Homework #6 Solutions
Due Monday, September 22

William M. Faucette

Exercise 2.6.2. Give an example of each of the following, or argue that such a request is
impossible.

a) A Cauchy sequence that is not monotone.

(a)
(b) A Cauchy sequence with an unbounded subsequence.

(c) A divergent monotone sequence with a Cauchy subsequence.

(d) An unbounded sequence containing a subsequence that is Cauchy.

Solution. (a) The sequence
11 11 1
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converges to 0, so it is a Cauchy sequence. However, it’s evidently not monotone.

(b) This is not possible. Every Cauchy sequence converges and is therefore bounded, so it
cannot have an unbounded subsequence.

(c) This is not possible. A monotone sequence is convergent if and only if it is bounded.
So, for a monotone sequence to diverge, it must be unbounded. Since the sequence
is monotone, any subsequence must likewise be unbounded and therefore cannot be a
Cauchy sequence (since Cauchy sequences are bounded).

(d) The sequence
1,1,1/2,2,1/3,3,1/4,4,1/5,5,1/6,6, . ..

This sequence is unbounded since it contains the subsequence
1,2,3,4,5,6,...,
but contains the convergent subsequence
1,1/2,1/3,1/4,1/5,1/6,...,

which is a Cauchy sequence.



Exercise 2.6.3. If (x,) and (y,) are Cauchy sequences, then one easy way to prove that
(zn + yn) is Cauchy is to use the Cauchy Criterion. By Theorem 2.6.4, (z,) and (y,) must
be convergent, and the Algebra Limit Theorem then implies (x,, + y,) is convergent and
hence Cauchy.

(a) Give a direct argument that (x, + y,) is a Cauchy sequence that does not use the
Cauchy Criterion or the Algebraic Limit Theorem.

(b) Do the same for the product (z,yny).

Solution. (a) Proof. Let (z,) and (y,) be Cauchy sequences. Consider the sequence
(Tn + Yn)-
Let € > 0. Since (z,) is a Cauchy sequence, there exists Ni so that |z, — x| < €/2
whenever n, m > Nj. Similarly, since (yy) is a Cauchy sequence, there exists Na so
that |y, — ym| < €/2 whenever n, m > Ny. Let N = max{N;, N2} and let n, m > N.
Then

(0 +Yn) = (@m + Ym)| = (@0 — ) + (Yn — Ym)|
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Since € > 0 is arbitrary, (x, + y») is a Cauchy sequence. O

(b) Proof. Let (z,,) and (y,) be Cauchy sequences. Consider the sequence (z,y,).
By Lemma 2.6.3, since these two sequences are Cauchy, they are bounded. So, there
exist My, M, € R, M,, M, > 0 so that
|2p| < My,
‘yn’ < My

for all n € N.

Since (x,,) is a Cauchy sequence, there exists N; € N so that

— <
[on = Zm| oM,

whenever n, m > Nj.

Since (yy,) is a Cauchy sequence, there exists No € N so that

€

whenever n, m > N».



Let N = max{Ny, N2} and let n, m > N. Then

|xnyn - xmym‘ = ‘mnyn — Tm¥Yn T TmlYn — xmym’
< ‘-fn - -I'm‘ ’yn’ + ‘xm| ‘yn - ym’
€ €
< — M, M, — =ce.
oag, v Mo, T €

Since € > 0 is arbitrary, (z,yy) is a Cauchy sequence.



Exercise 2.6.7. Exercises 2.4.4 and 2.5.4 establish the equivalence of the Axiom of Com-
pleteness and the Monotone Convergence Theorem. They also show the Nested Interval
Property is equivalent to these other two in the presence of the Archimedean Property.

(a)

(b)

()

Assume the Bolzano—Weierstrass Theorem is true and use it to construct a proof of
the Monotone Convergence Theorem without making any appeal to the Archimedean
Property. This shows that BW, AoC, and MCT are all equivalent.

Use the Cauchy Criterion to prove the Bolzano—Weierstrass Theorem, and find the
point in the argument where the Archimedean Property is implicitly required. This
establishes the final link in the equivalence of the five characterizations of completeness
discussed at the end of Section 2.6.

How do we know it is impossible to prove the Axiom of Completeness starting from
the Archimedean Property?

Solution. (a) Suppose the Bolzano-Weierstrass theorem is true: Every bounded sequence

contains a convergent subsequence.

Suppose (ay) is a bounded monotone sequence. By the Bolzano-Weierstrass theorem,
(ap) contains a convergent subsequence (ay, ). Suppose (ay,) converges to a.

Let € > 0. Since (ap,) converges to a, there exists K € N so that |a,, — a| < € for
all k> K. Since (ay, ) is a subsequence of the monotone sequence (ay), the sequence
(ap, ) is also monotone.

Let N = ng and let n > N. Since n > ng and (ay,) is a subsequence of (ay,), there
must be some k > K so that a, is between a,, and a,,. Since |ay,, —a| < € and
lan, — a| < € and ay, is between ay,, and a,,, we must have |a, — a| < e.

This proves that (a,) likewise converges to a.

Since (ay) is an arbitrary bounded monotone sequence, the Monotone Convergence
Theorem follows.

Proof. Let (a,) be a bounded sequence.

Since (ay) is bounded, there exists M € R, M > 0, so that —M < a, < M for all
n € N. Since a,, € [-M, M] for all n € N, either the first half of this interval, [—M, 0],
or the second half of this interval, [0, M], must contain a,, for infinitely many n € N.
Call this interval I; and let n; be the smallest natural number so that a,, € I;.

Next, take I; and divide it into two equal halves. Since I; contains a, for infinitely
many n € N, one of these halves must contain a,, for infinitely many n € N. Call this
half I5. Since Is contains a,, for infinitely many values of n € N, we choose a,,, so that
ng > n; and ap, € Is.



Inductively construct a sequence of closed intervals Iy O Is O I3 O Iy O --- with the
diameter of I, = M/2*~! and a subsequence (a,,) so that a,, € Ij.

We show that the subsequence (ay, ) is a Cauchy sequence. Let € > 0. Choose K € N
sufficiently large so that M /25! < e and let k, £ > K. Since k, £ > K, an, € I, C Ik
and a,, € I; C Ix. Since Ix has diameter M /251,

|an, — an,| < MJ2571 < e

Since € > 0 is arbitrary, (ay,) is a Cauchy sequence, so by the Cauchy Criterion, (ay, )
converges.

Since (a,,) is an arbitrary bounded sequence, this shows every bounded sequence has
a convergent subsequence, i.e. the Bolzano-Weierstrass Theorem. ]

The Archimedean Property is true for the rational numbers:

Proposition. Given any number g € Q, there exists an n € N satisfying n > q.

(How do you prove this?)

If the Axiom of Completeness followed from the Archimedean Property, the rational
numbers would be complete, which they are not.



Exercise 2.7.1. Proving the Alternating Series Test (Theorem 2.7.7) amounts to showing
that the sequence of partial sums

Sp=a1—azx+az—---*an

converges. (The opening example in Section 2.1 includes a typical illustration of (s;).)
Different characterizations of completeness lead to different proofs.

(a)
(b)
()

Prove the Alternating Series Test by showing that (s,) is a Cauchy sequence.
Supply another proof for this result using the Nested Interval Property (Theorem 1.4.1).

Consider the subsequences (s2;,) and (s2,+1), and show how the Monotone Convergence
Theorem leads to a third proof for the Alternating Series Test.

Solution. (a)

Theorem (Alternating Series Test). Let (a,) be a sequence satisfying,

(a) a1 >as > a3 > > ap > apt1 > -
(b) (a,) — 0.

Then the alternating series > oo (—1)""ta,, converges.
Proof. Let (a,) be a sequence satisfying,

(a) a1 >az>ag>--->an > apy1 > -
(b) (an)_>0'

Let (s,) be the sequence of partial sums for the series o0 | (—1)""ta,,.

We remark that for n > m > N and n and m of the same parity we have
Sn = Sm = Qm+1 — (am+2 - am+3) - = (an72 - an71> — Qp < Ayt (1)

Let € > 0. Since (ay) converges to zero, we may choose N € N so that a, = |a,| < €
whenever n > N. Let n > m > N. By Equation (1), |s;, — $m| < am+1 < €.

Hence (sy,) is a Cauchy sequence and therefore converges by the Cauchy Criterion. It
follows that the series Y °°  (—1)"*1a,, converges by definition. O

Theorem (Alternating Series Test). Let (a,) be a sequence satisfying,



(a) ax > az>az > > ap > apy1 > -+
(b) (an) — 0.

Then the alternating series > oo (—1)""ta, converges.
Proof. Let (a,) be a sequence satisfying,

(i) a1 >ax>a3> - >ap>ap41 >

(i) (an) —0

Let (s,,) be the sequence of partial sums for the series Y oo, (—1)""!a,. We note that

Son = Sop—1 — Q9p, < Sop—1. Let I, = [Sgn, SQn_l] for n € N. A]SO,
Son+2 = Son + (G241 — G2n42) > Sop
Son+1 = San—1 — (a2n — a2n41) < Son—1.

So, the intervals I,, are nested:
L2, D132, D...

By the Nested Interval Property, N> I, is nonempty. Let z € N°2,I,,. Since z € I,
for all n € N, we have s9,, < = < 59,1 for all n € N. That is 0 < x — s9, <
S2n—1 — S2n = A2n.

Let € > 0. Since (ay) converges to zero, there exists n € N so that if n > N then
0<a,<e Let n>N. Then 0 < z — 89, < S9pp—1 — Son, = Qap < €. Since € > 0 is
arbitrary, (s2,) converges to x. But then (s2,—1) = (S2n, + a2y) also converges to x by
the Algebraic Limit Theorem since (a,) converges to zero. This suffices to prove that
(sn) converges to x, so the series > oo | (—1)""ta,, converges by definition. O

Theorem (Alternating Series Test). Let (a,) be a sequence satisfying,

(i) a1 >as > a3 > > ap > apt1 > -
(ii) (an) — 0.

Then the alternating series > oo (—1)""ta,, converges.

Proof. Let (ay,) be a sequence satisfying,

(i) ar>a2>a3>-->ap>apt1 > -



(i) (an) — 0.
Let (s) be the sequence of partial sums for the series Y >  (—1)"*la,. We note that

Son+2 = Son + (A2n41 — G2n42) > Sop

Son+1 = San—1 — (a2 — @2n41) < Son—1.

Further

Sop—1 = (a1 — a2) + (a3 — aq) + -+ - + (ag2n—3 — agn—2) + az2n—1

> a; —a
Sop = a1 — ((12 - Clg) — (a2n—2 - a2n—1) — Q2n
< ap

So, (s2,) is monotone increasing and bounded above and (sg,—1) is monotone de-
creasing and bounded below. By the Monotone Convergence Theorem, (s2,) con-
verges, say to z, and (s2,—1) converges, say to y. By the Algebraic Limit Theorem,
(agn) = (S2n — S2n—1) converges to = — y, but (ag,) is a subsequence of (a,), which
converges to zero, so (ag,) must converge to zero. Hence x —y = 0, i.e. z = y, and it
follows that (sy) converges to x. O



Exercise 2.7.3. (a) Provide the details for the proof of the Comparison Test (Theorem

2.7.4) using the Cauchy Criterion for Series.

(b) Give another proof for the Comparison Test, this time using the Monotone Convergence
Theorem.

Solution.

Theorem (The Comparison Test). Assume (ax) and (bg) are sequences satisfying
0<ar<b for all k € N.

(i) If > "3, by, converges, then Y p°, ay converges.

(it) If > 72, ai diverges, then Y - by diverges.

(i)

Proof. Let (ay) and (by) be sequences satisfying 0 < aj < by, for all £ € N. We first
note that (ii) is the contrapositive of (i), so it suffices to prove (i).

Suppose > 72, by converges. Let € > 0. Since ) -, by converges, by the Cauchy
Criterion for Series, there exists N € N so that whenever n > m > N it follows that

|bis1 + Do + - + bp| < e
Since 0 < a < b for all k € N,
0<ami1+ami2+ -+ an <bni1+ ameo+ -+ by
whenever n, m € N with n > m. Hence
|@mt1 + amao + -+ an| < |bmg1 + amyo + - + by <e.
By the Cauchy Criterion for Series, > ;- ; aj converges. O

Proof. Let (a,) and (by,) be sequences satisfying 0 < ay < by, for all £ € N. We first
note that (ii) is the contrapositive of (i), so it suffices to prove (i).

Let s, =a1+as+---+a, and let t, =by +bs +---+ b,. For n € N, we have
Sp=a1+ -+ ap, <by+- -+ by =ty

We remark that since the terms a,, and b, are nonnegative, the sequences (s,) and

(t,) are monotone increasing.

Suppose > ;2 by converges. This means that the sequence (t,) converges to some

t € R. Since t, is monotone increasing, we have t, <t for all n € N. Then we have

sp <tp <t

From this, we see that the sequence (s,) is bounded. Since (sy) is a monotone,
bounded sequence, it converges by the Monotone Convergence Theorem. But this
means the series Y - ; aj converges. O



Exercise 2.7.4. Give an example of each or explain why the request is impossible refer-
encing the proper theorem(s).

(a) Two series Y x, and )y, that both diverge but where ) x,y, converges.
(b) A convergent series Y x, and a bounded sequence (y,) such that _ x,y, diverges.

(¢) Two sequences (z,) and (y,) where >z, and > (z, + y,) both converge but >y,
diverges.

(d) A sequence (zy,) satisfying 0 < z,, < 1/n where > (—1)"z,, diverges.

Examples. (a) Let 2, = y, = 1/n for all n € N. Then Y 7, z, = > 2y, diverges
since it is the harmonic series. However, z,y, = 1/n?, and 0% 2y, = > oo, 1/n?
converges (since it’s a p-series with p > 1).

(b) Let z, = (=1)""'/n and y, = (—1)""!. Then Y x,, is the alternating harmonic series,
which converges. The sequence (y,) is bounded and ) x,y, is the harmonic series, so
it diverges.

(c) This is not possible by the Algebraic Limit Theorem for series. If Y (z, + y,) and
> @, converge, the series formed by their term by term difference, ) y,, must also
converge.

(d) Let
0 when n is odd
Tn = 1 .
— when n is even
n
Then (z,) is the sequence (0, %,O, i,O, %, ...). Then 0 <z, <1/n and

1 1

1
2= g =52y

one-half the harmonic series, with zeroes scattered through it. This series diverges.!

!Shamelessly stolen from Will Blevins.
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