
Problem Set #13 Solutions

Due Thursday, November 13

William M. Faucette

Problem 6.1.4. (a) Complete the proof in Example 5 that (·, ·) is an inner product (the
Frobenius inner product) on Mn×n(F).

Solution. (a) We prove the formula

⟨A,B⟩ = tr(B∗A) =
n∑

j=1

(B∗A)jj =
n∑

j=1

n∑
i=1

B∗
jiAij

=

n∑
j=1

n∑
i=1

AijBij =
n∑

i=1

n∑
j=1

AijBij =
∑
i,j

AijBij .

So we may view the space Mn×n(F) to be Fn2
and the Frobenius inner product is

corresponding to the standard inner product in Fn2
.
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Problem 6.1.9. Let β be a basis for a finite-dimensional inner product space.

(a) Prove that if ⟨x, z⟩ = 0 for all z ∈ β, then x = 0.

(b) Prove that if ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ β, then x = y.

Solution. Let β be a basis for a finite-dimensional inner product space.

(a) Proof. Suppose ⟨x, z⟩ = 0 for all z ∈ β. Since β is a basis, we can write x =
∑n

i=1 xivi,
where vi ∈ β and xi ∈ F for all 1 ≤ i ≤ n. Then

⟨x, x⟩ = ⟨x,
n∑

i=1

xivi⟩

=
n∑

i=1

xi⟨x,vi⟩

=
n∑

i=1

xi · 0

= 0,

since ⟨x,vi⟩ = 0 for all 1 ≤ i ≤ n. Hence x = 0.

(b) Proof. Suppose ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ β. Then

⟨x− y, z⟩ = ⟨x, z⟩ − ⟨y, z⟩ = 0

for all z ∈ β. By part (a), x− y = 0, so x = y.
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Problem 6.1.10. Let V be an inner product space, and suppose that x and y are orthog-
onal vectors in V . Prove that ∥x+ y∥2 = ∥x∥2 + ∥y∥2. Deduce the Pythagorean theorem
in R2.

Solution. Proof. Let V be an inner product space, and suppose that x and y are orthog-
onal vectors in V . Then

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩
= ⟨x, x⟩+ ⟨y, y⟩ since x and y are orthogonal

= ∥x∥2 + ∥y∥2.

If x and y are the two legs of a right triangle with lengths a and b, respectively, then x+ y
is the hypotenuse of the right triangle. Let c be the length of the hypotenuse. Then the
result above shows that

a2 + b2 = ∥x∥2 + ∥y∥2 = ∥x+ y∥2 = c2,

the Pythagorean theorem.
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Problem 6.1.11. Prove the parallelogram law on an inner product space V ; that is, show
that

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 for all x, y ∈ V

What does this equation state about parallelograms in R2?

Solution. Let V be an inner product space and let x, y ∈ V . Then

∥x+ y∥2 + ∥x− y∥2 = ⟨x+ y, x+ y⟩+ ⟨x− y, x− y⟩
= ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩

⟨x, x⟩ − ⟨x, y⟩ − ⟨y, x⟩+ ⟨y, y⟩
= 2∥x∥2 + 2∥y∥2.

This equality says that the sum of the squares of the lengths of the four sides of a parallelo-
gram equals the sum of the squares of the lengths of the two diagonals of the parallelogram.
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Problem 6.1.12. Let {v1, v2, . . . , vk} be an orthogonal set in V , and let a1, a2, . . . , ak be
scalars. Prove that ∥∥∥∥∥

k∑
i=1

aivi

∥∥∥∥∥
2

=

k∑
i=1

|ai|2 ∥vi∥2.

Solution. We compute ∥∥∥∥∥
k∑

i=1

aivi

∥∥∥∥∥
2

=

〈
k∑

i=1

aivi,
k∑

j=1

ajvj

〉

=
k∑

i=1

k∑
j=1

aiaj⟨vi, vj⟩

=
k∑

i=1

aiai⟨vi, vi⟩

=

k∑
i=1

|ai|2 ∥vi∥2.
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Problem 6.2.6. Let V be an inner product space, and let W be a finite-dimensional
subspace of V . If x /∈ W , prove that there exists y ∈ V such that y ∈ W⊥, but ⟨x, y⟩ ≠ 0.
Hint: Use Theorem 6.6.

Solution. Proof. Let V be an inner product space, and let W be a finite-dimensional
subspace of V . Let x ∈ V , but x /∈ W . By Theorem 6.6, we can write x uniquely as
x = w + y where w ∈ W and y ∈ W⊥. Since x /∈ W , y ̸= 0. Then we have

⟨x, y⟩ = ⟨w + y, y⟩ = ⟨w, y⟩+ ⟨y, y⟩ = ⟨y, y⟩ > 0,

since y ̸= 0.
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Problem 6.2.10. Let W be a finite-dimensional subspace of an inner product space V .
Prove that there exists a projection T on W along W⊥ that satisfies N(T ) = W⊥. In
addition, prove that ∥T (x)∥ ≤ ∥x∥ for all x ∈ V . Hint: Use Theorem 6.6 and Exercise 10
of Section 6.1. (Projections are defined in the exercises of Section 2.1.)

Solution. Proof. Let W be a finite-dimensional subspace of an inner product space V . For
x ∈ V , by Theorem 6.6, there exist unique vectors u ∈ W and z ∈ W⊥ so that x = u+ z.
Define T : V → V by T (x) = u. It’s easy to see that N(T ) = W⊥. Also, by Exercise 10 of
Section 6.1, we have

∥T (x)∥2 = ∥u∥2 ≤ ∥u∥2 + ∥z∥2 = ∥u+ z∥2 = ∥x∥2.

Taking square roots and remembering that everything is positive, we get

∥T (x)∥ ≤ ∥x∥.
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Problem 6.2.15. Let V be a finite-dimensional inner product space over F.

(a) Parseval’s Identity. Let {v1, v2, . . . , vn} be an orthonormal basis for V . For any x,
y ∈ V prove that

⟨x, y⟩ =
n∑

i=1

⟨x, vi⟩⟨y, vi⟩.

(b) Use (a) to prove that if β is an orthonormal basis for V with inner product ⟨·, ·⟩, then
for any x, y ∈ V

⟨ϕβ(x), ϕβ(y)⟩′ = ⟨[x]β, [y]β⟩′ = ⟨x, y⟩,
where ⟨·, ·⟩′ is the standard inner product on Fn.

Solution. (a) Let {v1, v2, . . . , vn} be an orthonormal basis for V . Let x, y ∈ V . By
Theorem 6.6, we can write

x =

n∑
i=1

⟨x, vi⟩ vi

y =

n∑
i=1

⟨y, vi⟩ vi.

For convenience, we denote xi = ⟨x, vi⟩ and yi = ⟨y, vi⟩ for 1 ≤ i ≤ n.

Then

⟨x, y⟩ =

〈
n∑

i=1

xivi,

n∑
j=1

yjvj

〉

=

n∑
i=1

xi

n∑
j=1

yj ⟨vi, vj⟩

=
n∑

i=1

xi

n∑
j=1

yj δi,j

=
n∑

i=1

xiyi

=
n∑

i=1

⟨x, vi⟩⟨y, vi⟩.

(b) Let β be an orthonormal basis for V with inner product ⟨·, ·⟩. For any x ∈ V , write
x =

∑n
i=1 xivi with vi ∈ β, 1 ≤ i ≤ n. We note that as in part (a), we have

xi = ⟨x, vi⟩ for 1 ≤ i ≤ n. Define

ϕβ : V → Fn by ϕβ(x) = (x1, x2, . . . , xn).
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If ⟨·, ·⟩′ is the standard inner product on Fn, we compute

⟨ϕβ(x), ϕβ(y)⟩′ = ⟨[x]β, [y]β⟩′

=

n∑
i=1

xiyi

= ⟨x, y⟩ by part (a).
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