Test #1
MATH 3243

Name (printed):

Problem

Score

Total




Test #1 MATH 3243

Problem 1. (20 pts) Mark each as true or false. Briefly justify your answer.

(a)

(d)

Every Cauchy sequence is bounded.

Statement (a) is true: A Cauchy sequence is convergent and a convergent sequence
is bounded. (One can also show directly that a Cauchy sequence is bounded.)

Let A C R be bounded below and let B = {b € R : b is a lower bound for A}. Then
B has a maximum.

Statement (b) is true: we have max B = inf A.

The set {z € N: 2z < 17} is countable.

Statement (c) is false: By your author’s definition, countable sets are infinite. This
set is finite.

If >~ 22 converges and x,, > 0 for all n, then Y z,, converges.

Statement (d) is false: The harmonic series > 1/n diverges but the sequence Y 1/n?
converges.

Given a,b € R with a < b, the set of irrationals in the interval (a,b) is uncountable.

Statement (e) is true: The rationals are countable but the interval (a,b) is uncount-
able, so there are uncountably many irrationals left.
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Problem 2. (20 pts) Prove using the definition that the sequence
Vn
vVn+1

Solution. Proof. Let ¢ > 0. Let N € N satisfy N > 1/e2. Then for n > N, we have
n >N >1/e? so 1/y/n < € hence

e

converges to 1.

VRSN
thus lim /n/(y/n+1) = 1. O
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Problem 3. (20 pts) Let A C R be nonempty and bounded above. Suppose x > 0 for all
x € A. Let

1A i €A

5A=15%:2 .

(a) Show that sup A > 0. (Why does sup A exist?)

(b) Prove that

1 1
sup (2A> = isupA

Solution. (a) Proof. First, sup A exists by the Axiom of Completeness. For any a € A
is an upper found for A so sup A > a > 0. O

(b) Let s = sup A. We show that %s = sup (%A) For any x € %A, we have 2z € A, so
2z < s and x < 5/2. So, s/2 is an upper bound for A.

If b is an upper bound for %A, then %a < b for all a € A. But then a < 2b for all
a € A, so 2b is an upper bound for A. Hence s < 2b and s/2 < b.

This makes s/2 the least upper bound for %A.
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Problem 4. (20 pts) Let (a,) be a convergent sequence with (a,) — a and let (b,) be
a convergent sequence with (b,) — b. By the Algebraic Limit Theorem, we know that
(an, + byp) — a+b.

Prove that (a, + b,) converges to a + b directly using the definition.

Solution. Proof. Let (a,) be a convergent sequence with (a,) — a and let (b,) be a
convergent sequence with (b,) — b.

Let € > 0. Since (ay) converges to a, there exists N so that |a, — a| < €/2 whenever
n > Nj. Similarly, since (b,,) converges to b, there exists Ny so that |b, —b| < €/2 whenever
n > Na. Let N = max{Ni, No} and let n > N. Then

[(an +bn) — (a+b)| = [(an — a) + (b — )|
< |an — a| + |by, — b

cELE_
s tg=¢
Since € > 0 is arbitrary, (a, + by,) converges to a + b by definition. O
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Problem 5. (20 pts) Let (a,) be a monotone sequence and suppose that (ay) has a
convergent subsequence. Show that (a,) converges.

Solution. Proof. Let (a,) be a monotone sequence and suppose that (a,) has a convergent
subsequence (ap,) converging to ¢. Without loss of generality, we can assume (a,) is
increasing.

Let € > 0. Since (ay, ) converges to ¢, there exists K € N so that |a,, — | < € whenever
k> K. Let N =ng and let n > N. Then

Ong < ap </

But then |a, —{| < e.
Since € > 0 is arbitrary, (a,) converges to ¢ as well. O



