
Problem Set #12 Solutions

Due Thursday, November 6

William M. Faucette

Problem 5.2.2. For each of the following matrices A ∈ Mn×n(R), test A for diagonaliz-
ability, and if A is digonalizable, find on invertible matrix Q and a diagonal matrix D such
that Q−1AQ = D.

(a) (
1 2
0 1

)
(e) 0 0 1

1 0 −1
0 1 1


(f) 1 1 0

0 1 2
0 0 3


Solution. (a) We compute the characteristic polynomial:

f(t) = det

((
1 2
0 1

)
− t

(
1 0
0 1

))
= det

(
1− t 2
0 1− t

)
= (1− t)2

So, the only eigenvalue is λ = 1.

Next, we compute a basis for the eigenspace:(
0 2 0
0 0 0

)
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The solution to this homogeneous system of equations is the span of the vector(
1
0

)
.

Since the algebraic multiplicity of the eigenvalue is 2 and the dimension of the
eigenspace is 1, this matrix is not diagonalizable.

(e) 0 0 1
1 0 −1
0 1 1


We compute the characteristic polynomial:

f(t) = det

0 0 1
1 0 −1
0 1 1

− t

1 0 0
0 1 0
0 0 1


= det

−t 0 1
1 −t −1
0 1 1− t


= −t3 + t2 − t+ 1

= −(t− 1)(t2 + 1).

Since the characteristic polynomial doesn’t split over R, this matrix is not diagonal-
izable over R.
This matrix is, however, diagonalizable over C. The matrix has three distinct
eigenvalues—1 and ±i— and since eigenvectors corresponding to distinct eigenvalues
are linearly independent, we see that this matrix is diagonalizable.

(f) 1 1 0
0 1 2
0 0 3


We compute the characteristic polynomial:

f(t) = det

1 1 0
0 1 2
0 0 3

− t

1 0 0
0 1 0
0 0 1


= det

1− t 1 0
0 1− t 2
0 0 3− t


= (1− t)2(3− t)
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So, the two eigenvalues is λ = 1 and λ = 3.

Next, we compute a basis for the eigenspace for λ = 1:0 1 0 0
0 0 2 0
0 0 2 0


The solution to this homogeneous system of equations is the span of the vector1

0
0

 .

Since the algebraic multiplicity of this eigenvalue is 2 and the dimension of this
eigenspace is 1, this matrix is not diagonalizable.
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Problem 5.2.7. For

A =

(
1 4
2 3

)
∈ M2×2(R),

find an expression for An, where n is an arbitrary positive integer.

Solution. Let

A =

(
1 4
2 3

)
.

First, we diagonalize A.
The characteristic polynomial for A is

det

(
1− t 4
2 3− t

)
= (1− t)(3− t)− 8

= t2 − 4t− 5

= (t− 5)(t+ 1)

The eigenvalues are λ = −1, 5.
Now, we find the eigenspaces.
For λ = −1, we need the solution of the system(

2 4 0
2 4 0

)
.

The solution space is the span of the vector

(
−2
1

)
.

For λ = 5, we need the solution of the system(
−4 4 0
2 −2 0

)
.

The solution space is the span of the vector

(
1
1

)
.

Let

Q =

(
−2 1
1 1

)
.

Then

Q−1AQ =

(
−1 0
0 5

)
.

Call this matrix D.
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Then

An = (QDQ−1)n

= QDnQ−1

=

(
−2 1
1 1

)(
−1 0
0 5

)n(−2 1
1 1

)−1

=

(
−2 1
1 1

)(
(−1)n 0

0 5n

)(−1
3

1
3

1
3

2
3

)

=

2
3(−1)n + 1

35
n −2

3(−1)n + 2
35

n

1
3(−1)n + 1

35
n 1

3(−1)n + 2
35

n

 .
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Problem 5.2.20. Let W1, W2, . . . , Wk be subspaces of a finite-dimensional vector space
V such that

k∑
i=1

Wi = V.

Prove that V is the direct sum of W1, W2, . . . , Wk if and only if

dim (V ) =
k∑

i=1

dim (Wi) .

Solution. Proof. Let W1, W2, . . . , Wk be subspaces of a finite-dimensional vector space
V such that

k∑
i=1

Wi = V.

We prove the result by induction on k, with k = 1 being trivial.
Suppose k = 2. Since V = W1 + W2, we will have V = W1 ⊕ W2 if and only if

W1 ∩W2 = {0}. By the Dimension Theorem, we have

dim (V ) = dim (W1) + dim (W2)− dim (W1 ∩W2) .

From this we see that W1 ∩W2 = {0} if and only if

dim (V ) = dim (W1) + dim (W2) .

This proves the result for k = 2.
Suppose the result if true for k = ℓ. Let W1, W2, . . . , Wℓ, Wℓ+1 be subspaces of a

finite-dimensional vector space V such that

ℓ+1∑
i=1

Wi = V.

Let

W =
ℓ∑

i=1

Wi.

By the inductive hypothesis, W =
⊕ℓ

i=1Wi if and only if

dim (W ) =
ℓ∑

i=1

dim (Wi) . (1)

From the case k = 2 above, we know that

V =
ℓ+1⊕
i=1

Wi = W ⊕Wℓ+1
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if and only if W is a direct sum of W1, . . . , Wℓ and dim (V ) = dim (W ) + dim (Wℓ+1).
Combining this with Equation (1), we have

V =

ℓ+1⊕
i=1

Wi = W ⊕Wℓ+1

if and only if

dim (V ) = dim (W ) + dim (Wℓ+1)

=

(
ℓ∑

i=1

dim (Wi)

)
+ dim (Wℓ+1)

=
ℓ+1∑
i=1

dim (Wi) .

This concludes the induction and proves the result.
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Problem 5.4.5. Let T be a linear operator on a vector space V . Prove that the intersection
of any collection of T -invariant subspaces of V is a T -invariant subspace of V .

Solution. Proof. Let T be a linear operator on a vector space V and let {Wα}α∈J be any
collection of T -invariant subspaces of V . We consider W =

⋂
α∈J Wα.

Let v ∈ W . Then v ∈ Wα for all α ∈ J . Since each Wα is T -invariant, T (v) ∈ Wα for
all α ∈ J . Hence T (v) ∈ W . Since v ∈ W is arbitrary, W is a T -invariant subspaces of
V .
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Problem 5.4.11. Let T be a linear operator on a vector space V , let v be a nonzero vector
in V , and let W be the T -cyclic subspace of V generated by v. Prove that

(a) W is T -invariant.

(b) Any T -invariant subspace of V containing v also contains W .

Solution. Let T be a linear operator on a vector space V , let v be a nonzero vector in V ,
and let W be the T -cyclic subspace of V generated by v.

(a) Proof. Since W is the T -cyclic subspace of V generated by v,

W = span({v, T (v), T 2(v), . . . }).

Let α ∈ W . Then

α =

n∑
j=0

αjT
j(v),

by the definition of W . Then

T (α) = T (

n∑
j=0

αjT
j(v))

=
n∑

j=0

αjT (T
j(v))

=
n∑

j=0

αjT
j+1(v),

which we see is back in W . So, W is a T -invariant subspace of V .

(b) Proof. Let S be a T -invariant subspace of V containing v. Since S is T -invariant and
v ∈ S, T (v) ∈ S. Inductively, Tn(v) ∈ S, for all n ∈ N and since S is a subspace,
S must contain the span of this set of vectors, which is precisely W . So S contains
W .
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Problem 5.4.18. Let A be an n× n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + · · ·+ a1t+ a0.

(a) Prove that A is invertible if and only if a0 ̸= 0.

(b) Prove that if A is invertible, then

A−1 = (−1/a0)
[
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1In
]
.

(c) Use (b) to compute A−1 for

A =

1 2 1
0 2 3
0 0 −1

 .

Solution. Let A be an n× n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + · · ·+ a1t+ a0.

(a) The characteristic polynomial of A is defined by f(t) = det(A− tIn). Evaluating at
t = 0, we get f(0) = det(A). Since A is invertible if and only if det(A) ̸= 0, we see
that A is invertible if and only if f(0) = a0 is not equal to zero.

(b) Suppose A is invertible. By part (a), a0 ̸= 0. By the Cayley-Hamilton Theorem,

f(A) = (−1)nAn + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

By a bit of algebra, we have

0 = (−1)nAn + an−1A
n−1 + · · ·+ a1A+ a0I

0 = A
[
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1
]
+ a0I

−a0I = A
[
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1
]

I = − 1

a0

[
A
(
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1
)]

I = A

(
− 1

a0

[
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1
])

.

So, we see that

A−1 = − 1

a0

[
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1
]
.
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(c) Use (b) to compute A−1 for

A =

1 2 1
0 2 3
0 0 −1

 .

We first compute the characteristic polynomial for A.

f(t) = det(A− tI)

= det

1− t 2 1
0 2− t 3
0 0 −1− t


= −t3 + 2t2 + t− 2.

Since f(0) = a0 = −2, A is invertible and

A−1 =
1

2
(−A2 + 2A+ I) =


1 −1 −2

0 1
2

3
2

0 0 −1

 .
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Problem 5.4.19. Let A denote the k × k matrix

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 0 −ak−2

0 0 · · · 1 −ak−1


where a0, a1, . . . , ak−1 are arbitrary scalars. Prove that the characteristic polynomial of
A is

(−1)k(a0 + a1t+ · · ·+ ak−1t
t−1 + tk).

Hint: Use mathematical induction on k, expanding the determinant along the first row.

Solution. Proof. Let A denote the k × k matrix

0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 0 −ak−2

0 0 · · · 1 −ak−1


where a0, a1, . . . , ak−1 are arbitrary scalars. We prove that the characteristic polynomial
of A is

(−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk)

by induction on k.
For k = 1,

A =
(
−a0

)
So, the characteristic polynomial is −a0−t = −(1)1(a0+t). So, the result is true for k = 1.

Assume the result is true for some k. That is, if

A =



0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 0 −ak−2

0 0 · · · 1 −ak−1


,

then
f(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t

k−1 + tk)
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Consider the case k + 1. In that case,

A =



0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 0 −ak−2

0 0 · · · 1 −ak−1

0 0 · · · 1 −ak


.

The characteristic polynomial is then

f(t) = det



−t 0 · · · 0 −a0
1 −t · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 0 −ak−2

0 0 · · · −t −ak−1

0 0 · · · 1 −ak − t


.

We evaluate this determinant by expanding the determinant along the first row:

f(t) = det



−t 0 · · · 0 −a0
1 −t · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 0 −ak−2

0 0 · · · −t −ak−1

0 0 · · · 1 −ak − t



= (−t) det



−t · · · 0 −a1
1 · · · 0 −a2
...

...
...

...
0 · · · 0 −ak−2

0 · · · −t −ak−1

0 · · · 1 −ak − t


+ (−1)k(−a0) det



1 −t · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 0
0 0 · · · −t
0 0 · · · 1


= (−t)(−1)k(a1 + a2t+ · · ·+ akt

t−1 + tk) + (−1)k+1a0

= (−1)k+1(a0 + a1t+ a2t
2 + · · ·+ akt

k + tk+1).
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This shows the result holds for k + 1. By the Principle of Mathematical Induction, if

A =



0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 0 −ak−2

0 0 · · · 1 −ak−1


where a0, a1, . . . , ak−1 are arbitrary scalars, then the characteristic polynomial of A is

(−1)k(a0 + a1t+ · · ·+ ak−1t
t−1 + tk).
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