
Homework #5

Due Monday, September 15

William M. Faucette

Exercise 2.4.1. (a) Prove that the sequence defined by x1 = 3 and

xn+1 =
1

4− xn
converges.

(b) Now that we know limxn exists, explain why limxn+1 must also exist and equal the
same value.

(c) Take the limit of each side of the recursive equation in part (a) of this exercise to
explicitly compute limxn.

Solution. (a) Proof. Let (xn) be the sequence defined recursively by x1 = 3 and

xn+1 =
1

4− xn

for n ∈ N.
We prove that

1

4
< xn+1 ≤ xn

for all n using the Principle of Mathematical Induction.

For n = 1, we have x1 = 3 and x2 = 1, so the result is true for n = 1. Suppose the
result is true for some n ∈ N. That is, suppose

1

4
< xn+1 ≤ xn

for some n ∈ N. Then

0 <
1

4
< xn+1 ≤ xn

4 > 4− xn+1 ≥ 4− xn
1

4
<

1

4− xn+1
≤ 1

4− xn
1

4
< xn+2 ≤ xn+1.
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So, the result is true for n+1. By the Principle of Mathematical Induction, this proves
that

1

4
< xn+1 ≤ xn

for all n ∈ N.
This shows that the sequence (xn) is decreasing and bounded below. Therefore by the
Monotone Convergence Theorem, the sequence (xn) converges.

(b) Since (xn) converges, (xn+1) is simply the same sequence starting with the second
term. So, it converges and converges to the same value.

For a rigorous argument, suppose (xn) converges to L. Let ϵ > 0. Since (xn) converges
to L, there exists N ∈ N so that |xn − L| < ϵ whenever n ≥ N . Let n ≥ N . Then
|xn+1 − L| < ϵ since n+ 1 > n ≥ N . Thus, (xn+1) converges to L as well.

(c) Suppose (xn) converges to x. We find the value of x by taking the limit of both sides
of the recursion relation

xn+1 =
1

4− xn
.

Taking limits, we get

lim
n→∞

xn+1 = lim
n→∞

1

4− xn

x =
1

4− x
.

Solving this last equation, we get x = 2 ±
√
3. Since xn ≤ 3 for all values of n, (xn)

cannot converge to 2 +
√
3 ≈ 3.732. So, we see that x = 2−

√
3.
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Exercise 2.5.1. Give an example of each of the following, or argue that such a request is
impossible.

(a) A sequence that has a subsequence that is bounded but contains no subsequence that
converges.

(b) A sequence that does not contain 0 or 1 as a term but contains subsequences converging
to each of these values.

(c) A sequence that contains subsequences converging to every point in the infinite set
{1, 1/2, 1/3, 1/4, 1/5, . . . }.

(d) A sequence that contains subsequences converging to every point in the infinite set
{1, 1/2, 1/3, 1/4, 1/5, . . . }, and no subsequences converging to points outside of this
set.

Solution. (a) This is not possible. Suppose a sequence has a subsequence that is bounded.
By the Bolzano-Weierstrass Theorem, the bounded subsequence itself has a convergent
subsequence. But this convergent subsequence is likewise a subsequence of the original
sequence. So, the original sequence must contain a subsequence that converges.

(b) Consider the sequence given by

an =


1

n+ 1
if n is odd

1− 1

n
if n is even.

The even terms converge to 1: (
1

2
,
3

4
,
5

6
,
7

8
,
9

10
, . . .

)
.

The odd terms converge to 0: (
1

2
,
1

4
,
1

6
,
1

8
,
1

10
, . . .

)
.

Notice that the original sequence does not contain 0 or 1.

(c) Consider the sequence(
1, 1,

1

2
, 1,

1

2
,
1

3
, 1,

1

2
,
1

3
,
1

4
, 1,

1

2
,
1

3
,
1

4
,
1

5
,
1

6
, . . .

)
This sequence has subsequences converging to 1/n for each n ∈ N.
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(d) An example here is not possible. Any sequence having a subsequence converging to
each element of the set

{1, 1/2, 1/3, 1/4, 1/5, . . . },

must also contain a subsequence converging to 0, which is not in this set.

Suppose (bn) is a sequence which contains subsequences converging to each element of
the set

{1, 1/2, 1/3, 1/4, 1/5, . . . },

Let ϵ > 0 be arbitrary. We can find a subsequence (bnnk
) converging to 1/n. Choose

N1 so that |b1N1
− 1| < ϵ/2. Choose N2 > N1 so that |b2N2

− 1/2| < ϵ/2. Continuing in

this way, choose Nk+1 > Nk so that |bkNk
− 1/k| < ϵ/2.

Consider the subsequence (ck) defined by ck = bkNk
. Pick N large enough so that

1/N < ϵ/2. Then for n ≥ N we have

|cn| =
∣∣∣∣cn − 1

n
+

1

n

∣∣∣∣ ≤ ∣∣∣∣cn − 1

n

∣∣∣∣+ ∣∣∣∣ 1n
∣∣∣∣ < ϵ

2
+

ϵ

2
= ϵ.

So, we see the subsequence (ck) converges to 0.1

1This proof is adapted from a shamelessly stolen proof outline by Ulisse Mini and Jesse Li.
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Exercise 2.5.5. Assume (an) is a bounded sequence with the property that every conver-
gent subsequence of (an) converges to the same limit a ∈ R. Show that (an) must converge
to a.

Solution. Proof. Suppose (an) does not converge to a. Then there exists ϵ > 0 so that for
every N ∈ N there exists n ≥ N so that |an − a| ≥ ϵ. For N = 1, choose n1 ∈ N, n1 ≥ N ,
so that |an1 − a| ≥ ϵ. Next, for N = n1 + 1, choose n2 ∈ N, n2 ≥ N , so that |an2 − a| ≥ ϵ.
Note that n2 > n1.

Having constructed an1 , an2 , . . . , ank
with n1 < · · · < nk and |ani − a| ≥ ϵ for all i,

1 ≤ i ≤ k, for N = nk + 1, choose nk+1 ∈ N, nk+1 ≥ N , so that |ank+1
− a| ≥ ϵ. Note that

n1 < · · · < nk < nk+1.
Now the sequence (ank

), being a subsequence of (an), is bounded, so by the Bolzano-
Weierstrass Theorem, it has a convergent subsequence. But |ank

− a| ≥ ϵ for all k, so this
convergent subsequence can’t possibly converge to a. This contradicts the hypothesis.
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