
Problem Set #1 Solutions

Due Thursday, August 21

William M. Faucette

Problem 1.1.1. Determine whether the vectors emanating from the origin and terminat-
ing at the following pairs of points are parallel.

(a) (3, 1, 2) and (6, 4, 2)

(b) (−3, 1, 7) and (9,−3,−21)

(c) (5,−6, 7) and (−5, 6,−7)

(d) (2, 0,−5) and (5, 0,−2)

Solution. (a) The vectors ⟨3, 1, 2⟩ and ⟨6, 4, 2⟩ are not parallel.

(b) The vectors ⟨−3, 1, 7⟩ and ⟨9,−3,−21⟩ are multiples of each other, so they are parallel.

(c) The vectors ⟨5,−6, 7⟩ and ⟨−5, 6,−7⟩ are multiples of each other, so they are parallel.

(d) The vectors ⟨2, 0,−5⟩ and ⟨5, 0,−2⟩ are not parallel.
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Problem 1.1.2. Find the equations of the lines through the following pairs of points in
space.

(a) (3,−2, 4) and (−5, 7, 1)

Solution. The vector from (3,−2, 4) to (−5, 7, 1) is ⟨−5, 7, 1⟩ − ⟨3,−2, 4⟩ = ⟨−8, 9,−3⟩.
The equation of the line through the points (3,−2, 4) and (−5, 7, 1) is

x = ⟨3,−2, 4⟩+ t⟨−8, 9,−3⟩.

2



Problem 1.1.3. Find the equations of the plane containing the following points in space.

(a) (2,−5,−1), (0, 4, 6), and (−3, 7, 1)

Solution. The vector from (2,−5,−1) to (0, 4, 6) is ⟨0, 4, 6⟩−⟨2,−5,−1⟩ = ⟨−2, 9, 7⟩. The
vector from (2,−5,−1) to (−3, 7, 1) is ⟨−3, 7, 1⟩ − ⟨2,−5,−1⟩ = ⟨−5, 12, 2⟩.

The equation of the plane through the points (2,−5,−1), (0, 4, 6), and (−3, 7, 1) is

x = ⟨2,−5,−1⟩+ s⟨−2, 9, 7⟩+ t⟨−5, 12, 2⟩.
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Problem 1.1.6. Show that the midpoint of the line segment joining the points (a, b) and
(c, d) is ((a+ c)/2, (b+ d)/2).

Solution. The position vector for the point (a, b) is ⟨a, b⟩. The position vector for the
point (c, d) is ⟨c, d⟩. The vector from (a, b) to (c, d) is ⟨c− a, d− b⟩.

The position vector for the midpoint of the line segment joining the points (a, b) and
(c, d) is then

⟨a, b⟩+ 1

2
⟨c− a, d− b⟩ =

〈
a+

1

2
(c− a), b+

1

2
(d− b)

〉
=

〈
1

2
(a+ c),

1

2
(b+ d)

〉
.

So, the midpoint of the segment is the point
(
1
2(a+ c), 12(b+ d)

)
.
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Problem 1.2.10. Let V denote the set of all differentiable real-valued functions defined
on the real line. Prove that V is a vector space with the operations of addition and scalar
multiplication defined in Example 3.

Proof. Let V denote the set of all differentiable real-valued functions defined on the real
line.

We first show that V is closed under addition and scalar multiplication. If f and g
are differentiable real-valued functions defined on the real line, we know (from Calculus 1)
f + g is differentiable real-valued functions defined on the real line, so the sum lies in V .
For a scalar a, we know (from Calculus 1) af is differentiable real-valued functions defined
on the real line. So, af ∈ V .

We now must show that V with the operations of addition of functions and scalar
multiplication of functions satisfies Properties (VS 1)–(VS 8).

Let x, y, z ∈ V . Since the addition of real numbers is both commutative and associative,
we have x+ y = y + x and (x+ y) + z = x+ (y + z).

The zero function 0 which assigns 0 to each element of R is differentiable and x+ 0 =
0 + x = x.

Since the function x is differentiable, so is the function −x, and x+(−x) = (−x)+x = 0.
The function 1 which assigns 1 to each element of R is differentiable and 1x = x.
The remaining properties follow since the real numbers have associative property of

multiplication and the distributive property of multiplication over addition.
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Problem 1.2.12. A real-valued function f defined on the real line is called an even
function if f(−t) = f(t) for each real number t. Prove that the set of even functions
defined on the real line with the operations of addition and scalar multiplication defined
in Example 3 is a vector space.

Proof. Let V be the set of all even functions on the real line.
We first verify that V is closed under addition and scalar multiplication.
Let f , g ∈ V and a ∈ R. Then for s ∈ R, we have

(f + g)(−s) = f(−s) + g(−s) = f(s) + g(s) = (f + g)(s)

and
(af)(−s) = af(−s) = af(s) = (af)(s).

So, we see that f + g and af are even functions and are therefore in V .
To show V is a real vector space we need only show that V with the operations of

addition of functions and scalar multiplication of functions satisfies Properties (VS 1)–(VS
8). This is done exactly as in the last proof.
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Problem 1.2.14. Let V = {(a1, a2, . . . , an) : ai ∈ C for 1 ≤ i ≤ n}. So V is a vector
space over C by Example 1. Is V a vector space over the field of real numbers with the
operations of coordinatewise addition and multiplication?

Solution. Since the product of a real number and a complex number is a complex number,
V is a vector space over R.
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Problem 1.2.22. How many matrices are there in the vector space Mm×n(Z2)? (See
Appendix C.)

Solution. Since Z2 contains two elements, there are two choices for each entry in an m×n
matrix, so the number of elements in Mm×n(Z2) is 2

mn.
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