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Differentiable Limit Theorem

Theorem (Differentiable Limit Theorem)

Let f, — f pointwise on the closed interval [a, b], and assume that
each f, is differentiable. If (f]) converges uniformly on [a, b] to a
function g, then the function f is differentiable and f' = g.

This says convergence preserves differentiability of functions
provided the sequence of functions converges pointwise and the
sequence of derivatives converges uniformly.
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Proof

Let f, — f pointwise on the closed interval [a, b], and suppose that
each f, is differentiable. Further suppose that If (f!) converges
uniformly on [a, b] to a function g.

Notice we state the hypotheses first.
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Proof (cont.)

Let ¢ € [a, b] be fixed. We want f/(c) to equal g(c).
Let € > 0.

We fix ¢ from the start because differentiability happens one point
at a time.

Almost every proof involving an epsilon-delta argument begins with
the sentence “Let € > 0."
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Proof (cont.)

First we write

f(x) = f(c) _g(c)’ < ‘f(X) —f(c)  fa(x) — fa(c)

X—C X—C X—C

fa(x) — fa(c)

— ()

+ +|fa(c) — g(c))|

This is giving insight into how the proof will proceed. We will
make each of these last three quantities less than ¢/3.

7/19



Proof (cont.)

First we write

=) _ g |- 1) 5= 500
|20 ) 4 [£i() - ae)

We use the pointwise convergence of (f,) and the uniform
convergence of (f;) to find an f, that forces the first and third
terms to be less than ¢/3.
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Proof (cont.)

First we write

f(x) — f(c)

X—C

f(x) = f(c) _ falx) = falc)

fn(X) — fn(C) o f/(c)

—g(c)] g\

_l’_

+fa(c) — &(c)|

Once we find that f,, we can then use differentiability of f, to
produced a ¢ that makes the middle term less than ¢/3 for all x
satisfying 0 < |x — c| < 6.
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Proof (cont.)

Proof
First choosing N; € N so that

[fn(c) — g(0)] < 5 1)

for all m > Nj.

We can do this because (f(c)) converges g(c).
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Proof (cont.)

Proof

Since (f,)) converges uniformly, the Cauchy Criterion for Uniform
Convergence says we can find N> so that whenever n, m > N,

) = ()] < 3

for all x € [a, b].

We can do this because (f;) converges uniformly on [a, b]. This
statement is saying the sequence () is uniformly Cauchy on [a, b].
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Proof (cont.)

Proof
Let N = max{Nl, N2}.

We want both of the previous conditions to happen, so we want N
at least as big as each of them.

12/19



Proof (cont.)

Since fy is differentiable, there exists § > 0 so that

fn(x) — fu(c)

—f!
¢ n(c)| <

()

(oSN Ne)

whenever 0 < |x — ¢| < 6.
This is the § we want, but it takes some effort to show that.

Now that we have one fy fixed, we can use the fact that fy is
differentiable at ¢ to find this 6. Now we have to show this § does
all the things we want it to do.
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Proof (cont.)

Fix x satisfying 0 < |x — c| < 4.

Let h(x) = fim(x) — fv(x).
Applying the Generalized Mean Value Theorem to h, we get
h(x) — h(c)

X—=C

= H(a)

for some « between ¢ and x.

Notice h satisfies the hypotheses of the Generalized Mean Value
Theorem since the sequence (f,) does.
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Proof (cont.)

That is,

fin(x) = fu(x) = (fin(c) — (<))
 Fa(X) = () = (fu(x) — fu(c))

X—C

= fn(a) — fy(c).

This just substitutes the definition of h into the last result. Notice

fn (x) =i (x) = (fm(€) = Fn(€)) _ fn(x)—~fm(c)—(Fn(x)~f(c))

X—C X—C
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Proof (cont.)

So
fm(x) — fm(c)  fu(x) — fn(c)

X—C X—C

<6
3.

Letting m — oo, the Order Limit Theorem gives us

‘f(X) —fe) _ fn(x) = fn(e)

(3)

X—C X—C

The first inequality comes from the choice of N provided m > N.
(See slide 11 where we chose N.)

The second inequality is just an application of the Order Limit
Theorem to the first inequality.
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Proof (cont.)

The inequalities (1), (2), and (3), together imply that for x
satisfying 0 < |x —c| < ¢

=) _ o)l < ‘f(X) — f(e) _ fn(x) = f(e)
+ —fN(X)E:zN(C) fi(c 'Hf/v — g(c)]

P E L E
37373 ¢

We have found each of these expressions is less than €¢/3. So, put
it all together.
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Proof (cont.)

Since x satisfying 0 < |x — c| < § is arbitrary, we have shown that

f(X) — f(C) —g(C) < e
forall 0 < |x —c| <.
> f(x)—f

lim fx) = f(c) = g(c).

X—C X —C

which says f’(c) = g(c).

This is just the definition of limit.
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Proof (cont.)

Of course, since c is arbitrary, this proves the result for all c:

im f(x)—f(c)

X—C X —C

= g(c).

which says f’'(¢) = g(c) for all c.

We fixed c initially so our computation would prove the result for
all c.
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