
Homework #15 Solutions

Due Monday, December 1

Exercise 7.2.1. Let f be a bounded function on [a, b], and let P be an arbitrary partition
of [a, b]. First, explain why U(f, P ) ≥ L(f, P ). Now, prove Lemma 7.2.6.

Solution. Proof. Let f be a bounded function on [a, b] and let P be a partition of [a, b].
The lower sum of f with respect to P is

L(f, P ) =
n∑

k=1

mk(xk − xk−1)

and the upper sum of f with respect to P is

U(f, P ) =
n∑

k=1

Mk(xk − xk−1),

where mk = inf{f(x) : x ∈ [xk−1, xk]} and Mk = sup{f(x) : x ∈ [xk−1, xk]}.
Since mk ≤ Mk for all k, we certainly have

L(f, P ) ≤ U(f, P ).

By Lemma 7.2.4, for any partitions P1, P2 of [a, b],

L(f, P1) ≤ U(f, P2).

Taking the supremum of the left side and the infimum of the right side, we get

L(f) = sup{L(f, P ) : P a partition of [a, b]}
≤ inf{U(f, P ) : P a partition of [a, b]} = U(f).

So, we conclude that the lower integral of f over [a, b] is at most equal to the upper integral
of f over [a, b]:

L(f) ≤ U(f).



Exercise 7.2.2. Consider f(x) = 1/x over the interval [1, 4]. Let P be the partition
consisting of the points {1, 3/2, 2, 4}.

(a) Compute L(f, P ), U(f, P ) and U(f, P )− L(f, P ).

(b) What happens to the value of U(f, P ) − L(f, P ) when we add the point 3 to the
partition?

(c) Find a partition P ′ of [1, 4] for which U(f, P ′)− L(f, P ′) < 2/5.

Solution. Consider f(x) = 1/x over the interval [1, 4].

(a) Let P be the partition consisting of the points {1, 3/2, 2, 4}. Then the intervals formed
by the partition are

[1, 3/2], [3/2, 2], [2, 4].

For these intervals, we compute

[1, 3/2] : m1 = 2/3,

M1 = 1;

[3/2, 2] : m2 = 1/2,

M2 = 2/3;

[2, 4] : m3 = 1/4,

M3 = 1/2.

Now we compute

L(f, P ) = m1(x1 − x0) +m2(x2 − x1) +m3(x3 − x3)

=
2

3
· ((3/2)− 1) +

1

2
· (2− (3/2)) +

1

4
· (4− 2)

=
13

12
,

and

U(f, P ) = M1(x1 − x0) +M2(x2 − x1) +M3(x3 − x3)

= 1 · ((3/2)− 1) +
2

3
· (2− (3/2)) +

1

2
· (4− 2)

=
11

6
,

So, we see the difference U(f, P )− L(f, P ) = 3
4 .
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(b) If we add the point 3 to the partition, the intervals formed by the partition are

[1, 3/2], [3/2, 2], [2, 3], [3, 4].

For these intervals, we compute

[1, 3/2] : m1 = 2/3,

M1 = 1;

[3/2, 2] : m2 = 1/2,

M2 = 2/3;

[2, 3] : m3 = 1/3,

M3 = 1/2;

[3, 4] : m4 = 1/4,

M4 = 1/3.

Now we compute

L(f, P ) = m1(x1 − x0) +m2(x2 − x1) +m3(x3 − x2) +m4(x4 − x3)

=
2

3
· ((3/2)− 1) +

1

2
· (2− (3/2)) +

1

3
· (3− 2) +

1

4
· (4− 3)

=
7

6
,

and

U(f, P ) = M1(x1 − x0) +M2(x2 − x1) +M3(x3 − x2) +M4(x4 − x3)

= 1 · ((3/2)− 1) +
2

3
· (2− (3/2)) +

1

2
· (3− 2) +

1

3
· (4− 3)

=
5

3
,

So, we see the difference 5
3 − 7

6 = 1
2 .

(c) All you have to do is add any point to the partition. I’ll let you do that.

3



Exercise 7.2.3 (Sequential Criterion for Integrability). (a) Prove that a bounded func-
tion f is integrable on [a, b] if and only if there exists a sequence of partitions (Pn)

∞
n=1

satisfying
lim
n→0

[U(f, Pn)− L(f, Pn)] = 0.

(b) For each n, let Pn be the partition of [0, 1] into n equal subintervals. Find formulas for

U(f, Pn) and L(f, Pn) if f(x) = x. The formula 1 + 2 + 3 + · · · + n = n(n+1)
2 will be

useful.

(c) Use the sequential criterion for integrability from (a) to show directly that f(x) = x is
integrable on [0, 1] and compute

∫ 1
0 f .

Solution. (a) Proof. (⇐) Let f be an integrable function on [a, b]. Let n ∈ N. By
Theorem 7.2.8, there exists a partition Pn of [a, b] so that

0 ≤ U(f, Pn)− L(f, Pn) <
1

n
.

Taking the limit as n → ∞ using the Squeeze Theorem, we get

lim
n→∞

[U(f, Pn)− L(f, Pn)] = 0.

(⇒) Let f be a bounded function on [a, b] satisfying the property that there exists a
sequence of partitions (Pn)

∞
n=1 satisfying

lim
n→0

[U(f, Pn)− L(f, Pn)] = 0.

By definition of upper and lower integrals, we have

L(f, Pn) ≤ L(f) ≤ U(f) ≤ U(f, Pn),

so that
U(f)− L(f) ≤ U(f, Pn)− L(f, Pn)

for all n ∈ N. Taking the limit as n → ∞ and noting that U(f)− L(f) ≥ 0, we get

0 ≤ U(f)− L(f, P ) ≤ lim
n→0

[U(f, Pn)− L(f, Pn)] = 0.

So, U(f) = L(f) and f is integrable.
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(b) For each k, 1 ≤ k ≤ n, let xk = k/n and let Pn = {x1, x2, . . . , xn}. Noting that on the
kth interval, [xk−1, xk], mk = xk−1 and Mk = xk. So, the upper sum is

U(f, Pn) =
n∑

k=1

Mk(xk − xk−1) =
n∑

k=1

xk(xk − xk−1)

=
n∑

k=1

k

n

(
k

n
− k − 1

n

)
=

n∑
k=1

k

n2
=

1

n2

n∑
k=1

k

=
1

n2
· n(n+ 1)

2

=
n+ 1

2n
.

and the lower sum is

L(f, Pn) =

n∑
k=1

mk(xk − xk−1) =

n∑
k=1

xk−1(xk − xk−1)

=

n∑
k=1

k − 1

n

(
k

n
− k − 1

n

)
=

n∑
k=1

k − 1

n2
=

1

n2

n∑
k=1

(k − 1)

=
1

n2
· n(n− 1)

2

=
n− 1

2n
.

(c) From part (b), we have

U(f, Pn)− L(f, Pn) =
n+ 1

2n
− n− 1

2n
=

1

n
.

Notice we have

lim
n→∞

[U(f, Pn)− L(f, Pn)] = lim
n→∞

1

n
= 0.

By part (a), f is integrable.
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Exercise 7.2.5. Assume that, for each n, fn is an integrable function on [a, b]. If (fn) → f
uniformly on [a, b], prove that f is also integrable on this set. (We will see that this
conclusion does not necessarily follow if the convergence is pointwise.)

Solution. Proof. For each n ∈ N, suppose fn is an integrable function on [a, b] and suppose
that(fn) converges to f uniformly on [a, b]. Let ϵ > 0.

Since (fn) converges uniformly to f on [a, b], there exists N ∈ N so that whenever
n ≥ N , we have

|fn(x)− f(x)| < ϵ

3(b− a)

for all x in [a, b].
Since fN is integrable on [a, b], there exists a partition P of [a, b] so that

U(fN , P )− L(fN , P ) <
ϵ

3
.

By this choice of N , it follows that

|Mk(f)−Mk(fN )| ≤ ϵ

3(b− a)

|mk(f)−mk(fN )| ≤ ϵ

3(b− a)
,

whereMk(f) = sup{f(x) |x ∈ [xk−1, xk]}, mk(f) = inf{f(x) |x ∈ [xk−1, xk]}, and similarly
for fN .

Then we have

|L(f, P )− L(fN , P )| =

∣∣∣∣∣
n∑

k=1

(mk(f)−mk(fN ))∆xk

∣∣∣∣∣
≤

n∑
k=1

|mk(f)−mk(fN )|∆xk

≤
n∑

k=1

ϵ

3(b− a)
∆xk

≤ ϵ

3(b− a)

n∑
k=1

∆xk

≤ ϵ

3(b− a)
(b− a)

≤ ϵ

3
,
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and

|U(f, P )− U(fN , P )| =

∣∣∣∣∣
n∑

k=1

(Mk(f)−Mk(fN ))∆xk

∣∣∣∣∣
≤

n∑
k=1

|Mk(f)−Mk(fN )|∆xk

≤
n∑

k=1

ϵ

3(b− a)
∆xk

≤ ϵ

3(b− a)

n∑
k=1

∆xk

≤ ϵ

3(b− a)
(b− a)

≤ ϵ

3
.

Finally, we have

|U(f, P )− L(f, P | = |U(f, P )− U(fN , P ) + U(fN , P )− L(fN , P ) + L(fN , P )− L(f, P |
≤ |U(f, P )− U(fN , P )|+ |U(fN , P )− L(fN , P )|+ |L(fN , P )− L(f, P |

<
ϵ

3
+

ϵ

3
+

ϵ

3
< ϵ.

Since ϵ > 0 is arbitrary, f is integrable by Theorem 7.2.8.
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Exercise 7.3.3. Let

f(x) =

{
1 if x = 1/n for some n ∈ N
0 otherwise.

Show that f is integrable on [0, 1] and compute
∫ 1
0 f .

Solution. For any partition P , it is clear that

L(f, P ) = 0

since any subinterval contains an irrational number where f is defined to be zero.
Take partition Pn consisting of points given by xk = k/n2 and x0 = 0. The length of

this interval is ∆xk = 1/n2 so

U(f, Pn) =
1

n2
(1 + · · ·+ 1) +

1

n2
sup

{
f(t) : t ≤ 1

n

}
=

n

n2
+

1

n2

=
1

n
+

1

n2
.

Given any ϵ > 0, we may find N such that 1
N + 1

N2 < ϵ thus for all n ≥ N , U(f, Pn) < ϵ.
This shows

U(f, P ) = 0,

that is ∫ 1

0
f = U(f, P ) = L(f, P ) = 0.1

1Proof shamlessly stolen from quizlet.com
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