
Homework #9 Solutions

Due Monday, October 13

William M. Faucette

Exercise 4.3.3. (a) Supply a proof for Theorem 4.3.9 using the ϵ-δ characterization of
continuity.

(b) Give another proof of this theorem using the sequential characterization of continuity
(from Theorem 4.3.2 (iii)).

Solution.

Theorem (Composition of Continuous Functions). Given f : A → R and g : B → R,
assume that the range f(A) = {f(x) : x ∈ A} is contained in the domain B so that the
composition g ◦ f(x) = g(f(x)) is well-defined on A.

If f is continuous at c ∈ A, and if g is continuous at f(c) ∈ B, then g ◦ f is continuous
at c.

(a) Proof. Let f : A → R and g : B → R be continuous on their domains, assume that the
range f(A) = {f(x) : x ∈ A} is contained in the domain B. Suppose f is continuous
at c ∈ A, and if g is continuous at f(c) ∈ B.

Let ϵ > 0. Since g is continuous at f(c), there exists η > 0 so that
|g(b) − g(f(c))| < ϵ provided |b − f(c)| < η. Since f is continuous at c, there ex-
ists δ > 0 so that |f(x)− f(c))| < η provided |x− c| < δ.

Let |x− c| < δ. Then |f(x)− f(c))| < η, whereby |g(f(x))− g(f(c))| < ϵ. Since ϵ > 0
is arbitrary, g ◦ f is continuous at c.

(b) Proof. Let f : A → R and g : B → R be continuous on their domains, assume that the
range f(A) = {f(x) : x ∈ A} is contained in the domain B. Suppose f is continuous
at c ∈ A, and if g is continuous at f(c) ∈ B.

Let (xn) be an sequence in A converging to c. Since f is continuous at c, by the sequen-
tial characterization of continuity (Theorem 4.3.2), (f(xn)) converges to f(c). Since g
is continuous at f(c) and (f(xn)) converges to f(c), by the sequential characterization
of continuity (Theorem 4.3.2), (g(f(xn))) converges to g(f(c)). Since the sequence
(xn) in A converging to c is arbitrary, g ◦ f is continuous at c, again by sequential
characterization of continuity (Theorem 4.3.2).
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Exercise 4.3.9. Assume h : R → R is continuous on R and let K = {x : h(x) = 0}. Show
that K is a closed set.

Solution. Proof. Let h : R → R be continuous on R and let K = {x : h(x) = 0}.
The set {0} ⊂ R is a closed set. Since h is continuous, h−1({0}) is also a closed set.

But this is exactly the set K. So, K is a closed set.
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Exercise 4.3.11 (Contraction Mapping Theorem). Let f be a function defined on all of
R, and assume there is a constant c such that 0 < c < 1 and

|f(x)− f(y) ≤ c|x− y|

for all x, y ∈ R.

(a) Show that f is continuous on R.

(b) Pick some point y1 ∈ R and construct the sequence

(y1, f(y1), f(f(y1)), . . . ).

In general, if yn+1 = f(yn), show that the resulting sequence (yn) is a Cauchy sequence.
Hence we may let y = lim yn.

(c) Prove that y is a fixed point of f (i.e., f(y) = y) and that it is unique in this regard.

(d) Finally, prove that if x is any arbitrary point in R, then the sequence (x, f(x), f(f(x)), . . . )
converges to y defined in (b).

Solution. Let f be a function defined on all of R, and assume there is a constant c such
that 0 < c < 1 and

|f(x)− f(y)| ≤ c|x− y|

for all x, y ∈ R.

(a) Let x ∈ R be arbitrary. Let ϵ > 0. Let 0 < δ < ϵ/c and let |x− y| < δ. Then

|f(x)− f(y)| ≤ c|x− y| < c · δ < ϵ.

Since ϵ > 0 is arbitrary, f is continuous at x, and since x ∈ R is arbitrary, f is
continuous on R. (Since δ depends only on ϵ and not x, this actually shows f is
uniformly continuous on R.)

(b) Pick some point y1 ∈ R and construct the sequence

(y1, f(y1), f(f(y1)), . . . ).

In general, if yn+1 = f(yn).

We first prove that
|yn − yn−1| ≤ cn−2|y2 − y1|

for all n ≥ 2, the case n = 2 being trivial.

Assume
|yn − yn−1| ≤ cn−2|y2 − y1|
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for some n ∈ N with n ≥ 2. Then

|yn+1 − yn| = |f(yn)− f(yn−1)|
≤ c|yn − yn−1|
≤ c · cn−2|y2 − y1|
≤ cn−1|y2 − y1|.

By the Principle of Mathematical Induction, the result holds for all natural numbers
n ≥ 2.

For natural numbers n > m, we have

|yn − ym| =

∣∣∣∣∣
n∑

k=m+1

yk − yk−1

∣∣∣∣∣
≤

n∑
k=m+1

|yk − yk−1|

≤
n∑

k=m+1

ck−2|y2 − y1|

≤ |y2 − y1|
n∑

k=m+1

ck−2. (1)

Let ϵ > 0. Since 0 < c < 1, the sequence
∑∞

k=0 c
k is a convergent geometric series, so

by the Cauchy Criterion for Series, there exists N ∈ N so that if n > m ≥ N then

cm+1 + · · ·+ cn <
ϵ

|y2 − y1|
. (2)

Finally, let n > m ≥ N + 2. From Equations (1) and (2), we have

|yn − ym| ≤ |y2 − y1|
n∑

k=m+1

ck−2 < |y2 − y1| ·
ϵ

|y2 − y1|
= ϵ.

This proves the sequence (yn) is a Cauchy sequence.

Since this sequence is a Cauchy sequence, it converges by the Cauchy Criterion (The-
orem 2.6.4). Let y = lim yn.

(c) We prove first that y is a fixed point of f . Since f is continuous, we have

f(y) = f( lim
n→∞

yn) = lim
n→∞

f(yn) = lim
n→∞

yn+1 = y.
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We next prove that the point y is the unique fixed point. Suppose y′ is also a fixed
point of f . Then

|y − y′| = |f(y)− f(y′)| ≤ c|y − y′|,

and since 0 < c < 1, this is a contradiction unless y = y′. So the fixed point is unique.

(d) Let x ∈ R be arbitrary. By part (b), the sequence

(x, f(x), f(f(x)), . . . )

converges to some limit ℓ ∈ R. By part (c), ℓ is the unique fixed point of f . Since y is
also a fixed point of f , we have ℓ = y. This proves the result.
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Exercise 4.4.3. Show that f(x) = 1/x2 is uniformly continuous on the set [1,∞) but not
on the set (0, 1].

Solution. Proof. Let f(x) = 1/x2. Let ϵ > 0. We wish to choose δ > 0 so that

|f(x)− f(y)| =
∣∣∣∣ 1x2 − 1

y2

∣∣∣∣ < ϵ

whenever |x− y| < δ, where δ depends only on ϵ.
Suppose we’ve chosen δ and let |x− y| < δ. Then

|f(x)− f(y)| =
∣∣∣∣ 1x2 − 1

y2

∣∣∣∣
=

∣∣∣∣y2 − x2

x2y2

∣∣∣∣
=

∣∣∣∣(y − x)(y + x)

x2y2

∣∣∣∣
=

|y − x| |y + x|
x2y2

≤ δ
|y + x|
x2y2

.

We now need an estimate on how large |x+ y|/x2y2 is for x, y ≥ 1. For x, y ≥ 1, we have

x+ y

x2y2
=

1

xy2
+

1

x2y
≤ 1 + 1 = 2.

Now we can finish the proof.
Let δ = ϵ/2 and let |x− y| < δ. Then

|f(x)− f(y)| =
∣∣∣∣ 1x2 − 1

y2

∣∣∣∣
=

∣∣∣∣y2 − x2

x2y2

∣∣∣∣
=

∣∣∣∣(y − x)(y + x)

x2y2

∣∣∣∣
=

|y − x| |y + x|
x2y2

< δ
|y + x|
x2y2

< δ · 2 = ϵ.
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Since ϵ > 0 is arbitrary, f is uniformly continuous on [1,∞).

To show that f is not uniformly continuous on (0, 1], we use Theorem 4.4.6 (Sequential
Criterion for Nonuniform Continuity). Let xn = 1/n and yn = 1/n2. We note that xn,
yn ∈ (0, 1] for all n ∈ N. We compute

|xn − yn| =
1

n
− 1

n2
=

n− 1

n2
,

which goes to zero at n goes to infinity. However,

|f(xn)− f(yn)| = |n2 − n4| = n4 − n2 = n2(n2 − 1) ≥ 12,

for all n ≥ 2. By Theorem 4.4.5 (Sequential Criterion for Absence of Uniform Continuity),
f is not uniformly continuous on (0, 1].
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Exercise 4.4.4. Decide whether each of the following statements is true or false, justifying
each conclusion.

(a) If f is continuous on [a, b] with f(x) > 0 for all a ≤ x ≤ b, then 1/f is bounded on
[a, b] (meaning 1/f has bounded range).

(b) If f is uniformly continuous on a bounded set A, then f(A) is bounded.

(c) If f is defined on R and f(K) is compact whenever K is compact, then f is continuous
on R.

Solution. (a) This statement is true.

Since f is continuous on the compact set [a, b], this function has a minimum m and a
maximum M on this set. Since f(x) > 0 for all a ≤ x ≤ b, we have 0 < m ≤ f(x) ≤ M
for all a ≤ x ≤ b. But then 1/M ≤ 1/f(x) ≤ 1/m for all a ≤ x ≤ b, so 1/f is bounded.

(b) This statement is true.

Since f is uniformly continuous on a bounded set A, f can be extended to a continuous
function f on its closure A. (You should prove this.) Since A is bounded, A is both
closed and bounded, hence compact. Since f is continuous and A is compact, the set
f(A) is compact, hence closed and bounded. Since f(A) ⊂ f(A) it, too, is bounded.

(c) This statement is false.

Define

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

for all x ∈ R. The image of any set in R is a subset of {0, 1}, which is a compact set.
However, f is not continuous anywhere.
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Exercise 4.4.9 (Lipschitz Functions). A function f : A → R is called Lipschitz if there
exists a bound M > 0 such that ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ M

for all x, y ∈ A. Geometrically speaking, a function f is Lipschitz if there is a uniform
bound on the magnitude of the slopes of lines drawn through any two points on the graph
of f .

(a) Show that if f : A → R is Lipschitz, then it is uniformly continuous on A.

(b) Is the converse statement true? Are all uniformly continuous functions necessarily
Lipschitz?

Solution. (a) Proof. Let f : A → R be Lipschitz. Since f is Lipschitz, there exists a
Lipschitz constant M so that ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ M.

Without loss of generality, we assumeM > 0. (Otherwise this problem is really boring.)

Let ϵ > 0. Choose δ = ϵ/M . Suppose |x− y| < δ. Then

|f(x)− f(y)| ≤ M |x− y| < M · δ = ϵ.

Since ϵ > 0 is arbitrary, f is uniformly continuous.

(b) No, not every uniformly continuous function is Lipschitz.

Let f(x) =
√
x for x ∈ A = (0, 1]. The function f is continuous on the compact set

[0, 1], so it’s uniformly continuous there. So, it’s certainly uniformly continuous on the
smaller set A = (0, 1].

On the other hand, f is not Lipschitz.

For any Lipschitz function, the derivative is bounded. Let’s see this. Suppose g is
Lipschitz with Lipschitz constant M . Then

|g′(x)| = lim
y→x

∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ ≤ M.

Computing f ′, we have

f ′(x) =
1

2
√
x
.

We see that f ′ is not bounded on the interval (0, 1], so f is not Lipschitz on this
interval.
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