

Problem Set #6

Due Thursday, September 25

William M. Faucette

Problem 2.6.1. Label the following statements as true or false. Assume that all vector spaces are finite-dimensional.

- (a) Every linear transformation is a linear functional.
- (b) A linear functional defined on a field may be represented as a 1×1 matrix.
- (c) Every vector space is isomorphic to its dual space.
- (d) Every vector space is the dual of some other vector space.
- (e) If T is an isomorphism from V into V^* and β is a finite ordered basis for V , then $T(\beta) = \beta^*$.
- (f) If T is a linear transformation from V to W , then the domain of $(T^t)^t$ is $(V^*)^*$.
- (g) If V is isomorphic to W , then V^* is isomorphic to W^* .
- (h) The derivative of a function may be considered as a linear functional on the vector space of differentiable functions.

Problem 2.6.4. Let $V = \mathbb{R}^3$, and define $f_1, f_2, f_3 \in V^*$ as follows:

$$f_1(x, y, z) = x - 2y, \quad f_2(x, y, z) = x + y + z, \quad f_3(x, y, z) = y - 3z.$$

Prove that $\{f_1, f_2, f_3\}$ is a basis for V^* , and then find a basis for V for which it is the dual basis.

Problem 2.6.5. Let $V = P_1(\mathbb{R})$, and, for $p(x) \in V$, define $f_1, f_2 \in V^*$ by

$$f_1(p(x)) = \int_0^1 p(t) dt \text{ and } f_2(p(x)) = \int_0^2 p(t) dt.$$

Prove that $\{f_1, f_2\}$ is a basis for V^* , and find a basis for V for which it is the dual basis.

Problem 2.6.8. Show that every plane through the origin in \mathbb{R}^3 may be identified with the null space of a vector in $(\mathbb{R}^3)^*$. State an analogous result for \mathbb{R}^2 .

Problem 3.1.1. Label the following statements as true or false.

- (a) An elementary matrix is always square.
- (b) The only entries of an elementary matrix are zeros and ones.
- (c) The $n \times n$ identity matrix is an elementary matrix.
- (d) The product of two $n \times n$ elementary matrices is an elementary matrix.
- (e) The inverse of an elementary matrix is an elementary matrix.
- (f) The sum of two $n \times n$ elementary matrices is an elementary matrix.
- (g) The transpose of an elementary matrix is an elementary matrix.
- (h) If B is a matrix that can be obtained by performing an elementary row operation on a matrix A , then B can also be obtained by performing an elementary column operation on A .
- (i) If B is a matrix that can be obtained by performing an elementary row operation on a matrix A , then A can be obtained by performing an elementary row operation on B .

Problem 3.1.2. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 1 \\ 1 & -3 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -2 & -2 \\ 1 & -3 & 1 \end{pmatrix}.$$

Find an elementary operation that transforms A into B and an elementary operation that transforms B into C . By means of several additional operations, transform C into I_3 .

Problem 3.1.3. Use the proof of Theorem 3.2 to obtain the inverse of each of the following elementary matrices.

$$(a) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$(b) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(c) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

Problem 3.1.5. Prove that E is an elementary matrix if and only if E^t is.