Homework #1 Solutions
Due Monday, August 18

William M. Faucette

Exercise 1.2.5 (De Morgan’s Laws). Let A and B be subsets of R.
(a) If z € (AN B)¢, explain why x € A°U B€. This should show that (AN B)¢ C A°U B°.
(b) Prove the reverse inclusion (AN B)¢ O A°U B¢, and conclude that (AN B)¢ = A°U B°.

Solution. (a) Proof. Let x € (AN B)¢. Then z ¢ AN B.

Now, A N B consists of all those elements y such that y € A and y € B. Carefully
negating this, we see that since z ¢ AN B, either x ¢ A or x ¢ B. Thus, z € A or
x € B¢, whereby x € AU B¢,

Since x € (AN B)¢ is arbitrary, this proves (AN B)¢ C A°U B¢. O
(b) Proof. Now suppose z € A°U B°. Then z € A° or x € B¢, so that v ¢ A or x ¢ B.

However, this means that = ¢ AN B. So, z € (AN B)°.

Since x € A°U B¢ is arbitrary, this proves (AN B)¢ D A°U B°.

Putting parts (a) and (b) together gives us

(AN B)° = A°U B“.



Exercise 1.2.7. Given a function f and a subset A of its domain, let f(A) represent the
range of f over the set A; that is, f(A) = {f(z) : x € A}.

(a) Let f(z) = 2% If A =10,2] (the closed interval {x € R: 0 <z < 2}) and B = [1,4],
find f(A) and f(B). Does f(AN B) = f(A) N f(B) in this case? Does f(AU B) =
(AU f(B)?

(b) Find two sets A and B for which f(AN B) # f(A) N f(B).

(c) Show that, for an arbitrary function g : R — R, it is always true that g(AN B) C
g(A) N g(B) for all sets A, B C R.

(d) Form and prove a conjecture about the relationship between g(AU B) and g(A)Ug(B)
for an arbitrary function g.

Solution. (a) Let f(z) = 22, Let A = [0,2] and B = [1,4]. Then f(A) = [0,4] and
f(B) = [1,16], so f(A) N f(B) = [1,4]. Further computing, AN B = [1,2] and
f(AN B) =[1,4] So, we see in this case

f(ANB) = f(A) N f(B).

Now, we move to the union. We have AU B = [0,4] and f(AU B) = [0,16]. From
above, f(A) = [0,4] and f(B) = [1,16], so f(A)U f(B) = [0,16]. So, we see in this
case

f(AUB) = f(A) U f(B).

(b) Let A=[1,2] and B = [-2,—1]. Then ANB =0, so f(ANB) = (. On the other hand,
f(A) = f(B) =1[1,4],so f(A)Nf(B) = [1,4]. So, we see that f(ANB) C f(A)N f(B).

(¢) Proof. Let g: R — R and let A, B C R. Since AN B C A, we have g(AN B) C g(A).
Since AN B C B, we have g(AN B) C g(B). Since g(AN B) is a subset of both g(A)
and g(B), g(ANB) C g(A) Ng(B). (Proof due to Trystyn Hovey.) O

(d) Conjecture: For an arbitrary function g : R — R, it is always true that g(A)Ug(B) =
g(AU B).

Proof. Let A, B be subsets of R and let g : R — R.

Since A C AU B, we have g(A) C g(AU B). Similarly, since B C AU B, we have
g(B) C g(AU B). It follows that g(A) Ug(B) C g(AU B).

For the reverse inclusion, let y € g(AUB). Then there exists x € AUB so that g(z) = y.
Since x € AUB, eitherz € Aorx € B. If v € A, then y = g(x) € g(A) C g(A)Ug(B).
Likewise, if x € B, then y = g(x) € g(B) C g(A) U g(B). Since y € g(AU B) is
arbitrary, g(AU B) C g(A) U g(B). These two inclusions prove the result. O



Exercise 1.2.9. Given a function f : D — R and a subset B C R, let f~!(B) be the set
of all points from the domain D that get mapped into B; that is,

f{(B)={zeD]| f(z) € B}
This set is called the preimage of B.

(a) Let f(x) = 22 If A is the closed interval [0,4] and B is the closed interval [—1,1],
find f~1(A4) and f~%(B). Does f~1 (AN B) = f~1(A) N f~1(B) in this case? Does
fHAUB) = f~H(A) U fY(B)?

(b) The good behavior of preimages demonstrated in (a) is completely general. Show that
for an arbitrary function g : R — R, it is always true that g~} (ANB) = g~} (A)Ng~1(B)
and g ' (AUB) = g 1 (A)u g (B) for all sets A, B C R.

Solution. (a) Let f(x) = z2. Let A be the closed interval [0, 4] and B is the closed interval
[~1,1]. The set f~1(A) is the set of all 2’s that map onto the y-axis between y = 0
and y = 4. You get this by projecting the graph of y = 22 between y = 0 and y = 4
onto the x-axis. This gives you the interval [—2, 2].

Figure 1: Graph of y = 22



Similarly, the set f~!(B) is the set of all 2’s that map onto the y-axis between y = —1
and y = 1. You get this by projecting the graph of y = 2% between y = —1 and y = 1
onto the z-axis. This gives you the interval [—1, 1].

Figure 2: Graph of y = 22

So,
7Y (A) =[-2,2) and f~1(B) = [-1,1].

Hence
FHA) N fY(B) = [-1,1].

We find that AN B = [0,1] and (using the same technique) we have that f~}(ANB) =
[—1,1].
So, in this case, we have

JTHANB) = YA N fH(B).

(b) Proof. Let g: R — R and let A, B C R.

Let z € g Y(AN B). Then g(z) € AN B, so that g(z) € A and g(x) € B. But then
r € g (A and z € goY(B). So, x € g (A)Ng ! (B). Since z € g-'(AN B) is
arbitrary, this shows

g (ANB) C g 1 (A)ng ' (B).
Let z € g7} (A) Ng '(B). Then # € g7'(A) and z € g~ 1(B), whereby g(z) € A
and g(x) € B. Hence g(z) € AN B. But this says, = € ¢g~'(4AN B). Since = €
g 1(A) N g~Y(B) is arbitrary, this shows

g (A)ng ' (B) S g~ (ANB).
These two inclusions show that

g " ANB)=g""(A)ng " (B).



Exercise 1.2.12. Let y; = 6, and for each n € N define y,+1 = (2y, — 6)/3.
(a) Use induction to prove that the sequence satisfies y,, > —6 for all n € N.
(b) User another induction argument to show the sequence (y1,y2,¥s,...) is decreasing.

Solution. (a) Proof. First, we have that y; = 6 > —6, so the result is true for n = 1.

Suppose the y; > —6 for some k € N.

Then

2y —6

Yk+1 = 3
2
= —yp — 2
33/k
2
> —(—6)—2
~(-6)
> —6

By the Principle of Mathematical Induction, y, > —6 for all n € N.
O

(b) Proof. It is really not necessary to use an induction argument here. We note that from
(a), we have %yn > —2, so we have

2 1 2 2y, — 6
Yn = gyn + gyn > gyn —-2= yn3 = Un+1-

So, the sequence (y1,¥y2,¥s, ... ) is decreasing.



Exercise 1.2.13. For this exercise, assume Exercise 1.2.5 has been successfully completed.

(a) Show how induction can be used to conclude that
(AJUAU---UA,) =ATNASN---NAS
for any finite n € N.

(b) Explain why induction cannot be used to conclude

(U An> =) 4.
n=1 n=1
It might be useful to consider part (a) of Exercise 1.2.3.

(c) Is the statement in part (b) valid? If so, write a proof that does not use induction.

Solution. (a) Proof. Let {A;}, i € N, be an indexed family of sets. The result is clearly
true for n = 1. By Exercise 1.2.3(c), the result is true for n = 2.

Suppose the result is true for n = k. That is, suppose
(AJUAU---UAp) = ATNASN--- N AL
Then

(A1UA2U-~'UAkUAk+1)C = [(Al UA2U"‘UAk)UAk+1]C

= (A1UAU---UAL) N AL, by Exercise 1.2.3(c)

= (ATNASN---N A7) N A7, by the inductive hypothesis
=ATNASN---NALNAL .

This shows the result holds for n = k4 1. By the Principle of Mathematical Induction,
the result holds for all n € N. O

(b) The Principle of Mathematical Induction cannot be used to prove this result because
that principle proves that a result holds for every finite n € N, in this case, every finite
union or intersection.

(¢c) Conjecture: For an indexed family of sets {A4;}en,

() -
n=1 n=1



Proof. Let z € (U52; An)“. Then z ¢ o7, Ay, which means z ¢ A, for all n € N.
So, z € A for all n € N, whereby z € (),—; AS. Since z € (U, 4,)° is arbitrary,
(UnZ1 4n)" € Moy A7

Let x € ()02, A%. Then z € AS for all n € N, so z ¢ A, for any n € N. Thus
z ¢ Uy, Ay, whereby z € (U;2; Ay)°. Since z € (02, A% is arbitrary, (oo, AS C
(Unzy An)".

The two inclusions prove the result. ]



