

Problem Set #1 Solutions

Due Thursday, August 21

William M. Faucette

Problem 1.1.1. Determine whether the vectors emanating from the origin and terminating at the following pairs of points are parallel.

- (a) $(3, 1, 2)$ and $(6, 4, 2)$
- (b) $(-3, 1, 7)$ and $(9, -3, -21)$
- (c) $(5, -6, 7)$ and $(-5, 6, -7)$
- (d) $(2, 0, -5)$ and $(5, 0, -2)$

Solution. (a) The vectors $\langle 3, 1, 2 \rangle$ and $\langle 6, 4, 2 \rangle$ are not parallel.

- (b) The vectors $\langle -3, 1, 7 \rangle$ and $\langle 9, -3, -21 \rangle$ are multiples of each other, so they are parallel.
- (c) The vectors $\langle 5, -6, 7 \rangle$ and $\langle -5, 6, -7 \rangle$ are multiples of each other, so they are parallel.
- (d) The vectors $\langle 2, 0, -5 \rangle$ and $\langle 5, 0, -2 \rangle$ are not parallel.

Problem 1.1.2. Find the equations of the lines through the following pairs of points in space.

(a) $(3, -2, 4)$ and $(-5, 7, 1)$

Solution. The vector from $(3, -2, 4)$ to $(-5, 7, 1)$ is $\langle -5, 7, 1 \rangle - \langle 3, -2, 4 \rangle = \langle -8, 9, -3 \rangle$.

The equation of the line through the points $(3, -2, 4)$ and $(-5, 7, 1)$ is

$$\mathbf{x} = \langle 3, -2, 4 \rangle + t \langle -8, 9, -3 \rangle.$$

Problem 1.1.3. Find the equations of the plane containing the following points in space.

(a) $(2, -5, -1)$, $(0, 4, 6)$, and $(-3, 7, 1)$

Solution. The vector from $(2, -5, -1)$ to $(0, 4, 6)$ is $\langle 0, 4, 6 \rangle - \langle 2, -5, -1 \rangle = \langle -2, 9, 7 \rangle$. The vector from $(2, -5, -1)$ to $(-3, 7, 1)$ is $\langle -3, 7, 1 \rangle - \langle 2, -5, -1 \rangle = \langle -5, 12, 2 \rangle$.

The equation of the plane through the points $(2, -5, -1)$, $(0, 4, 6)$, and $(-3, 7, 1)$ is

$$\mathbf{x} = \langle 2, -5, -1 \rangle + s\langle -2, 9, 7 \rangle + t\langle -5, 12, 2 \rangle.$$

Problem 1.1.6. Show that the midpoint of the line segment joining the points (a, b) and (c, d) is $((a + c)/2, (b + d)/2)$.

Solution. The position vector for the point (a, b) is $\langle a, b \rangle$. The position vector for the point (c, d) is $\langle c, d \rangle$. The vector from (a, b) to (c, d) is $\langle c - a, d - b \rangle$.

The position vector for the midpoint of the line segment joining the points (a, b) and (c, d) is then

$$\langle a, b \rangle + \frac{1}{2} \langle c - a, d - b \rangle = \left\langle a + \frac{1}{2}(c - a), b + \frac{1}{2}(d - b) \right\rangle = \left\langle \frac{1}{2}(a + c), \frac{1}{2}(b + d) \right\rangle.$$

So, the midpoint of the segment is the point $(\frac{1}{2}(a + c), \frac{1}{2}(b + d))$.

Problem 1.2.10. Let V denote the set of all differentiable real-valued functions defined on the real line. Prove that V is a vector space with the operations of addition and scalar multiplication defined in Example 3.

Proof. Let V denote the set of all differentiable real-valued functions defined on the real line.

We first show that V is closed under addition and scalar multiplication. If f and g are differentiable real-valued functions defined on the real line, we know (from Calculus 1) $f + g$ is differentiable real-valued functions defined on the real line, so the sum lies in V . For a scalar a , we know (from Calculus 1) af is differentiable real-valued functions defined on the real line. So, $af \in V$.

We now must show that V with the operations of addition of functions and scalar multiplication of functions satisfies Properties (VS 1)–(VS 8).

Let $x, y, z \in V$. Since the addition of real numbers is both commutative and associative, we have $x + y = y + x$ and $(x + y) + z = x + (y + z)$.

The zero function 0 which assigns 0 to each element of \mathbb{R} is differentiable and $x + 0 = 0 + x = x$.

Since the function x is differentiable, so is the function $-x$, and $x + (-x) = (-x) + x = 0$.

The function 1 which assigns 1 to each element of \mathbb{R} is differentiable and $1x = x$.

The remaining properties follow since the real numbers have associative property of multiplication and the distributive property of multiplication over addition. \square

Problem 1.2.12. A real-valued function f defined on the real line is called an **even function** if $f(-t) = f(t)$ for each real number t . Prove that the set of even functions defined on the real line with the operations of addition and scalar multiplication defined in Example 3 is a vector space.

Proof. Let V be the set of all even functions on the real line.

We first verify that V is closed under addition and scalar multiplication.

Let $f, g \in V$ and $a \in \mathbb{R}$. Then for $s \in \mathbb{R}$, we have

$$(f + g)(-s) = f(-s) + g(-s) = f(s) + g(s) = (f + g)(s)$$

and

$$(af)(-s) = af(-s) = af(s) = (af)(s).$$

So, we see that $f + g$ and af are even functions and are therefore in V .

To show V is a real vector space we need only show that V with the operations of addition of functions and scalar multiplication of functions satisfies Properties (VS 1)–(VS 8). This is done exactly as in the last proof. \square

Problem 1.2.14. Let $V = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{C} \text{ for } 1 \leq i \leq n\}$. So V is a vector space over \mathbb{C} by Example 1. Is V a vector space over the field of real numbers with the operations of coordinatewise addition and multiplication?

Solution. Since the product of a real number and a complex number is a complex number, V is a vector space over \mathbb{R} .

Problem 1.2.22. How many matrices are there in the vector space $M_{m \times n}(\mathbb{Z}_2)$? (See Appendix C.)

Solution. Since \mathbb{Z}_2 contains two elements, there are two choices for each entry in an $m \times n$ matrix, so the number of elements in $M_{m \times n}(\mathbb{Z}_2)$ is 2^{mn} .