Problem Set #2 Solutions
Due Thursday, August 28

William M. Faucette

Problem 1.3.12. An m xn matrix A is called upper triangular if all entries lying below
the diagonal entries are zero, that is, if A;; = 0 whenever ¢ > j. Prove that the upper
triangular matrices form a subspace of M, xn (F).

Solution. We only have to show that the set of upper triangular matrices is closed under
the two operations of addition and scalar multiplication and that the zero matrix is upper
triangular (which is clear).

For A, B upper triangular matrices and A € F we have

(A+B)l]:A1J+BZ]:OfOTZ>j

and
()\A)ij = /\Aij =0 for ¢ > J-

Since the set of upper triangular matrices is closed under the vector space operations (and
contains the zero matrix), the set of upper triangular matrices form a subspace of M, x, (F)
by Theorem 1.3.



Problem 1.3.13. Let S a nonempty set and F a field. Prove that for any sg € 5,
{f € F(S,F) : f(s0) =0}, is a subspace of F(S5,F).

Solution. Let S a nonempty set and F a field. Let
V= {f € F(S,F) : f(s0) = O}.
Let f, g € V and let A € F. Then

(f +9)(s0) = f(s0) + g(s0) =0+ 0=0 and
(Af)(s0) = Af((s0) =A-0=0

Also the zero function is in S. So V is a vector subspace of F(S,F) by Theorem 1.3.



Problem 1.3.20. Prove that if W is a subspace of a vector space V and wq,ws,...,w,
are in W, then aywy + aows + - - - + anw, € W for any scalars ai,as,...,a,.

Solution. Proof. Let V' be a vector space and W C V' a subspace.

Let wq,wo,...,w, € W and aq,a9,...,a, be scalars. Since W is a vector space, it is
closed under scalar multiplication, so a;w; € W for all 4, 1 < i < n. Since W is a vector
space, it is also closed under vector addition, so Z:;l a;w; € W.

So, we see that ajwy + asws + - - - + apw, € W. O



Problem 1.3.31. Let W be a subspace of a vector space V over a field F. For any v € V
the set {v}+W = {v+w : w € W} is called the coset of W containing v. It is customary
to denote this coset by v + W rather than {v} + W.

(a)
(b)

(d)

Prove that v + W is a subspace of V if and only if v € W.

Prove that v1 + W = vo + W if and only if v; — vy € W.

Addition and scalar multiplication by scalars of F can be defined in the collection
S={v+W:veV} of all cosets of W as follows:

(v + W)+ (v + W) = (v1 +v2) + W

for all vy, vo € V and
av+W)=av+W

forallve Vand a €.

Prove that the preceding operations are well defined; that is, show that if
v+ W =0v] +W and vy + W = vy + W, then

(v1 + W)+ (vg + W) = (v] + W) + (vh + W)

and
a(vy + W) =a(vy + W)

for all a € F.

Prove that the set S is a vector space with the operations defined in (c). This vector
space is called the quotient space of V modulo W and is denoted by V/W.

Solution. Let W be a subspace of a vector space V over a field F. For any v € V the set
{v}+W ={v+w:w e W} is called the coset of W containing v. It is customary to
denote this coset by v + W rather than {v} + W.

(a)

(b)

For v € V, v + W is a subspace if and only if it contains 0. v + W contains 0 if and
only there exists w € W so that v+w = 0. This happens if and only if v = —w € W.
So, v + W is a subspace if and only if v € W.

Suppose v1 + W = vy + W for elements vy, vo € V. Then for some w € W,
v1 + 0 = vo +w. That is v1 — v9 € W. Conversely, suppose v1 — vy = wyg € W. Then
v] +w = vg + (wo + w), so we see that vy + W = ve + W.

Let u+W =u+Wandv+W =v'+W. Then u —v € W and v — v’ € W. Hence
(u+v)— (W +V)=(u—-u)+(v—-2")eW. Thus, (u+v)+W = (v +v)+W.

Let v+ W = ¢ + W. Then v — v € W so that a(v —v') = av — av’ € W. Thus
av+ W =av' +W.



(d) This is a routine verification of the eight defining properties of a vector space. The
proof uses only the fact that V itself is a vector space and the defining properties
there.



Problem 1.4.10. Show that if

10 00 0 1
M1—<0 0>, MQ—(O 1),andM3—(1 0>,

then the span of { My, My, M3} is the set of all symmetric 2 x 2 matrices.

Solution. By definition, the span of the set {M1, Ma, M3} is the set of all matrices of the

form
1 0 0 0 01 a b
aM1+bM2+cM3—a<0 0>—|—b<0 1)—|—c<1 O>_<b C>'

where a, b, and ¢ € F.
We see this is exactly the set of symmetric 2 x 2 matrices.



Problem 1.5.6. In M,,x,(F), let E¥ denote the matrix whose only nonzero entry is 1
in the ith row and jth column. Prove that {EY : 1 < i < m,1 < j < n} is linearly
independent.

Solution. Proof. Suppose > )\ijEij = 0, the zero matrix. We compute that this sum is

A1 A2 0 Ay
A21 Az - Aoy
Aml A’rnQ e Amn

This is the zero matrix if and only if A\;; = 0 for all 7, j.
It follows that the set {E% : 1 <i <m,1 < j < n} is linearly independent. ]



Problem 1.5.9. Let u and v be distinct vectors in a vector space V. Show that {u,v} is
linearly dependent if and only if u or v is a multiple of the other.

Solution. Proof. Let u and v be distinct vectors in a vector space V.
(=) Suppose {u, v} is linearly dependent. Then there exist scalars A1, A2 € F, not both
zero, so that
Au+ v = 0.

If Ay # 0, we have u = —(A2/A1)v, whereas if Ao # 0, we have v = —(A1/A2)u. So, u or v
is a multiple of the other.

(<) Conversely, suppose u or v is a multiple of the other. If u = Av for some A € IF, then
lu — Av = 0, so {u, v} is linearly dependent. If v = Au for some A € F, then Au — 1v =0,
so again {u, v} is linearly dependent. O



Problem 1.5.10. Given an example of three linearly dependent vectors in R? such that
none of the three is a multiple of another.

Solution.
Example. Let v; = ey, v9 = €9, and v = e; + e2. Then
v +v9—wv3 =0

but none of v; = e, vo = €9, or v3 = €1 + €2 is a multiple of another.



Problem 1.5.14. Prove that a set S is linearly dependent if and only if S = {0} or there
exist distinct vectors v, ui, ug, ..., u, in S such that v is a linear combination of uq, ue,
ooy U

Solution. Proof. Let S be a set of vectors in a vector space V.

(=) Suppose S is linearly dependent. We assume S # {0}.

Suppose S contains 0. By the definition of linear dependence, there exist vectors u,
..., Uy €5, and scalars A1, ..., Ay, not all zero, so that

Atul + Aoug + -+ + Apup, = 0. (1)
By combining terms if necessary that all the u;’s are distinct. Setting v = 0, we get

V= AMui + Agug + -+ -+ Apuy.

So, we see there exist distinct vectors v, w1, ue, ..., u, in S such that v is a linear
combination of w1, uo, ..., Upy.
Now suppose 0 ¢ S. Since S is linearly dependent, there exist vectors uq, ..., Up, Upt1
and scalars Ay, ..., An, Anpt1, not all zero, so that
AUl + Xoug + -+ - + Apuy + )\n+1un+1 = 0. (2)

By renumbering the terms if necessary, we may assume that A\,+; # 0. By combining
terms, we may also assume all the wu;’s are distinct. So, we have Equation (2) with distinct
vectors and A,11 # 0. Letting v = u,41 and solving for v, we have

() G ()
>\n+1 ! An—l—l 2 )\n—l—l "

So, we see there exist distinct vectors v, w1, ue, ..., u, in S such that v is a linear
combination of w1, uo, ..., Upy.

We conclude that S = {0} or there exist distinct vectors v, uj, ug, ..., u, in S such
that v is a linear combination of uy, us, ..., Up,.

(<) First, if § = {0} it is linearly dependent and we're done. So, we assume S # {0}.
Suppose there exist distinct vectors v, uq, us, ..., U, in S such that v is a linear combination
of uy, us, ..., uy. Then there exists scalars A1, A9, ..., A, so that

V= AMui + Agug + -+ -+ Apuy.

Then
0=MAus + Xouz + -+ Mup — v,

so S is linearly dependent. O
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