

Continuous Limit Theorem

Understanding Analysis by Stephen Abbott

slideshow by
William M. Faucette

University of West Georgia

- 1 Goal of the Lecture
- 2 Pointwise Convergence
- 3 Non-Example 1
- 4 Non-Example 2
- 5 Uniform Convergence
- 6 Cauchy Criterion for Uniform Convergence
- 7 Continuous Limit Theorem

Goal of the Lecture

Goal of the Lecture

We will initially investigate the convergence of sequences of functions in preparation for dealing with convergence of series of functions, particularly power series.

Goal of the Lecture

In this lecture, we will examine pointwise convergence of a sequence of functions, discover that pointwise convergence doesn't preserve nice properties of sequences of functions. Then we will define and develop a stronger form of convergence of a sequence of functions: uniform convergence.

In particular, we will determine what conditions are needed for sequences to preserve continuity.

Pointwise Convergence

Pointwise Convergence

Definition

For each $n \in \mathbb{N}$, let f_n be a function defined on a set $A \subseteq \mathbb{R}$. The sequence (f_n) of function *converges pointwise on A* to a function $f : A \rightarrow \mathbb{R}$ if, for all $x \in A$, the sequence of real numbers $(f_n(x))$ converges to $f(x)$.

In the definition of pointwise convergence, the rate at which the sequence $(f_n(x))$ converges to $f(x)$ depends on x .

Pointwise Convergence

The problem with pointwise convergence is that certain nice properties of functions are not preserved under pointwise convergence.

For example, if a sequence of continuous functions converges pointwise, the limit may not be continuous.

And if a sequence of differentiable functions converges pointwise, the limit may not be differentiable.

Non-Example 1

Pointwise Convergence

Example

Let

$$g_n(x) = x^n$$

on the set $[0, 1]$. Notice that each g_n is a polynomial so it is continuous on $[0, 1]$.

For $0 \leq x < 1$, $g_n(x)$ converges to 0.

For $x = 1$, $x^n = 1$, so $g_n(x)$ converges to 1.

Pointwise Convergence

Example

So, (g_n) converges to the function

$$g = \begin{cases} 0 & \text{for } 0 \leq x < 1, \\ 1 & \text{for } x = 1. \end{cases}$$

So, we have each g_n is continuous on $[0, 1]$, but its limit g is not continuous at $x = 0$.

Non-Example 2

Pointwise Convergence

Example

Let

$$h_n(x) = x^{1+\frac{1}{2n-1}}$$

on the set $[-1, 1]$. Notice that each h_n is differentiable on $[-1, 1]$.

Pointwise Convergence

Example

Note that

$$h_n(x) = x^{1+\frac{1}{2n-1}} = x \cdot x^{\frac{1}{2n-1}}.$$

For x in the interval $[-1, 1]$, when you take a larger and larger odd root of x , that root goes to 1 if $x > 0$ and -1 if $x < 0$.

So, for $x \geq 0$, $h_n(x)$ converges to x and for $x < 0$, $h_n(x)$ converges to $-x$.

Pointwise Convergence

Example

So, (h_n) converges to the function

$$h(x) = |x|$$

So, we have each h_n is differentiable on $[-1, 1]$, but its limit h is not differentiable at $x = 0$.

The problem with this definition of functional convergence is that value of n depends on x .

Clearly we need a stronger version of convergence than pointwise convergence to make these nice properties carry through to the limits of the sequences.

We need one value of n to work for all x simultaneously.

Uniform Convergence

Uniform Convergence

Definition

Let (f_n) be a sequence of functions defined on a set $A \subseteq \mathbb{R}$. Then, (f_n) converges uniformly on A to a limit function f defined on A if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon$ whenever $n \geq N$ and $x \in A$.

In the definition of uniform convergence, the rate at which the sequence (f_n) converges to f depends only on n , not on x .

Cauchy Criterion for Uniform Convergence

Cauchy Criterion for Uniform Convergence

Theorem (Cauchy Criterion for Uniform Convergence)

A sequence of functions (f_n) defined on a set $A \subseteq \mathbb{R}$ converges uniformly on A if and only if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|f_n(x) - f_m(x)| < \epsilon$ for all $m, n \geq N$ and all $x \in A$.

This says each sequence $(f_n(x))$ is a Cauchy sequence and the same N works for all $x \in A$. That is, N only depends on the sequence of functions, not on any specific point of A .

Such a sequence is sometimes described as “uniformly Cauchy.”

Continuous Limit Theorem

Continuous Limit Theorem

Theorem (Continuous Limit Theorem)

Let (f_n) be a sequence of functions defined on $A \subseteq \mathbb{R}$ that converges uniformly on A to a function f . If each f_n is continuous at $c \in A$, then f continuous at c .

This says uniform convergence preserves continuity of functions.

Continuous Limit Theorem

Proof

Let (f_n) be a sequence of functions on A which converges uniformly to a function f on A . Further assume, each f_n is continuous.

Notice we state the hypotheses first.

Continuous Limit Theorem

Proof

Fix $c \in A$ and let $\epsilon > 0$.

We fix c from the start because continuity happens one point at a time.

Almost every proof involving an epsilon-delta argument begins with the sentence “Let $\epsilon > 0$.”

Continuous Limit Theorem

Proof

Choose N so that

$$|f_N(x) - f(x)| < \frac{\epsilon}{3}$$

for all $x \in A$.

Here we have used the fact that the sequence (f_n) converges to f uniformly on A . This allows us to choose one f_N which is uniformly within $\epsilon/3$ of f .

Continuous Limit Theorem

Proof

Because f_N is continuous, there exists a $\delta > 0$ for which

$$|f_N(x) - f_N(c)| < \frac{\epsilon}{3}$$

is true whenever $|x - c| < \delta$.

Fix $|x - c| < \delta$.

We use the continuity of f_N to find a δ -neighborhood of c so that the distance from $f_N(x)$ to $f_N(c)$ is small. We then fix x in this δ -neighborhood of c .

Continuous Limit Theorem

Proof

This implies

$$\begin{aligned}|f(x) - f(c)| &= |f(x) - f_N(x) + f_N(x) - f_N(c) + f_N(c) - f(c)| \\&\leq |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)| \\&< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\&< \epsilon.\end{aligned}$$

The first and third inequalities come from the uniform convergence of (f_n) by the choice of N . The middle inequality comes from the continuity of f_N and the fact that x lies in the δ -neighborhood of c .

Continuous Limit Theorem

Proof

Since $\epsilon > 0$ is arbitrary, f is continuous at c .

Since $c \in A$ is arbitrary, f is continuous on A . \square

This concludes the proof showing that f is continuous on A .