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Test #1 MATH 3243

Problem 1. (20 pts) Mark each as true or false. Briefly justify your answer.

(a) Every Cauchy sequence is bounded.

Statement (a) is true: A Cauchy sequence is convergent and a convergent sequence
is bounded. (One can also show directly that a Cauchy sequence is bounded.)

(b) Let A ⊂ R be bounded below and let B = {b ∈ R : b is a lower bound for A}. Then
B has a maximum.

Statement (b) is true: we have maxB = inf A.

(c) The set {x ∈ N : x < 17} is countable.

Statement (c) is false: By your author’s definition, countable sets are infinite. This
set is finite.

(d) If
∑

x2n converges and xn ≥ 0 for all n, then
∑

xn converges.

Statement (d) is false: The harmonic series
∑

1/n diverges but the sequence
∑

1/n2

converges.

(e) Given a, b ∈ R with a < b, the set of irrationals in the interval (a, b) is uncountable.

Statement (e) is true: The rationals are countable but the interval (a, b) is uncount-
able, so there are uncountably many irrationals left.
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Problem 2. (20 pts) Prove using the definition that the sequence( √
n√

n+ 1

)
converges to 1.

Solution. Proof. Let ϵ > 0. Let N ∈ N satisfy N > 1/ϵ2. Then for n ≥ N , we have
n ≥ N > 1/ϵ2 so 1/

√
n < ϵ hence∣∣∣∣ √
n√

n+ 1
− 1

∣∣∣∣ = ∣∣∣∣√n− (
√
n+ 1)√

n+ 1

∣∣∣∣ = 1√
n+ 1

<
1√
n
< ϵ.

thus lim
√
n/(

√
n+ 1) = 1.
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Problem 3. (20 pts) Let A ⊆ R be nonempty and bounded above. Suppose x ≥ 0 for all
x ∈ A. Let

1

2
A =

{
1

2
x : x ∈ A

}
.

(a) Show that supA ≥ 0. (Why does supA exist?)

(b) Prove that

sup

(
1

2
A

)
=

1

2
supA

Solution. (a) Proof. First, supA exists by the Axiom of Completeness. For any a ∈ A
is an upper found for A so supA ≥ a ≥ 0.

(b) Let s = supA. We show that 1
2s = sup

(
1
2A

)
. For any x ∈ 1

2A, we have 2x ∈ A, so
2x ≤ s and x ≤ s/2. So, s/2 is an upper bound for 1

2A.

If b is an upper bound for 1
2A, then

1
2a ≤ b for all a ∈ A. But then a ≤ 2b for all

a ∈ A, so 2b is an upper bound for A. Hence s ≤ 2b and s/2 ≤ b.

This makes s/2 the least upper bound for 1
2A.
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Problem 4. (20 pts) Let (an) be a convergent sequence with (an) → a and let (bn) be
a convergent sequence with (bn) → b. By the Algebraic Limit Theorem, we know that
(an + bn) → a+ b.

Prove that (an + bn) converges to a+ b directly using the definition.

Solution. Proof. Let (an) be a convergent sequence with (an) → a and let (bn) be a
convergent sequence with (bn) → b.

Let ϵ > 0. Since (an) converges to a, there exists N1 so that |an − a| < ϵ/2 whenever
n ≥ N1. Similarly, since (bn) converges to b, there exists N2 so that |bn−b| < ϵ/2 whenever
n ≥ N2. Let N = max{N1, N2} and let n ≥ N . Then

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b|

<
ϵ

2
+

ϵ

2
= ϵ.

Since ϵ > 0 is arbitrary, (an + bn) converges to a+ b by definition.
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Problem 5. (20 pts) Let (an) be a monotone sequence and suppose that (an) has a
convergent subsequence. Show that (an) converges.

Solution. Proof. Let (an) be a monotone sequence and suppose that (an) has a convergent
subsequence (ank

) converging to ℓ. Without loss of generality, we can assume (an) is
increasing.

Let ϵ > 0. Since (ank
) converges to ℓ, there exists K ∈ N so that |ank

− ℓ| < ϵ whenever
k ≥ K. Let N = nK and let n ≥ N . Then

anK ≤ an ≤ ℓ.

But then |an − ℓ| < ϵ.
Since ϵ > 0 is arbitrary, (an) converges to ℓ as well.
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