

Problem Set #8

Due Thursday October 9

William M. Faucette

Problem 3.4.1. Label the following statements as true or false.

- (a) If $(A'|b')$ is obtained from $(A|b)$ by a finite sequence of elementary column operations, then the systems $Ax = b$ and $A'x = b'$ are equivalent.
- (b) If $(A'|b')$ is obtained from $(A|b)$ by a finite sequence of elementary row operations, then the systems $Ax = b$ and $A'x = b'$ are equivalent.
- (c) If A is an $n \times n$ matrix with rank n , then the reduced row echelon form of A is I_n .
- (d) Any matrix can be put in reduced row echelon form by means of a finite sequence of elementary row operations.
- (e) If $(A|b)$ is in reduced row echelon form, then the system $Ax = b$ is consistent.
- (f) Let $Ax = b$ be a system of m linear equations in n unknowns for which the augmented matrix is in reduced row echelon form. If this system is consistent, the dimension of the solution set of $Ax = 0$ is $n - r$, where r equals the number of nonzero rows in A .
- (g) If a matrix A is transformed by elementary row operations into a matrix A' in reduced row echelon form, then the number of nonzero rows in A' equals the rank of A .

Problem 3.4.2. Use Gaussian elimination to solve the following systems of linear equations.

$$(b) \begin{cases} x_1 - 2x_2 - x_3 = 1 \\ 2x_1 - 3x_2 + x_3 = 6 \\ 3x_1 - 5x_2 = 7 \\ x_1 + 5x_3 = 9 \end{cases}$$

$$(f) \begin{cases} x_1 + 2x_2 - x_3 + 3x_4 = 2 \\ 2x_1 + 4x_2 - x_3 + 6x_4 = 5 \\ x_2 + 2x_4 = 3 \end{cases}$$

Problem 3.4.4. For each of the systems that follow, apply Exercise 3 to determine whether the system is consistent. If the system is consistent, find all solutions. Finally, find a basis for the solution set of the corresponding homogeneous system.

(b)

$$\begin{aligned}x_1 + x_2 - 3x_3 + x_4 &= -2 \\x_1 + x_2 + x_3 - x_4 &= 2 \\x_1 + x_2 - x_3 &= 0\end{aligned}$$

Problem 3.4.5. Let the reduced row echelon form of A be

$$\begin{pmatrix} 1 & 0 & 2 & 0 & -2 \\ 0 & 1 & -5 & 0 & -3 \\ 0 & 0 & 0 & 1 & 6 \end{pmatrix}$$

Determine A if the first, second, and fourth columns of A are

$$\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \text{ and } \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix},$$

respectively.