

Problem Set #4
Due Thursday, September 11

William M. Faucette

Problem 2.2.4. Define

$$T : M_{2 \times 2}(\mathbb{R}) \rightarrow P_2(\mathbb{R}) \text{ by } T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (2d)x + bx^2.$$

Let

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}, \text{ and } \gamma = \{1, x, x^2\}.$$

Compute $[T]_{\beta}^{\gamma}$.

Problem 2.2.8. Let V be an n -dimensional vector space with an ordered basis β . Define $T : V \rightarrow \mathbb{F}^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.

Problem 2.2.9. Let V be the vector space of complex numbers over the field \mathbb{R} . Define $T : V \rightarrow V$ by $T(z) = \bar{z}$, where \bar{z} is the complex conjugate of z . Prove that T is linear, and compute $[T]_{\beta}$, where $\beta = \{1, i\}$. (Recall by Exercise 38 of Section 2.1 that T is not linear if V is regarded as a vector space over the field \mathbb{C} .)

Problem 2.2.15. Let V and W be vector spaces, and let S be a subset of V . Define $S^0 = \{T \in \mathcal{L}(V, W) : T(x) = 0 \text{ for all } x \in S\}$. Prove the following statements.

- (a) S_0 is a subspace of $\mathcal{L}(V, W)$.
- (b) If S_1 and S_2 are subsets of V and $S_1 \subseteq S_2$, then $S_2^0 \subseteq S_1^0$.
- (c) If V_1 and V_2 are subspaces of V , then $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$

Problem 2.3.3. Let $g(x) = 3 + x$. Let $T : P_2(\mathbb{R}) \rightarrow P_2(\mathbb{R})$ and $U : P_2(\mathbb{R}) \rightarrow \mathbb{R}^3$ be the linear transformations respectively defined by

$$T(f(x)) = f'(x)g(x) + 2f(x) \text{ and } U(a + bx + cx^2) = (a + b, c, a - b).$$

Let β and γ be the standard ordered bases of $P_2(\mathbb{R})$ and \mathbb{R}^3 , respectively.

- (a) Compute $[U]_{\beta}^{\gamma}$, $[T]_{\beta}$, and $[UT]_{\beta}^{\gamma}$ directly. Then use Theorem 2.11 to verify your result.

(b) Let $h(x) = 3 - 2x + x^2$. Compute $[h(x)]_\beta$ and $[U(h(x))]_\gamma$. Then use $[U]_\beta^\gamma$ from (a) and Theorem 2.14 to verify your result.

Problem 2.3.9. Find linear transformations $U, T : \mathbb{F}^2 \rightarrow \mathbb{F}^2$ such that $UT = T_0$ (the zero transformation) but $TU \neq T_0$. Use your answer to find matrices A and B such that $AB = 0$ but $BA \neq 0$.

Problem 2.3.11. Let V be a vector space, and let $T : V \rightarrow W$ be linear. Prove that $T^2 = T_0$ if and only if $R(T) \subseteq N(T)$.

Problem 2.3.13. Let A and B be $n \times n$ matrices. Recall that the trace of A is defined by

$$\text{tr}(A) = \sum_{i=1}^n A_{ii}.$$

Prove that $\text{tr}(AB) = \text{tr}(BA)$ and $\text{tr}(A) = \text{tr}(A^t)$.