
Homework #1 Solutions

Due Monday, August 18

William M. Faucette

Exercise 1.2.5 (De Morgan’s Laws). Let A and B be subsets of R.

(a) If x ∈ (A ∩B)c, explain why x ∈ Ac ∪Bc. This should show that (A ∩B)c ⊆ Ac ∪Bc.

(b) Prove the reverse inclusion (A∩B)c ⊇ Ac∪Bc, and conclude that (A∩B)c = Ac∪Bc.

Solution. (a) Proof. Let x ∈ (A ∩B)c. Then x /∈ A ∩B.

Now, A ∩ B consists of all those elements y such that y ∈ A and y ∈ B. Carefully
negating this, we see that since x /∈ A ∩ B, either x /∈ A or x /∈ B. Thus, x ∈ Ac or
x ∈ Bc, whereby x ∈ Ac ∪Bc.

Since x ∈ (A ∩B)c is arbitrary, this proves (A ∩B)c ⊆ Ac ∪Bc.

(b) Proof. Now suppose x ∈ Ac ∪ Bc. Then x ∈ Ac or x ∈ Bc, so that x /∈ A or x /∈ B.
However, this means that x /∈ A ∩B. So, x ∈ (A ∩B)c.

Since x ∈ Ac ∪Bc is arbitrary, this proves (A ∩B)c ⊇ Ac ∪Bc.

Putting parts (a) and (b) together gives us

(A ∩B)c = Ac ∪Bc.
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Exercise 1.2.7. Given a function f and a subset A of its domain, let f(A) represent the
range of f over the set A; that is, f(A) = {f(x) : x ∈ A}.

(a) Let f(x) = x2. If A = [0, 2] (the closed interval {x ∈ R : 0 ≤ x ≤ 2}) and B = [1, 4],
find f(A) and f(B). Does f(A ∩ B) = f(A) ∩ f(B) in this case? Does f(A ∪ B) =
f(A) ∪ f(B)?

(b) Find two sets A and B for which f(A ∩B) ̸= f(A) ∩ f(B).

(c) Show that, for an arbitrary function g : R → R, it is always true that g(A ∩ B) ⊆
g(A) ∩ g(B) for all sets A, B ⊆ R.

(d) Form and prove a conjecture about the relationship between g(A∪B) and g(A)∪g(B)
for an arbitrary function g.

Solution. (a) Let f(x) = x2. Let A = [0, 2] and B = [1, 4]. Then f(A) = [0, 4] and
f(B) = [1, 16], so f(A) ∩ f(B) = [1, 4]. Further computing, A ∩ B = [1, 2] and
f(A ∩B) = [1, 4] So, we see in this case

f(A ∩B) = f(A) ∩ f(B).

Now, we move to the union. We have A ∪ B = [0, 4] and f(A ∪ B) = [0, 16]. From
above, f(A) = [0, 4] and f(B) = [1, 16], so f(A) ∪ f(B) = [0, 16]. So, we see in this
case

f(A ∪B) = f(A) ∪ f(B).

(b) Let A = [1, 2] and B = [−2,−1]. Then A∩B = ∅, so f(A∩B) = ∅. On the other hand,
f(A) = f(B) = [1, 4], so f(A)∩f(B) = [1, 4]. So, we see that f(A∩B) ⊊ f(A)∩f(B).

(c) Proof. Let g : R → R and let A, B ⊆ R. Since A ∩B ⊆ A, we have g(A ∩B) ⊆ g(A).
Since A ∩ B ⊆ B, we have g(A ∩ B) ⊆ g(B). Since g(A ∩ B) is a subset of both g(A)
and g(B), g(A ∩B) ⊆ g(A) ∩ g(B). (Proof due to Trystyn Hovey.)

(d) Conjecture: For an arbitrary function g : R → R, it is always true that g(A)∪g(B) =
g(A ∪B).

Proof. Let A, B be subsets of R and let g : R → R.
Since A ⊆ A ∪ B, we have g(A) ⊆ g(A ∪ B). Similarly, since B ⊆ A ∪ B, we have
g(B) ⊆ g(A ∪B). It follows that g(A) ∪ g(B) ⊆ g(A ∪B).

For the reverse inclusion, let y ∈ g(A∪B). Then there exists x ∈ A∪B so that g(x) = y.
Since x ∈ A∪B, either x ∈ A or x ∈ B. If x ∈ A, then y = g(x) ∈ g(A) ⊆ g(A)∪g(B).
Likewise, if x ∈ B, then y = g(x) ∈ g(B) ⊆ g(A) ∪ g(B). Since y ∈ g(A ∪ B) is
arbitrary, g(A ∪B) ⊆ g(A) ∪ g(B). These two inclusions prove the result.
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Exercise 1.2.9. Given a function f : D → R and a subset B ⊆ R, let f−1(B) be the set
of all points from the domain D that get mapped into B; that is,

f−1(B) = {x ∈ D | f(x) ∈ B}

This set is called the preimage of B.

(a) Let f(x) = x2. If A is the closed interval [0, 4] and B is the closed interval [−1, 1],
find f−1(A) and f−1(B). Does f−1(A ∩ B) = f−1(A) ∩ f−1(B) in this case? Does
f−1(A ∪B) = f−1(A) ∪ f−1(B)?

(b) The good behavior of preimages demonstrated in (a) is completely general. Show that
for an arbitrary function g : R → R, it is always true that g−1(A∩B) = g−1(A)∩g−1(B)
and g−1(A ∪B) = g−1(A) ∪ g−1(B) for all sets A, B ⊆ R.

Solution. (a) Let f(x) = x2. Let A be the closed interval [0, 4] and B is the closed interval
[−1, 1]. The set f−1(A) is the set of all x’s that map onto the y-axis between y = 0
and y = 4. You get this by projecting the graph of y = x2 between y = 0 and y = 4
onto the x-axis. This gives you the interval [−2, 2].

Figure 1: Graph of y = x2
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Similarly, the set f−1(B) is the set of all x’s that map onto the y-axis between y = −1
and y = 1. You get this by projecting the graph of y = x2 between y = −1 and y = 1
onto the x-axis. This gives you the interval [−1, 1].

Figure 2: Graph of y = x2

So,
f−1(A) = [−2, 2] and f−1(B) = [−1, 1].

Hence
f−1(A) ∩ f−1(B) = [−1, 1].

We find that A∩B = [0, 1] and (using the same technique) we have that f−1(A∩B) =
[−1, 1].

So, in this case, we have

f−1(A ∩B) = f−1(A) ∩ f−1(B).

(b) Proof. Let g : R → R and let A, B ⊆ R.
Let x ∈ g−1(A ∩ B). Then g(x) ∈ A ∩ B, so that g(x) ∈ A and g(x) ∈ B. But then
x ∈ g−1(A) and x ∈ g−1(B). So, x ∈ g−1(A) ∩ g−1(B). Since x ∈ g−1(A ∩ B) is
arbitrary, this shows

g−1(A ∩B) ⊆ g−1(A) ∩ g−1(B).

Let x ∈ g−1(A) ∩ g−1(B). Then x ∈ g−1(A) and x ∈ g−1(B), whereby g(x) ∈ A
and g(x) ∈ B. Hence g(x) ∈ A ∩ B. But this says, x ∈ g−1(A ∩ B). Since x ∈
g−1(A) ∩ g−1(B) is arbitrary, this shows

g−1(A) ∩ g−1(B) ⊆ g−1(A ∩B).

These two inclusions show that

g−1(A ∩B) = g−1(A) ∩ g−1(B).
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Exercise 1.2.12. Let y1 = 6, and for each n ∈ N define yn+1 = (2yn − 6)/3.

(a) Use induction to prove that the sequence satisfies yn > −6 for all n ∈ N.

(b) User another induction argument to show the sequence (y1, y2, y3, . . . ) is decreasing.

Solution. (a) Proof. First, we have that y1 = 6 > −6, so the result is true for n = 1.

Suppose the yk > −6 for some k ∈ N.
Then

yk+1 =
2yk − 6

3

=
2

3
yk − 2

>
2

3
(−6)− 2

> −6.

By the Principle of Mathematical Induction, yn > −6 for all n ∈ N.

(b) Proof. It is really not necessary to use an induction argument here. We note that from
(a), we have 1

3yn > −2, so we have

yn =
2

3
yn +

1

3
yn >

2

3
yn − 2 =

2yn − 6

3
= yn+1.

So, the sequence (y1, y2, y3, . . . ) is decreasing.
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Exercise 1.2.13. For this exercise, assume Exercise 1.2.5 has been successfully completed.

(a) Show how induction can be used to conclude that

(A1 ∪A2 ∪ · · · ∪An)
c = Ac

1 ∩Ac
2 ∩ · · · ∩Ac

n

for any finite n ∈ N.

(b) Explain why induction cannot be used to conclude( ∞⋃
n=1

An

)c

=
∞⋂
n=1

Ac
n.

It might be useful to consider part (a) of Exercise 1.2.3.

(c) Is the statement in part (b) valid? If so, write a proof that does not use induction.

Solution. (a) Proof. Let {Ai}, i ∈ N, be an indexed family of sets. The result is clearly
true for n = 1. By Exercise 1.2.3(c), the result is true for n = 2.

Suppose the result is true for n = k. That is, suppose

(A1 ∪A2 ∪ · · · ∪Ak)
c = Ac

1 ∩Ac
2 ∩ · · · ∩Ac

k.

Then

(A1 ∪A2 ∪ · · · ∪Ak ∪Ak+1)
c = [(A1 ∪A2 ∪ · · · ∪Ak) ∪Ak+1]

c

= (A1 ∪A2 ∪ · · · ∪Ak)
c ∩Ac

k+1, by Exercise 1.2.3(c)

= (Ac
1 ∩Ac

2 ∩ · · · ∩Ac
k) ∩Ac

k+1, by the inductive hypothesis

= Ac
1 ∩Ac

2 ∩ · · · ∩Ac
k ∩Ac

k+1.

This shows the result holds for n = k+1. By the Principle of Mathematical Induction,
the result holds for all n ∈ N.

(b) The Principle of Mathematical Induction cannot be used to prove this result because
that principle proves that a result holds for every finite n ∈ N, in this case, every finite
union or intersection.

(c) Conjecture: For an indexed family of sets {Ai}i∈N,( ∞⋃
n=1

An

)c

=

∞⋂
n=1

Ac
n.
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Proof. Let x ∈ (
⋃∞

n=1An)
c. Then x /∈

⋃∞
n=1An, which means x /∈ An for all n ∈ N.

So, x ∈ Ac
n for all n ∈ N, whereby x ∈

⋂∞
n=1A

c
n. Since x ∈ (

⋃∞
n=1An)

c is arbitrary,
(
⋃∞

n=1An)
c ⊆

⋂∞
n=1A

c
n.

Let x ∈
⋂∞

n=1A
c
n. Then x ∈ Ac

n for all n ∈ N, so x /∈ An for any n ∈ N. Thus
x /∈

⋃∞
n=1An, whereby x ∈ (

⋃∞
n=1An)

c. Since x ∈
⋂∞

n=1A
c
n is arbitrary,

⋂∞
n=1A

c
n ⊆

(
⋃∞

n=1An)
c.

The two inclusions prove the result.
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