, j.
It follows that the set {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is linearly independent.
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Problem 1.5.9. Let u and v be distinct vectors in a vector space V . Show that {u, v} is
linearly dependent if and only if u or v is a multiple of the other.

Solution. Proof. Let u and v be distinct vectors in a vector space V .
(⇒) Suppose {u, v} is linearly dependent. Then there exist scalars λ1, λ2 ∈ F, not both

zero, so that
λ1u+ λ2v = 0.

If λ1 ̸= 0, we have u = −(λ2/λ1)v, whereas if λ2 ̸= 0, we have v = −(λ1/λ2)u. So, u or v
is a multiple of the other.

(⇐) Conversely, suppose u or v is a multiple of the other. If u = λv for some λ ∈ F, then
1u− λv = 0, so {u, v} is linearly dependent. If v = λu for some λ ∈ F, then λu− 1v = 0,
so again {u, v} is linearly dependent.
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Problem 1.5.10. Given an example of three linearly dependent vectors in R3 such that
none of the three is a multiple of another.

Solution.

Example. Let v1 = e1, v2 = e2, and v3 = e1 + e2. Then

v1 + v2 − v3 = 0

but none of v1 = e1, v2 = e2, or v3 = e1 + e2 is a multiple of another.
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Problem 1.5.14. Prove that a set S is linearly dependent if and only if S = {0} or there
exist distinct vectors v, u1, u2, . . . , un in S such that v is a linear combination of u1, u2,
. . . , un.

Solution. Proof. Let S be a set of vectors in a vector space V .
(⇒) Suppose S is linearly dependent. We assume S ̸= {0}.
Suppose S contains 0. By the definition of linear dependence, there exist vectors u1,

. . . , un ∈ S, and scalars λ1, . . . , λn, not all zero, so that

λ1u1 + λ2u2 + · · ·+ λnun = 0. (1)

By combining terms if necessary that all the ui’s are distinct. Setting v = 0, we get

v = λ1u1 + λ2u2 + · · ·+ λnun.

So, we see there exist distinct vectors v, u1, u2, . . . , un in S such that v is a linear
combination of u1, u2, . . . , un.

Now suppose 0 /∈ S. Since S is linearly dependent, there exist vectors u1, . . . , un, un+1

and scalars λ1, . . . , λn, λn+1, not all zero, so that

λ1u1 + λ2u2 + · · ·+ λnun + λn+1un+1 = 0. (2)

By renumbering the terms if necessary, we may assume that λn+1 ̸= 0. By combining
terms, we may also assume all the ui’s are distinct. So, we have Equation (2) with distinct
vectors and λn+1 ̸= 0. Letting v = un+1 and solving for v, we have

v = −
[(

λ1

λn+1

)
u1 +

(
λ2

λn+1

)
u2 + · · ·+

(
λn

λn+1

)
un

]
.

So, we see there exist distinct vectors v, u1, u2, . . . , un in S such that v is a linear
combination of u1, u2, . . . , un.

We conclude that S = {0} or there exist distinct vectors v, u1, u2, . . . , un in S such
that v is a linear combination of u1, u2, . . . , un.

(⇐) First, if S = {0} it is linearly dependent and we’re done. So, we assume S ̸= {0}.
Suppose there exist distinct vectors v, u1, u2, . . . , un in S such that v is a linear combination
of u1, u2, . . . , un. Then there exists scalars λ1, λ2, . . . , λn so that

v = λ1u1 + λ2u2 + · · ·+ λnun.

Then
0 = λ1u1 + λ2u2 + · · ·+ λnun − v,

so S is linearly dependent.
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