
Problem Set #10 Solutions

Due Thursday, October 23

William M. Faucette

Problem 4.2.23. Prove that the determinant of an upper triangular matrix is the product
of its diagonal entries.

Solution. Proof. Let A be an upper triangular n × n matrix. We proceed by induction
on n. For n = 1, there’s nothing to prove. For n = 2, we have

det

(
a b
0 d

)
= ad− b · 0 = ad.

So, the result is true for n = 2.
Assume the result is true for some k ∈ N.
Let A be an upper triangular (k + 1) × (k + 1) matrix. Let A′ be the k × k matrix

obtained by deleting the first row and first column from A. Since A′ is also an upper
triangular matrix with the same diagonal entries as A for rows (and columns) 2 through
k + 1, by the inductive hypothesis, det(A′) = a22a33a44 · · · ak+1,k+1.

If we expand det(A) along the first column of A, there is only one nonzero entry:

det(A) = a11 det
(
A′)

= a11 [a22a33a44 · · · ak+1,k+1]

= a11a22 · · · ak+1,k+1.

So, we see the result is true for k + 1.
By the Principle of Mathematical Induction, the determinant of any upper triangular

matrix is the product of its diagonal entries.
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Problem 4.2.25. Prove that det(kA) = kn det(A) for any A ∈ Mn×n(F).

Solution 1. Proof. Let A ∈ Mn×n(F). We prove det(kA) = kn det(A) by induction on n.
For n = 1, there’s nothing to prove.
Suppose the result is true for some m ∈ N. That is, assume that

det(kA) = km det(A)

whenever A ∈ Mm×m(F).
Now, let A = [aij ] ∈ Mm+1×m+1(F). Let Aij denote the m ×m matrix obtained from

A by deleting the ith row and the jth column. Let B = kA. Notice if B = [bij ] then
bij = kaij . Let Bij denote the m×m matrix obtained from B by deleting the ith row and
the jth column.

Noting that Bij = kAij , by the induction hypothesis, we have det(Bij) = km det(Aij).
Let’s compute det(A) by expansion along the last row:

det(B) =
m+1∑
i=1

(−1)i+m+1bm+1,i det(Bm+1,i)

=
m+1∑
i=1

(−1)i+m+1kam+1,i · km det(Am+1,i)

= km+1
m+1∑
i=1

(−1)i+m+1am+1,i det(Am+1,i)

= km+1 det(A) .

This concludes the induction and the proof.

Solution 2. Proof. Let A ∈ Mn×n(F). Then

kA = k[(In)A] = [k(In)]A,

so that
det(kA) = det([k[(In)]A) = det([k(In)]) det(A) .

Now, k(In) is an upper triangular matrix with k’s along the diagonal, so by Exercise 4.2
#23, det(k(In)) = kn. Thus, we see that

det(kA) = det([k[(In)]) det(A) = kn det(A) ,

as desired.
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Problem 4.2.26. Let A ∈ Mn×n(F). Under what conditions is det(−A) = det(A)?

Solution. LetA ∈ Mn×n(F). From Exercise 4.2 #25, we know that det(−A) = (−1)n det(A).
So, det(−A) = det(A) if n is even. If n is odd, we have det(−A) = −det(A). From this,
we see that det(−A) = det(A) if and only if det(A) = − det(A), and this occurs if and only
if det(A) = 0 or F has characteristic 2.
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Problem 4.2.27. Prove that if A ∈ Mn×n(F) has two identical columns, then det(A) = 0.

Solution. Proof. Suppose A ∈ Mn×n(F) has two identical columns. Say columns i and j
are equal.

Perform the elementary column operation of adding −1 times column i to column j.
This elementary column does not change the determinant, but the resulting matrix has a
column of zeroes, and so has determinant zero.

We see then that det(A) = 0.
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Problem 4.3.9. Prove that an upper triangular n × n matrix is invertible if and only if
all its diagonal entries are nonzero.

Solution. Any square matrix is invertible if and only if its determinant is nonzero. The
determinant of an upper triangular square matrix is the product of its diagonal elements.
Putting these together, an upper triangular matrix is invertible if and only if all its diagonal
entries are nonzero.
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Problem 4.3.10. A matrix M ∈ Mn×n(C) is called nilpotent if, for some positive integer
k, Mk = 0, where 0 is the n×n zero matrix. Prove that if M is nilpotent, then det(M) = 0.

Solution. Let M be a nilpotent n × n matrix. So, there exists k ∈ N so that Mk = 0.
Then

0 = det(0) = det
(
Mk

)
= [det(M)]k,

so it follows that det(M) = 0.
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Problem 4.3.11. A matrix M ∈ Mn×n(C) is called skew-symmetric if M t = −M .
Prove that if M is skew-symmetric and n is odd, then M is not invertible. What
happens if n is even?

Solution. Let M ∈ Mn×n(C) be a skew-symmetric matrix with n odd. Then

det(M) = det
(
M t

)
= det(−M) = (−1)n det(M) = −det(M) .

Consequently, det(M) = 0.

As for what happens when n is even, the matrix

(
0 2
−2 0

)
is skew-symmetric, but it

has determinant 4.
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Problem 4.3.12. A matrix Q ∈ Mn×n(C) is called orthogonal if QQt = I. Prove that
if Q is orthogonal, then det(Q) = ±1.

Solution. Let Q ∈ Mn×n(C) be an orthogonal matrix. Then

1 = det(I) = det
(
QQt

)
= det(Q) det

(
Qt

)
= det(Q) det(Q) = [det(Q)]2

Consequently, det(Q) = ±1.
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Problem 4.3.15. Prove that if A, B ∈ Mn×n(F) are similar, then det(A) = det(B).

Solution. Let A, B ∈ Mn×n(F) be similar. Then there exists an invertible matrix P ∈
Mn×n(F) so that B = PAP−1. But then

det(B) = det
(
PAP−1

)
= det(P ) det(A) [det(P )]−1 = det(A) .
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