Problem Set #12 Solutions
Due Thursday, November 6

William M. Faucette

Problem 5.2.2. For each of the following matrices A € M,,»x,(R), test A for diagonaliz-
ability, and if A is digonalizable, find on invertible matrix ) and a diagonal matrix D such
that Q1AQ = D.

(a)

()
00 1
10 -1
01 1
(f)
110
01 2
00 3

Solution. (a) We compute the characteristic polynomial:

- 99
:det<18t 12)

=(1-1)?

So, the only eigenvalue is A = 1.

Next, we compute a basis for the eigenspace:

0 2|0
0 0]0



The solution to this homogeneous system of equations is the span of the vector

(o)

Since the algebraic multiplicity of the eigenvalue is 2 and the dimension of the
eigenspace is 1, this matrix is not diagonalizable.

00 1
1 0 —1
01 1
We compute the characteristic polynomial:
00 1 1 00
f(t) = det 10 =1|—-¢t{0 1 0
01 1 0 0 1
-t 0 1
=det| 1 -t -1
0 1 1-—t
=42 —t+1

= —(t— 1)t +1).

Since the characteristic polynomial doesn’t split over R, this matrix is not diagonal-
izable over R.

This matrix is, however, diagonalizable over C. The matrix has three distinct
eigenvalues—1 and +i— and since eigenvectors corresponding to distinct eigenvalues
are linearly independent, we see that this matrix is diagonalizable.

1 10
01 2
0 0 3

We compute the characteristic polynomial:

110 100
Ft)=det| |0 1 2] —t[0 1 0
00 3 00 1

1-t¢ 1 0
=det| O 1—-t 2
0 0 3-t

— (- 123 -1)



So, the two eigenvalues is A =1 and A\ = 3.

Next, we compute a basis for the eigenspace for A = 1:

NN O

01 0
00 0
0 0 0

The solution to this homogeneous system of equations is the span of the vector

1
0
0

Since the algebraic multiplicity of this eigenvalue is 2 and the dimension of this
eigenspace is 1, this matrix is not diagonalizable.



Problem 5.2.7. For

1 4
A= (2 3) c MQXQ(R),

find an expression for A", where n is an arbitrary positive integer.

1 4
().
First, we diagonalize A.
The characteristic polynomial for A is

Solution. Let

det<1;t 3:> —(1—6)(3—1)—8

=t> -4t -5
=({t—-5)(t+1)
The eigenvalues are A = —1,5.
Now, we find the eigenspaces.
For A = —1, we need the solution of the system

2 410
2 410/
The solution space is the span of the vector

For A = 5, we need the solution of the system
-4 410
2 =210/

1
The solution space is the span of the vector <1>
Let

Then

Call this matrix D.



Then

A" — (QDQfl)n
_ QDnQ—l

(V)G

(=2 1\ ((-=D)" 0
-( (9,

S5 -3
ST I,

Wik =

)—1
)
(—1)" + 257

—1)" + 25"

Wl
Wi Wl
\/

N————



Problem 5.2.20. Let Wy, Ws, ..., W}, be subspaces of a finite-dimensional vector space
V such that

k
> Wi=V.
i=1
Prove that V' is the direct sum of Wy, Wy, ..., Wy if and only if

k
dim (V) =)~ dim (W;).
=1

Solution. Proof. Let W1, Wy, ..., W} be subspaces of a finite-dimensional vector space

V such that i
S w=v
i=1

We prove the result by induction on k, with £ = 1 being trivial.
Suppose kK = 2. Since V = Wj + Wy, we will have V. = Wy & Wy if and only if
W1 N Wy ={0}. By the Dimension Theorem, we have

dim (V) = dim (Wl) + dim (WQ) — dim (Wl N WQ) .
From this we see that W; N Wy = {0} if and only if
dim (V) = dim (W) + dim (W3) .

This proves the result for k = 2.
Suppose the result if true for k = ¢. Let Wy, Wy, ..., Wy, Wy1 be subspaces of a
finite-dimensional vector space V such that

{41

Z wW; =V.
=1

Let

By the inductive hypothesis, W = @le W; if and only if

¢
dim (W) =Y _ dim (W;). (1)
i=1
From the case k = 2 above, we know that
{41
V=PWi=Wao Wy
i=1



if and only if W is a direct sum of Wy, ..., W, and dim (V) = dim (W) + dim (Wy41).
Combining this with Equation (1), we have

(+1
V:@Wi:WGSWeH
=1

if and only if

dim (V') = dim (W) + dim (Wy1)

This concludes the induction and proves the result. ]



Problem 5.4.5. Let T be a linear operator on a vector space V. Prove that the intersection
of any collection of T-invariant subspaces of V' is a T-invariant subspace of V.

Solution. Proof. Let T be a linear operator on a vector space V' and let {W,},cs be any
collection of T-invariant subspaces of V. We consider W = (¢ ; Wa.

Let v € W. Then v € W, for all « € J. Since each W, is T-invariant, T'(v) € W, for
all @« € J. Hence T'(v) € W. Since v € W is arbitrary, W is a T-invariant subspaces of
V. O



Problem 5.4.11. Let T be a linear operator on a vector space V', let v be a nonzero vector
in V, and let W be the T-cyclic subspace of V' generated by v. Prove that

(a) W is T-invariant.
(b) Any T-invariant subspace of V' containing v also contains W.

Solution. Let T" be a linear operator on a vector space V, let v be a nonzero vector in V/,
and let W be the T-cyclic subspace of V' generated by v.

(a) Proof. Since W is the T-cyclic subspace of V' generated by v,
W = span({v, T(v), T?(v), ... }).
Let o € W. Then

n
o= Z ;T (v),
=0

by the definition of W. Then
T() = T(Y_ a7/ (v))
§=0
=D oT(T7 (v)
=0

n .
=Y T (),
j=0

which we see is back in W. So, W is a T-invariant subspace of V. 0

(b) Proof. Let S be a T-invariant subspace of V' containing v. Since S is T-invariant and
v e S, T(v) e S. Inductively, T"(v) € S, for all n € N and since S is a subspace,
S must contain the span of this set of vectors, which is precisely W. So S contains
Ww. O



Problem 5.4.18. Let A be an n X n matrix with characteristic polynomial

f) = (=1)™" + ap_1t" 1 4+ +art + ag.
(a) Prove that A is invertible if and only if ag # 0.

(b) Prove that if A is invertible, then

A = (=1/ag) [(—1)" A" 4 ap 1 AP 2 4D ]

(c) Use (b) to compute A~! for

Solution. Let A be an n X n matrix with characteristic polynomial
f@E) = (=)"" + an1t"" + -+ + a1t + ap.
(a) The characteristic polynomial of A is defined by f(t) = det(A — tI,,). Evaluating at
t =0, we get f(0) = det(A). Since A is invertible if and only if det(A) # 0, we see

that A is invertible if and only if f(0) = ag is not equal to zero.

(b) Suppose A is invertible. By part (a), ag # 0. By the Cayley-Hamilton Theorem,

fA) = (-1)"A" + ap 1 A"+ + a1 A+ apl = 0.
By a bit of algebra, we have

0=(—1)"A"+ap, 1 A"+ +arA+agl
0=A [(—1)"14”_1 +ap 1 AV2 4+ a1] + aol

—agl = A[(-1)"A" "+ ap 1AM P+ 4 ag]
r—_L

” [A((-1)"A" ' + a1 AV 2+ +ay)]

1
I=A <—a [(—D)"A™ '+ ap A2 4 4 al]) :
0
So, we see that

1

ATl = -— [(—)"A" ' a1 A" 24 ]
0

10



(c) Use (b) to compute A~! for
1 2 1
A=10 2 3
0 0 -1

We first compute the characteristic polynomial for A.

F(t) = det(A — tI)
1—t 2 1
—det| 0 2-¢t 3
0 0 —1-—t
= 3 +2u2+t—2.

Since f(0) = ap = —2, A is invertible and

1 -1 -2
1
—1 2
A= (A 244D =0 § 3
0 0 -1

11



Problem 5.4.19. Let A denote the k£ X k£ matrix

00 -~ 0 —ag
10 --- 0 —-a
01 -~ 0 =—as
00 0 —ap_9
0 0 1 —ar—1
where ag, a1, ..., ag_1 are arbitrary scalars. Prove that the characteristic polynomial of

Ais
(=D)¥(ap + art + -+ ap_1t" 7+ 15).

Hint: Use mathematical induction on k, expanding the determinant along the first row.

Solution. Proof. Let A denote the k x k matrix

00 -+ 0 -—ap
10 -+ 0 —-a
01 0 —ag
00 -+ 0 —ago
00 -+ 1 —ap
where ag, a1, ..., ap_1 are arbitrary scalars. We prove that the characteristic polynomial

of A is
(=1)¥(ag + art + - - + ap_1t" 71 + tF)
by induction on k.
For k =1,
A= (~ao)
So, the characteristic polynomial is —ag—t = —(1)!(ag+t). So, the result is true for k = 1.
Assume the result is true for some k. That is, if

00 -+ 0 —ap

1 0 0 —-a

0 1 0 —ao
A= . )

0 0 0 —ap—2

0 0 1 —Qk_1

then
ft) = (—1)k(a0 +ait+---+ ak_ltk” 4 tk)

12



Consider the case k + 1. In that case,

[
o

0 0
0
0 0

ja)

The characteristic polynomial is then

f(t) = det

@)

_al

—ag_2
I —ag—

0 —al
0 —a

0  —ag—2
-t —ag—1
1 —Qf — t

We evaluate this determinant by expanding the determinant along the first row:

—t 0 0 —ayg

1 —t 0 —aq

1 0 —a2

f(t)=det| © :

0 O 0 —ag_o
0 0 —t — Q-1
0 o0 1 —ap—t

—t 0 —aq

1 0 —ag

= (—t)det

0 —ag—2
0 -+ —t —ap_q
0O -+ 1 —arp—t

+ (=1)%(—ap) det

(—t)(—l)k(al +agt + -+ apttTt + tk) + (—1)k+1a0

_ (—1)k+1(a0+a1t+a2t2+~--+aktk _’_tk—i-l).

13

o O



This shows the result holds for k£ + 1. By the Principle of Mathematical Induction, if

0 0 - 0 —ag
1 0 0 —ai
0 1 0 —ao
A= .
0 0 0 —ap_o
0 0 1 —ag_1
where ag, a1, ..., ap_1 are arbitrary scalars, then the characteristic polynomial of A is

(—1)k(a0 +at+ -+ ak_lttil + tk).

14



