
Problem Set #14 Solutions

Due Thursday, November 20

William M. Faucette

Problem 6.3.2. For each of the following inner product spaces V (over F) and linear
transformations g : V → F, find a vector y such that g(x) = ⟨x, y⟩ for all x ∈ V .

(a) V = R3, g(a1, a2, a3) = a1 − 2a2 + 4a3

Solution. (a)

g(a1, a2, a3) = a1 − 2a2 + 4a3 = ⟨(a1, a2, a3), (1,−2, 4)⟩.

So, y = (1,−2, 4).
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Problem 6.3.6. Let T be a linear operator on an inner product space V . Let U1 = T +T ∗

and U2 = TT ∗. Prove that U1 = U∗
1 and U2 = U∗

2 .

Solution. Proof. Let T be a linear operator on an inner product space V . Let U1 = T+T ∗

and U2 = TT ∗.
Then

U∗
1 = (T + T ∗)∗

= T ∗ + T ∗∗

= T ∗ + T

= T + T ∗

= U1.

and

U∗
2 = (TT ∗)∗

= T ∗∗T ∗

= TT ∗

= U2.
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Problem 6.3.9. Prove that if V = W ⊕W⊥ and T is projection on W along W⊥, then
T = T ∗. Hint: Recall that N(T ) = W⊥. (For definitions, see the exercises of Sections 1.3
and 2.1.)

Solution. Let V be an inner product space and W ⊆ V a subspace. Let T : V → V be
projection of V along W⊥. Let x, y ∈ V and write x = w1 + z1, y = w2 + z2 with w1,
w2 ∈ W and z1, z2 ∈ W⊥.

⟨T (x), y⟩ = ⟨w1, w2 + z2⟩ = ⟨w1, w2⟩+ ⟨w1, z2⟩ = ⟨w1, w2⟩
= ⟨w1, w2⟩+ ⟨z1, w2⟩ = ⟨w1 + z1, w2⟩ = ⟨x, T (y)⟩.

So, we see T = T ∗.
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Problem 6.3.11. For a linear operator T on an inner product space V , prove that T ∗T =
T0 implies T = T0. Is the same result true if we assume that TT ∗ = T0?

Solution. Let T be a linear operator on an inner product space V satisfying T ∗T = T0.
Let x ∈ V be arbitrary. Then

0 = ⟨0, x⟩ = ⟨T0(x), x⟩ = ⟨T ∗T (x), x⟩ = ⟨T (x), T (x)⟩ = ∥T (x)∥2.

which implies T (x) = 0. Since x ∈ V is arbitrary, T = T0.
Suppose TT ∗ = T0. By the last paragraph, T ∗ = T0. Then

0 = ⟨x, 0⟩ = ⟨x, T0(T (x))⟩ = ⟨x, T ∗(T (x))⟩ = ⟨T (x), T (x)⟩,

and since x ∈ V is arbitrary, this says T = T0.
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Problem 6.3.12. Let V be an inner product space, and let T be a linear operator on V .
Prove the following results.

(a) R(T ∗)⊥ = N(T ).

(b) If V is finite-dimensional, then R(T ∗) = N(T )⊥. Hint: Use Exercise 13(c) of Sec-
tion 6.2.

Solution. Let V be an inner product space, and let T be a linear operator on V .

(a) Proof. Let x ∈ R(T ∗)⊥. Since x ∈ R(T ∗)⊥,

0 = ⟨x, T ∗(T (x))⟩ = ⟨T (x), T (x)⟩

so T (x) = 0 and x ∈ N(T ). Since x ∈ R(T ∗)⊥ is arbitrary, R(T ∗)⊥ ⊆ N(T ).

On the other hand, let x ∈ N(T ) and let y = T ∗(z) ∈ R(T ∗) be arbitrary. Then

0 = ⟨0, z⟩ = ⟨T (x), z⟩ = ⟨x, T ∗(z)⟩ = ⟨x, y⟩.

Since y = T ∗(z) ∈ R(T ∗) is arbitrary, x ∈ R(T ∗)⊥. Since x ∈ N(T ) is arbitrary,
N(T ) ⊆ R(T ∗)⊥.

The two inclusions prove that R(T ∗)⊥ = N(T ).

(b) Proof. Suppose in addition that V is finite dimensional. Then R(T ) is finite di-
mensional, so by Exercise 13(c) of Section 6.2, (R(T ∗)⊥)⊥ = R(T ∗). Taking the
orthogonal complement of the result in part(a), we see that

R(T ∗) = (R(T ∗)⊥)⊥ = N(T )⊥.
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Problem 6.3.18. Let A be an n× n matrix. Prove that det(A∗) = det(A).

Solution. Let A be an n× n matrix. We compute

det(A∗) = det
(
At

)
= det(At)

= det(A).
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Problem 6.4.3. Give an example of a linear operator T on R2 and an ordered basis for
R2 that provides a counterexample to the statement in Exercise 1(c).

Solution. We first give the statement in Exercise 1(c):

If T is an operator on an inner product space V , then T is normal if and only if [T ]β is
normal, where β is any ordered basis for V .

This is true for orthonormal bases, but not true in general.
Let β = {(1, 1), (1, 0)} be a basis for R2 and let T (a, b) = (2a, b). Then T is normal

with T ∗ = T . But [T ]β =

(
1 0
1 2

)
is not normal.
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Problem 6.4.4. Let T and U be self-adjoint operators on an inner product space V . Prove
that TU is self-adjoint if and only if TU = UT .

Solution. Proof. Let T and U be self-adjoint operators on an inner product space V .

(⇒) Suppose TU is self-adjoint. Then TU = (TU)∗ = U∗T ∗ = UT . So, TU = UT .

(⇐) Suppose TU = UT . Then (TU)∗ = U∗T ∗ = UT = TU , so TU is self-adjoint.
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Problem 6.4.6. Let V be a complex inner product space, and let T be a linear operator
on V . Define

T1 =
1

2
(T + T ∗) and T2 =

1

2i
(T − T ∗) .

(a) Prove that T1 and T2 are self-adjoint and that T = T1 + iT2.

(b) Suppose also that T = U1+iU2, where U1 and U2 are self-adjoint. Prove that U1 = T1

and U2 = T2.

(c) Prove that T is normal if and only if T1T2 = T2T1.

Solution. Let V be a complex inner product space, and let T be a linear operator on V .
Define

T1 =
1

2
(T + T ∗) and T2 =

1

2i
(T − T ∗) .

(a) We compute

T ∗
1 =

[
1

2
(T + T ∗)

]∗
=

1

2
(T + T ∗)∗

=
1

2
(T ∗ + T ∗∗)

=
1

2
(T ∗ + T )

= T1.

and

T ∗
2 =

[
1

2i
(T − T ∗)

]∗
= − 1

2i
[(T − T ∗)]∗

= − 1

2i
(T ∗ − T ∗∗)

= − 1

2i
(T ∗ − T )

=
1

2i
(T − T ∗)

= T2.

So, T1 and T2 are self-adjoint.
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(b) Suppose also that T = U1 + iU2, where U1 and U2 are self-adjoint. We remark that
T ∗ = U1 − iU2, since U1 and U2 are self-adjoint.

Then from part (a), we know that

T1 =
1

2
(T + T ∗)

=
1

2
[(U1 + iU2) + (U1 − iU2)]

= U1

and

T2 =
1

2i
(T − T ∗)

=
1

2i
[(U1 + iU2)− (U1 + iU2)]

= U2.

(c) Suppose T is normal and let T1 and T2 be as above. We remark that since T1 and T2

are self-adjoint (as shown in (a) above), T ∗ = T1 − iT2.

Since T is normal, we have

TT ∗ = T ∗T

(T1 + iT2)(T1 − iT2) = (T1 − iT2)(T1 + iT2)

T1T1 − iT1T2 + iT2T1 + T2T2 = T1T1 + iT1T2 − iT2T1 + T2T2

−2iT1T2 = −2iT2T1

T1T2 = T2T1.

For the converse, simply start at the bottom and work your way back to the top.
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Problem 6.4.7. Let T be a linear operator on an inner product space V , and let W be a
T -invariant subspace of V . Prove that following results.

(a) If T is self-adjoint, then TW is self-adjoint.

(b) W⊥ is T ∗-invariant.

(c) If W is both T - and T ∗-invariant, then (TW )∗ = (T ∗)W .

(d) If W is both T - and T ∗-invariant and T is normal, then TW is normal.

Solution. Let T be a linear operator on an inner product space V , and let W be a T -
invariant subspace of V .

(a) Suppose T is self-adjoint and w1, w2 ∈ W . Then

⟨TW (w1), w2⟩ = ⟨T (w1), w2⟩
= ⟨w1, T (w2)⟩
= ⟨w1, TW (w2)⟩

So, (TW )∗ = TW .

(b) Let x ∈ W⊥ and let w ∈ W . Then

⟨T ∗(x), w⟩ = ⟨x, T (w)⟩ = 0,

since W is T -invariant by hypothesis. Since w ∈ W is arbitrary, T ∗(x) ∈ W⊥. Since
x ∈ W⊥ is arbitrary, W⊥ is T ∗-invariant.

(c) Suppose W is both T - and T ∗-invariant. Let w1, w2 ∈ W . Then

⟨TW (w1), w2⟩ = ⟨T (w1), w2⟩
= ⟨w1, T

∗(w2)⟩.

Since T ∗(w2) ∈ W , T ∗(w2) = T ∗
W (w2). So, we see that (TW )∗ = T ∗

W

(d) Suppose W is both T - and T ∗-invariant and T is normal. Then T ∗T = TT ∗. Re-
stricting to W , remembering that W is both T - and T ∗ invariant and part (c) above,
we get

(TW )∗TW = T ∗
WTW = (T ∗T )W = (TT ∗)W = TWT ∗

W = TW (TW )∗,

so TW is normal.
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Problem 6.4.8. Let T be a normal operator on a finite-dimensional complex inner product
space V , and let W be a subspace of V . Prove that if W is T -invariant, then W is also
T ∗-invariant. Hint: Use Exercise 24 of section 5.4.

Solution. Let T be a normal operator on a finite-dimensional complex inner product space
V , and let W be a T -invariant subspace of V .

By Theorem 6.16, there exists an orthonormal basis for V consisting of eigenvectors of
T . So, T is diagonalizable. By Exercise 24 in Section 5.4, TW is also diagonalizable. So
there exists an orthonormal basis β = {w1, . . . , wk} for W of eigenvectors for T . By Theo-
rem 6.15 (c), every eigenvector for T is also an eigenvector for T ∗. Hence β = {w1, . . . , wk}
is a basis for W of eigenvectors for T ∗. So, W is T ∗-invariant.
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