Homework #9 Solutions
Due Monday, October 13

William M. Faucette

Exercise 4.3.3. (a) Supply a proof for Theorem 4.3.9 using the e-d characterization of
continuity.

(b) Give another proof of this theorem using the sequential characterization of continuity
(from Theorem 4.3.2 (iii)).

Solution.

Theorem (Composition of Continuous Functions). Given f : A — R and g : B — R,
assume that the range f(A) = {f(x) : x € A} is contained in the domain B so that the
composition g o f(z) = g(f(z)) is well-defined on A.

If f is continuous at ¢ € A, and if g is continuous at f(c) € B, then go f is continuous
at c.

(a) Proof. Let f: A— R and g : B — R be continuous on their domains, assume that the
range f(A) = {f(z) : © € A} is contained in the domain B. Suppose f is continuous
at ¢ € A, and if g is continuous at f(c) € B.

Let ¢ > 0. Since g is continuous at f(c), there exists n > 0 so that
lg(b) — g(f(c))| < € provided |b — f(c)| < n. Since f is continuous at ¢, there ex-
ists 0 > 0 so that |f(z) — f(c))| < n provided |z — ¢| < 4.

Let |z — ¢| < 6. Then |f(z) — f(c))| < n, whereby |g(f(x)) — g(f(c))| < €. Since € > 0
is arbitrary, g o f is continuous at c. O

(b) Proof. Let f: A— R and g : B — R be continuous on their domains, assume that the
range f(A) = {f(x) : © € A} is contained in the domain B. Suppose f is continuous
at ¢ € A, and if g is continuous at f(c) € B.

Let (z5,) be an sequence in A converging to ¢. Since f is continuous at ¢, by the sequen-
tial characterization of continuity (Theorem 4.3.2), (f(x,)) converges to f(c). Since g
is continuous at f(c) and (f(z,)) converges to f(c), by the sequential characterization
of continuity (Theorem 4.3.2), (g(f(zy))) converges to g(f(c)). Since the sequence
(zn,) in A converging to c is arbitrary, g o f is continuous at ¢, again by sequential
characterization of continuity (Theorem 4.3.2). O



Exercise 4.3.9. Assume h: R — R is continuous on R and let K = {z : h(z) = 0}. Show
that K is a closed set.

Solution. Proof. Let h : R — R be continuous on R and let K = {z : h(z) = 0}.
The set {0} C R is a closed set. Since h is continuous, h~1({0}) is also a closed set.
But this is exactly the set K. So, K is a closed set. O



Exercise 4.3.11 (Contraction Mapping Theorem). Let f be a function defined on all of
R, and assume there is a constant ¢ such that 0 < ¢ < 1 and

[f(z) = fy) < clz -y
for all z, y € R.

(a) Show that f is continuous on R.

(b) Pick some point y; € R and construct the sequence

(1, f(y1), F(f(y1)),-- )

In general, if y,1+1 = f(yn), show that the resulting sequence (y,) is a Cauchy sequence.
Hence we may let y = limy,.

(c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in this regard.

(d) Finally, prove that if = is any arbitrary point in R, then the sequence (z, f(x), f(f(z)),...)
converges to y defined in (b).

Solution. Let f be a function defined on all of R, and assume there is a constant ¢ such
that 0 < ¢ <1 and

[f(z) = f(y)| < clz -y
for all x, y € R.

(a) Let x € R be arbitrary. Let € > 0. Let 0 < § < ¢/c and let |z — y| < §. Then

If(x) — fy)| <clzr—y|<c-d<e

Since ¢ > 0 is arbitrary, f is continuous at z, and since x € R is arbitrary, f is
continuous on R. (Since 0 depends only on e and not x, this actually shows f is
uniformly continuous on R.)

(b) Pick some point y; € R and construct the sequence

(v, f(y1), f(f(y1)),- - )-

In general, if y,+1 = f(yn).
We first prove that

Y — Yn-1| < " Plya — 1
for all n > 2, the case n = 2 being trivial.

Assume
Yn — Yn—1| < " 2|y2 — y1|



for some n € N with n > 2. Then

[Yn+1 = Ynl = 1f (Yn) — f(yn-1)]
< C‘yn - yn—1|
<c- " Plyg — i
<" Hya —uil.
By the Principle of Mathematical Induction, the result holds for all natural numbers
n > 2.

For natural numbers n > m, we have
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Let € > 0. Since 0 < ¢ < 1, the sequence > ;2 c* is a convergent geometric series, so

by the Cauchy Criterion for Series, there exists N € N so that if n > m > N then

€

e
Y2 — Y1

(2)

Finally, let n > m > N 4 2. From Equations (1) and (2), we have

n
€

k=m+1 ‘y2 _y1|

This proves the sequence (yy,,) is a Cauchy sequence.

Since this sequence is a Cauchy sequence, it converges by the Cauchy Criterion (The-
orem 2.6.4). Let y = lim y,,.

(c) We prove first that y is a fixed point of f. Since f is continuous, we have
fly) = f(lim y,) = lm f(y,) = lm yn1=y.
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We next prove that the point y is the unique fixed point. Suppose 3’ is also a fixed
point of f. Then

ly =y =1f) — fW)] < cly =y,

and since 0 < ¢ < 1, this is a contradiction unless y = y’. So the fixed point is unique.

Let « € R be arbitrary. By part (b), the sequence

(@, f(2), [(f(2)),..)

converges to some limit ¢ € R. By part (c), £ is the unique fixed point of f. Since y is
also a fixed point of f, we have ¢ = y. This proves the result.



Exercise 4.4.3. Show that f(z) = 1/2? is uniformly continuous on the set [1,00) but not
on the set (0, 1].

Solution. Proof. Let f(x) = 1/22%. Let € > 0. We wish to choose § > 0 so that

1 1

2 32

[f (@) = fy)| =

<€

whenever |z — y| < J, where § depends only on e.
Suppose we’ve chosen § and let |x — y| < §. Then
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We now need an estimate on how large |z + y|/z?y? is for x, y > 1. For x, y > 1, we have

T+y 1 1
=—+—-—<14+1=2.
2 J;y2+x2y_ +

2y

Now we can finish the proof.
Let § = ¢/2 and let |x — y| < 6. Then




Since € > 0 is arbitrary, f is uniformly continuous on [1, 00).

To show that f is not uniformly continuous on (0, 1], we use Theorem 4.4.6 (Sequential
Criterion for Nonuniform Continuity). Let x, = 1/n and y, = 1/n%. We note that x,,
yn € (0,1] for all n € N. We compute

1 1 n—1

o = wnl = 52 = T

which goes to zero at n goes to infinity. However,
[f(x0) = f(yn)] = [n® = n'[ =n' —n® =n?(n® —1) > 12,

for all n > 2. By Theorem 4.4.5 (Sequential Criterion for Absence of Uniform Continuity),
f is not uniformly continuous on (0, 1]. O



Exercise 4.4.4. Decide whether each of the following statements is true or false, justifying
each conclusion.

(a) If f is continuous on [a,b] with f(z) > 0 for all a < < b, then 1/f is bounded on
[a,b] (meaning 1/f has bounded range).

(b) If f is uniformly continuous on a bounded set A, then f(A) is bounded.

(c) If f is defined on R and f(K) is compact whenever K is compact, then f is continuous
on R.

Solution. (a) This statement is true.

Since f is continuous on the compact set [a, b], this function has a minimum m and a
maximum M on this set. Since f(z) > 0foralla <z <b, wehave 0 <m < f(z) <M
for all a <z < b. But then 1/M < 1/f(x) < 1/mfor all a <z <b, so 1/f is bounded.

(b) This statement is true.

Since f is uniformly continuous on a bounded set A, f can be extended to a continuous
function f on its closure A. (You should prove this.) Since A is bounded, A is both
closed and bounded, hence compact. Since f is continuous and A is compact, the set
f(A) is compact, hence closed and bounded. Since f(A) C f(A) it, too, is bounded.

(c) This statement is false.
Define

1 ifzeQ
f(x)_{o ifz¢Q

for all x € R. The image of any set in R is a subset of {0, 1}, which is a compact set.
However, f is not continuous anywhere.



Exercise 4.4.9 (Lipschitz Functions). A function f: A — R is called Lipschitz if there
exists a bound M > 0 such that

<M

f(z) = fy)
T—Y
for all z, y € A. Geometrically speaking, a function f is Lipschitz if there is a uniform
bound on the magnitude of the slopes of lines drawn through any two points on the graph

of f.
(a) Show that if f: A — R is Lipschitz, then it is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions necessarily
Lipschitz?

Solution. (a) Proof. Let f : A — R be Lipschitz. Since f is Lipschitz, there exists a
Lipschitz constant M so that

< M.

f(z) — f(y)
r—y B
Without loss of generality, we assume M > 0. (Otherwise this problem is really boring.)

Let € > 0. Choose 0 = ¢/M. Suppose |z —y| < . Then
[f(@) = f)l < Mz —y[ < M-5=e
Since € > 0 is arbitrary, f is uniformly continuous. O

(b) No, not every uniformly continuous function is Lipschitz.

Let f(z) = /x for x € A = (0,1]. The function f is continuous on the compact set
[0, 1], so it’s uniformly continuous there. So, it’s certainly uniformly continuous on the
smaller set A = (0, 1].

On the other hand, f is not Lipschitz.

For any Lipschitz function, the derivative is bounded. Let’s see this. Suppose g is
Lipschitz with Lipschitz constant M. Then

y—z Yy—T
Computing [/, we have
1
/ —
We see that f’ is not bounded on the interval (0,1], so f is not Lipschitz on this

interval.



