

Differentiable Limit Theorem

Understanding Analysis by Stephen Abbott

slideshow by
William M. Faucette

University of West Georgia

1 Differentiable Limit Theorem

Differentiable Limit Theorem

Differentiable Limit Theorem

Theorem (Differentiable Limit Theorem)

Let $f_n \rightarrow f$ pointwise on the closed interval $[a, b]$, and assume that each f_n is differentiable. If (f'_n) converges uniformly on $[a, b]$ to a function g , then the function f is differentiable and $f' = g$.

This says convergence preserves differentiability of functions provided the sequence of functions converges pointwise and the sequence of derivatives converges uniformly.

Proof

Proof

Let $f_n \rightarrow f$ pointwise on the closed interval $[a, b]$, and suppose that each f_n is differentiable. Further suppose that If (f'_n) converges uniformly on $[a, b]$ to a function g .

Notice we state the hypotheses first.

Proof (cont.)

Proof

Let $c \in [a, b]$ be fixed. We want $f'(c)$ to equal $g(c)$.

Let $\epsilon > 0$.

We fix c from the start because differentiability happens one point at a time.

Almost every proof involving an epsilon-delta argument begins with the sentence “Let $\epsilon > 0$.”

Proof (cont.)

Proof

First we write

$$\begin{aligned} \left| \frac{f(x) - f(c)}{x - c} - g(c) \right| &\leq \left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| \\ &\quad + \left| \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) \right| + |f'_n(c) - g(c)| \end{aligned}$$

This is giving insight into how the proof will proceed. We will make each of these last three quantities less than $\epsilon/3$.

Proof (cont.)

Proof

First we write

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| \leq \left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| + \left| \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) \right| + |f'_n(c) - g(c)|$$

We use the pointwise convergence of (f_n) and the uniform convergence of (f'_n) to find an f_n that forces the first and third terms to be less than $\epsilon/3$.

Proof (cont.)

Proof

First we write

$$\begin{aligned} \left| \frac{f(x) - f(c)}{x - c} - g(c) \right| &\leq \left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| \\ &\quad + \left| \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) \right| + |f'_n(c) - g(c)| \end{aligned}$$

Once we find that f_n , we can then use differentiability of f_n to produce a δ that makes the middle term less than $\epsilon/3$ for all x satisfying $0 < |x - c| < \delta$.

Proof (cont.)

Proof

First choosing $N_1 \in \mathbb{N}$ so that

$$|f'_m(c) - g(c)| < \frac{\epsilon}{3} \quad (1)$$

for all $m \geq N_1$.

We can do this because $(f'_n(c))$ converges $g(c)$.

Proof (cont.)

Proof

Since (f'_n) converges uniformly, the Cauchy Criterion for Uniform Convergence says we can find N_2 so that whenever $n, m \geq N_2$,

$$|f'_m(x) - f'_n(x)| < \frac{\epsilon}{3}$$

for all $x \in [a, b]$.

We can do this because (f'_n) converges uniformly on $[a, b]$. This statement is saying the sequence (f'_n) is uniformly Cauchy on $[a, b]$.

Proof (cont.)

Proof

Let $N = \max\{N_1, N_2\}$.

We want both of the previous conditions to happen, so we want N at least as big as each of them.

Proof (cont.)

Proof

Since f_N is differentiable, there exists $\delta > 0$ so that

$$\left| \frac{f_N(x) - f_N(c)}{x - c} - f'_N(c) \right| < \frac{\epsilon}{3} \quad (2)$$

whenever $0 < |x - c| < \delta$.

This is the δ we want, but it takes some effort to show that.

Now that we have one f_N fixed, we can use the fact that f_N is differentiable at c to find this δ . Now we have to show this δ does all the things we want it to do.

Proof (cont.)

Proof

Fix x satisfying $0 < |x - c| < \delta$.

Let $h(x) = f_m(x) - f_N(x)$.

Applying the Generalized Mean Value Theorem to h , we get

$$\frac{h(x) - h(c)}{x - c} = h'(\alpha)$$

for some α between c and x .

Notice h satisfies the hypotheses of the Generalized Mean Value Theorem since the sequence (f_n) does.

Proof (cont.)

Proof

That is,

$$\begin{aligned}& \frac{f_m(x) - f_N(x) - (f_m(c) - f_N(c))}{x - c} \\&= \frac{f_m(x) - f_m(c) - (f_N(x) - f_N(c))}{x - c} \\&= f'_m(\alpha) - f'_N(\alpha).\end{aligned}$$

This just substitutes the definition of h into the last result. Notice

$$\frac{f_m(x) - f_N(x) - (f_m(c) - f_N(c))}{x - c} = \frac{f_m(x) - f_m(c) - (f_N(x) - f_N(c))}{x - c}.$$

Proof (cont.)

Proof

So

$$\left| \frac{f_m(x) - f_m(c)}{x - c} - \frac{f_N(x) - f_N(c)}{x - c} \right| < \frac{\epsilon}{3}.$$

Letting $m \rightarrow \infty$, the Order Limit Theorem gives us

$$\left| \frac{f(x) - f(c)}{x - c} - \frac{f_N(x) - f_N(c)}{x - c} \right| \leq \frac{\epsilon}{3}. \quad (3)$$

The first inequality comes from the choice of N provided $m \geq N$.
(See slide 11 where we chose N_2 .)

The second inequality is just an application of the Order Limit Theorem to the first inequality.

Proof (cont.)

Proof

The inequalities (1), (2), and (3), together imply that for x satisfying $0 < |x - c| < \delta$

$$\begin{aligned} \left| \frac{f(x) - f(c)}{x - c} - g(c) \right| &\leq \left| \frac{f(x) - f(c)}{x - c} - \frac{f_N(x) - f_N(c)}{x - c} \right| \\ &\quad + \left| \frac{f_N(x) - f_N(c)}{x - c} - f'_N(c) \right| + |f'_N(c) - g(c)| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned}$$

We have found each of these expressions is less than $\epsilon/3$. So, put it all together.

Proof (cont.)

Proof

Since x satisfying $0 < |x - c| < \delta$ is arbitrary, we have shown that

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| < \epsilon$$

for all $0 < |x - c| < \delta$.

So,

$$\lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c} = g(c).$$

which says $f'(c) = g(c)$.

This is just the definition of limit.

Proof (cont.)

Proof

Of course, since c is arbitrary, this proves the result for all c :

$$\lim_{x \rightarrow c} \frac{f(x) - f(c)}{x - c} = g(c).$$

which says $f'(c) = g(c)$ for all c .

We fixed c initially so our computation would prove the result for all c .