

Problem Set #13 Solutions

Due Thursday, November 13

William M. Faucette

Problem 6.1.4. (a) Complete the proof in Example 5 that (\cdot, \cdot) is an inner product (the Frobenius inner product) on $M_{n \times n}(\mathbb{F})$.

Solution. (a) We prove the formula

$$\begin{aligned}\langle A, B \rangle &= \text{tr}(B^* A) = \sum_{j=1}^n (B^* A)_{jj} = \sum_{j=1}^n \sum_{i=1}^n B_{ji}^* A_{ij} \\ &= \sum_{j=1}^n \sum_{i=1}^n A_{ij} \overline{B}_{ij} = \sum_{i=1}^n \sum_{j=1}^n A_{ij} \overline{B}_{ij} = \sum_{i,j} A_{ij} \overline{B}_{ij}.\end{aligned}$$

So we may view the space $M_{n \times n}(\mathbb{F})$ to be \mathbb{F}^{n^2} and the Frobenius inner product is corresponding to the standard inner product in \mathbb{F}^{n^2} .

Problem 6.1.9. Let β be a basis for a finite-dimensional inner product space.

- (a) Prove that if $\langle x, z \rangle = 0$ for all $z \in \beta$, then $x = 0$.
- (b) Prove that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$, then $x = y$.

Solution. Let β be a basis for a finite-dimensional inner product space.

- (a) *Proof.* Suppose $\langle x, z \rangle = 0$ for all $z \in \beta$. Since β is a basis, we can write $x = \sum_{i=1}^n x_i \mathbf{v}_i$, where $\mathbf{v}_i \in \beta$ and $x_i \in \mathbb{F}$ for all $1 \leq i \leq n$. Then

$$\begin{aligned} \langle x, x \rangle &= \left\langle x, \sum_{i=1}^n x_i \mathbf{v}_i \right\rangle \\ &= \sum_{i=1}^n \overline{x_i} \langle x, \mathbf{v}_i \rangle \\ &= \sum_{i=1}^n \overline{x_i} \cdot 0 \\ &= 0, \end{aligned}$$

since $\langle x, \mathbf{v}_i \rangle = 0$ for all $1 \leq i \leq n$. Hence $x = 0$. \square

- (b) *Proof.* Suppose $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$. Then

$$\langle x - y, z \rangle = \langle x, z \rangle - \langle y, z \rangle = 0$$

for all $z \in \beta$. By part (a), $x - y = 0$, so $x = y$. \square

Problem 6.1.10. Let V be an inner product space, and suppose that x and y are orthogonal vectors in V . Prove that $\|x + y\|^2 = \|x\|^2 + \|y\|^2$. Deduce the Pythagorean theorem in \mathbb{R}^2 .

Solution. *Proof.* Let V be an inner product space, and suppose that x and y are orthogonal vectors in V . Then

$$\begin{aligned}\|x + y\|^2 &= \langle x + y, x + y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &= \langle x, x \rangle + \langle y, y \rangle \text{ since } x \text{ and } y \text{ are orthogonal} \\ &= \|x\|^2 + \|y\|^2.\end{aligned}$$

If x and y are the two legs of a right triangle with lengths a and b , respectively, then $x + y$ is the hypotenuse of the right triangle. Let c be the length of the hypotenuse. Then the result above shows that

$$a^2 + b^2 = \|x\|^2 + \|y\|^2 = \|x + y\|^2 = c^2,$$

the Pythagorean theorem. □

Problem 6.1.11. Prove the *parallelogram law* on an inner product space V ; that is, show that

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2 \text{ for all } x, y \in V$$

What does this equation state about parallelograms in \mathbb{R}^2 ?

Solution. Let V be an inner product space and let $x, y \in V$. Then

$$\begin{aligned} \|x + y\|^2 + \|x - y\|^2 &= \langle x + y, x + y \rangle + \langle x - y, x - y \rangle \\ &= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \\ &\quad \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle \\ &= 2\|x\|^2 + 2\|y\|^2. \end{aligned}$$

This equality says that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals of the parallelogram.

Problem 6.1.12. Let $\{v_1, v_2, \dots, v_k\}$ be an orthogonal set in V , and let a_1, a_2, \dots, a_k be scalars. Prove that

$$\left\| \sum_{i=1}^k a_i v_i \right\|^2 = \sum_{i=1}^k |a_i|^2 \|v_i\|^2.$$

Solution. We compute

$$\begin{aligned} \left\| \sum_{i=1}^k a_i v_i \right\|^2 &= \left\langle \sum_{i=1}^k a_i v_i, \sum_{j=1}^k a_j v_j \right\rangle \\ &= \sum_{i=1}^k \sum_{j=1}^k a_i \bar{a}_j \langle v_i, v_j \rangle \\ &= \sum_{i=1}^k a_i \bar{a}_i \langle v_i, v_i \rangle \\ &= \sum_{i=1}^k |a_i|^2 \|v_i\|^2. \end{aligned}$$

Problem 6.2.6. Let V be an inner product space, and let W be a finite-dimensional subspace of V . If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^\perp$, but $\langle x, y \rangle \neq 0$.
Hint: Use Theorem 6.6.

Solution. *Proof.* Let V be an inner product space, and let W be a finite-dimensional subspace of V . Let $x \in V$, but $x \notin W$. By Theorem 6.6, we can write x uniquely as $x = w + y$ where $w \in W$ and $y \in W^\perp$. Since $x \notin W$, $y \neq 0$. Then we have

$$\langle x, y \rangle = \langle w + y, y \rangle = \langle w, y \rangle + \langle y, y \rangle = \langle y, y \rangle > 0,$$

since $y \neq 0$. □

Problem 6.2.10. Let W be a finite-dimensional subspace of an inner product space V . Prove that there exists a projection T on W along W^\perp that satisfies $N(T) = W^\perp$. In addition, prove that $\|T(x)\| \leq \|x\|$ for all $x \in V$. *Hint:* Use Theorem 6.6 and Exercise 10 of Section 6.1. (Projections are defined in the exercises of Section 2.1.)

Solution. *Proof.* Let W be a finite-dimensional subspace of an inner product space V . For $x \in V$, by Theorem 6.6, there exist unique vectors $u \in W$ and $z \in W^\perp$ so that $x = u + z$. Define $T : V \rightarrow V$ by $T(x) = u$. It's easy to see that $N(T) = W^\perp$. Also, by Exercise 10 of Section 6.1, we have

$$\|T(x)\|^2 = \|u\|^2 \leq \|u\|^2 + \|z\|^2 = \|u + z\|^2 = \|x\|^2.$$

Taking square roots and remembering that everything is positive, we get

$$\|T(x)\| \leq \|x\|.$$

□

Problem 6.2.15. Let V be a finite-dimensional inner product space over \mathbb{F} .

(a) *Parseval's Identity.* Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis for V . For any $x, y \in V$ prove that

$$\langle x, y \rangle = \sum_{i=1}^n \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

(b) Use (a) to prove that if β is an orthonormal basis for V with inner product $\langle \cdot, \cdot \rangle$, then for any $x, y \in V$

$$\langle \phi_\beta(x), \phi_\beta(y) \rangle' = \langle [x]_\beta, [y]_\beta \rangle' = \langle x, y \rangle,$$

where $\langle \cdot, \cdot \rangle'$ is the standard inner product on \mathbb{F}^n .

Solution. (a) Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis for V . Let $x, y \in V$. By Theorem 6.6, we can write

$$\begin{aligned} x &= \sum_{i=1}^n \langle x, v_i \rangle v_i \\ y &= \sum_{i=1}^n \langle y, v_i \rangle v_i. \end{aligned}$$

For convenience, we denote $x_i = \langle x, v_i \rangle$ and $y_i = \langle y, v_i \rangle$ for $1 \leq i \leq n$.

Then

$$\begin{aligned} \langle x, y \rangle &= \left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle \\ &= \sum_{i=1}^n x_i \sum_{j=1}^n \overline{y_j} \langle v_i, v_j \rangle \\ &= \sum_{i=1}^n x_i \sum_{j=1}^n \overline{y_j} \delta_{i,j} \\ &= \sum_{i=1}^n x_i \overline{y_i} \\ &= \sum_{i=1}^n \langle x, v_i \rangle \overline{\langle y, v_i \rangle}. \end{aligned}$$

(b) Let β be an orthonormal basis for V with inner product $\langle \cdot, \cdot \rangle$. For any $x \in V$, write $x = \sum_{i=1}^n x_i v_i$ with $v_i \in \beta$, $1 \leq i \leq n$. We note that as in part (a), we have $x_i = \langle x, v_i \rangle$ for $1 \leq i \leq n$. Define

$$\phi_\beta : V \rightarrow \mathbb{F}^n \text{ by } \phi_\beta(x) = (x_1, x_2, \dots, x_n).$$

If $\langle \cdot, \cdot \rangle'$ is the standard inner product on \mathbb{F}^n , we compute

$$\begin{aligned}\langle \phi_\beta(x), \phi_\beta(y) \rangle' &= \langle [x]_\beta, [y]_\beta \rangle' \\ &= \sum_{i=1}^n x_i \bar{y_i} \\ &= \langle x, y \rangle \text{ by part (a).}\end{aligned}$$