

Problem Set #3

Due Thursday, September 4

William M. Faucette

Problem 1.6.14. Find bases for the following subspaces of \mathbb{F}^5 :

$$W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{F}^5 : a_1 - a_3 - a_4 = 0\}$$

and

$$W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{F}^5 : a_2 = a_3 = a_4 \text{ and } a_1 + a_5 = 0\}.$$

What are the dimensions of W_1 and W_2 ?

Problem 1.6.15. The set of all $n \times n$ matrices having trace equal to zero is a subspace W of $M_{n \times n}(\mathbb{F})$. Find a basis for W . What is the dimension of W ?

Problem 1.6.16. The set of all upper triangular $n \times n$ matrices is a subspace W of $M_{n \times n}(\mathbb{F})$. Find a basis for W . What is the dimension of W ?

Problem 1.6.17. The set of all skew-symmetric $n \times n$ matrices is a subspace W of $M_{n \times n}(\mathbb{F})$. Find a basis for W . What is the dimension of W ?

Problem 2.1.5. Prove that

$$\begin{aligned} T : P_2(\mathbb{R}) &\rightarrow P_3(\mathbb{R}) \\ T(f(x)) &= xf(x) + f'(x). \end{aligned}$$

is a linear transformation, and find bases for both $N(T)$ and $R(T)$. Then compute the nullity and rank of T , and verify the dimension theorem. Finally, use the appropriate theorems in this section to determine whether T is one-to-one or onto.

Problem 2.1.6. Prove that

$$\begin{aligned} T : M_{n \times n}(\mathbb{F}) &\rightarrow \mathbb{F} \\ T(A) = \text{tr}(A) &= \sum_{i=1}^n A_{ii}. \end{aligned}$$

is a linear transformation, and find bases for both $N(T)$ and $R(T)$. Then compute the nullity and rank of T , and verify the dimension theorem. Finally, use the appropriate theorems in this section to determine whether T is one-to-one or onto.

Problem 2.1.14. Let V and W be vector spaces and $T : V \rightarrow W$ be linear.

- (a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W .
- (b) Suppose that T is one-to-one and that S is a subset of V . Prove that S is linearly independent if and only if $T(S)$ is linearly independent.
- (c) Suppose $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V and T is one-to-one and onto. Prove that $T(\beta) = \{T(v_1), T(v_2), \dots, T(v_n)\}$ is a basis for W .