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Differentiable Limit Theorem

Theorem (Differentiable Limit Theorem)

Let fn → f pointwise on the closed interval [a, b], and assume that
each fn is differentiable. If (f ′n) converges uniformly on [a, b] to a
function g, then the function f is differentiable and f ′ = g.

This says convergence preserves differentiability of functions
provided the sequence of functions converges pointwise and the
sequence of derivatives converges uniformly.
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Proof

Proof

Let fn → f pointwise on the closed interval [a, b], and suppose that
each fn is differentiable. Further suppose that If (f ′n) converges
uniformly on [a, b] to a function g .

Notice we state the hypotheses first.
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Proof (cont.)

Proof

Let c ∈ [a, b] be fixed. We want f ′(c) to equal g(c).
Let ϵ > 0.

We fix c from the start because differentiability happens one point
at a time.

Almost every proof involving an epsilon-delta argument begins with
the sentence “Let ϵ > 0.”
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Proof (cont.)

Proof

First we write∣∣∣∣ f (x)− f (c)

x − c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣ f (x)− f (c)

x − c
− fn(x)− fn(c)

x − c

∣∣∣∣
+

∣∣∣∣ fn(x)− fn(c)

x − c
− f ′n(c)

∣∣∣∣+ ∣∣f ′n(c)− g(c)
∣∣

This is giving insight into how the proof will proceed. We will
make each of these last three quantities less than ϵ/3.
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Proof (cont.)

Proof

First we write∣∣∣∣ f (x)− f (c)

x − c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣ f (x)− f (c)

x − c
− fn(x)− fn(c)

x − c

∣∣∣∣
+

∣∣∣∣ fn(x)− fn(c)

x − c
− f ′n(c)

∣∣∣∣+ ∣∣f ′n(c)− g(c)
∣∣

We use the pointwise convergence of (fn) and the uniform
convergence of (f ′n) to find an fn that forces the first and third
terms to be less than ϵ/3.
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Proof (cont.)

Proof

First we write∣∣∣∣ f (x)− f (c)

x − c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣ f (x)− f (c)

x − c
− fn(x)− fn(c)

x − c

∣∣∣∣
+

∣∣∣∣ fn(x)− fn(c)

x − c
− f ′n(c)

∣∣∣∣+ ∣∣f ′n(c)− g(c)
∣∣

Once we find that fn, we can then use differentiability of fn to
produced a δ that makes the middle term less than ϵ/3 for all x
satisfying 0 < |x − c| < δ.
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Proof (cont.)

Proof

First choosing N1 ∈ N so that∣∣f ′m(c)− g(c)
∣∣ < ϵ

3
(1)

for all m ≥ N1.

We can do this because (f ′n(c)) converges g(c).
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Proof (cont.)

Proof

Since (f ′n) converges uniformly, the Cauchy Criterion for Uniform
Convergence says we can find N2 so that whenever n, m ≥ N2,

|f ′m(x)− f ′n(x)| <
ϵ

3

for all x ∈ [a, b].

We can do this because (f ′n) converges uniformly on [a, b]. This
statement is saying the sequence (f ′n) is uniformly Cauchy on [a, b].
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Proof (cont.)

Proof

Let N = max{N1,N2}.

We want both of the previous conditions to happen, so we want N
at least as big as each of them.

12 / 19



Proof (cont.)

Proof

Since fN is differentiable, there exists δ > 0 so that∣∣∣∣ fN(x)− fN(c)

x − c
− f ′N(c)

∣∣∣∣ < ϵ

3
(2)

whenever 0 < |x − c| < δ.
This is the δ we want, but it takes some effort to show that.

Now that we have one fN fixed, we can use the fact that fN is
differentiable at c to find this δ. Now we have to show this δ does
all the things we want it to do.
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Proof (cont.)

Proof

Fix x satisfying 0 < |x − c | < δ.

Let h(x) = fm(x)− fN(x).

Applying the Generalized Mean Value Theorem to h, we get

h(x)− h(c)

x − c
= h′(α)

for some α between c and x .

Notice h satisfies the hypotheses of the Generalized Mean Value
Theorem since the sequence (fn) does.
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Proof (cont.)

Proof

That is,

fm(x)− fN(x)− (fm(c)− fN(c))

x − c

=
fm(x)− fm(c)− (fN(x)− fN(c))

x − c

= f ′m(α)− f ′N(α).

This just substitutes the definition of h into the last result. Notice

fm(x)−fN(x)−(fm(c)−fN(c))
x−c = fm(x)−fm(c)−(fN(x)−fN(c))

x−c .
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Proof (cont.)

Proof

So ∣∣∣∣ fm(x)− fm(c)

x − c
− fN(x)− fN(c)

x − c

∣∣∣∣ < ϵ

3
.

Letting m → ∞, the Order Limit Theorem gives us∣∣∣∣ f (x)− f (c)

x − c
− fN(x)− fN(c)

x − c

∣∣∣∣ ≤ ϵ

3
. (3)

The first inequality comes from the choice of N provided m ≥ N.
(See slide 11 where we chose N2.)

The second inequality is just an application of the Order Limit
Theorem to the first inequality.
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Proof (cont.)

Proof

The inequalities (1), (2), and (3), together imply that for x
satisfying 0 < |x − c| < δ

∣∣∣∣ f (x)− f (c)

x − c
− g(c)

∣∣∣∣ ≤ ∣∣∣∣ f (x)− f (c)

x − c
− fN(x)− fN(c)

x − c

∣∣∣∣
+

∣∣∣∣ fN(x)− fN(c)

x − c
− f ′N(c)

∣∣∣∣+ ∣∣f ′N(c)− g(c)
∣∣

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

We have found each of these expressions is less than ϵ/3. So, put
it all together.
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Proof (cont.)

Proof

Since x satisfying 0 < |x − c | < δ is arbitrary, we have shown that∣∣∣∣ f (x)− f (c)

x − c
− g(c)

∣∣∣∣ < ϵ

for all 0 < |x − c | < δ.
So,

lim
x→c

f (x)− f (c)

x − c
= g(c).

which says f ′(c) = g(c).

This is just the definition of limit.
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Proof (cont.)

Proof

Of course, since c is arbitrary, this proves the result for all c:

lim
x→c

f (x)− f (c)

x − c
= g(c).

which says f ′(c) = g(c) for all c.

We fixed c initially so our computation would prove the result for
all c .
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