
Homework #14 Solutions

Due Monday, November 17

Exercise 6.5.3. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Theorem. If a power series
∑∞

n=0 anx
n converges absolutely at a point x0, then it con-

verges uniformly on the closed interval [−c, c] where c = |x0|.

Solution. Proof. Suppose a power series
∑∞

n=0 anx
n converges absolutely at a point x0.

If x0 = 0 there is nothing to prove, so we may suppose x0 ̸= 0.
Let c = |x0|. Let Mn = |an|cn.
Since

∑∞
n=0 anx

n converges absolutely at a point x0, the series

∞∑
n=0

|anxn0 | =
∞∑
n=0

|an|cn =
∞∑
n=0

Mn

converges.
Let x ∈ [−c, c]. Then

|anxn| = |an| |x|n ≤ |an|cn = Mn.

By the Weierstrass M-Test, the series
∑∞

n=0 anx
n converges uniformly on [−c, c].

1



Exercise 6.5.5. (a) If s satisfies 0 < s < 1, show nsn−1 is bounded for all n ≥ 1.

(b) Given an arbitrary x ∈ (−R,R), pick t to satisfy |x| < t < R. Use this start to
construct a proof for Theorem 6.5.6.

Theorem. If
∑∞

n=0 anx
n converges for all x ∈ (−R,R), then the differentiated series∑∞

n=1 nanx
n−1 converges at each x ∈ (−R,R) as well. Consequently, the convergence

is uniform on compact sets contained in (−R,R).

Solution. (a) Proof. Consider the power series
∑∞

n=1 nx
n−1. Applying the Ratio Test,

we compute

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)xn

nxn−1

∣∣∣∣
= lim

n→∞

(
n+ 1

n

)
|x|

= |x|.

By the Ratio Test, this power series converges absolutely on the interval (−1, 1).

Let 0 < s < 1. Then the series
∑∞

n=1 ns
n−1 converges. But this means that the terms

are bounded. So, there exists M ∈ R so that nsn−1 ≤ M for all n ∈ N.

(b) Proof. Let x ∈ (−R,R), pick t to satisfy |x| < t < R and let r = |x|/t, which we note
is less than one. We observe that

|nanxn−1| = 1

t

(
n

∣∣∣∣xn−1

tn−1

∣∣∣∣) |antn| =
1

t

(
n|r|n−1

)
|antn|.

Applying part (a), there exists M > 0 so that n|r|n−1 ≤ M for all n ∈ N. Then

|nanxn−1| ≤ M

t
|antn|.

Since t lies in the interval of convergence, the series
∑∞

n=0 anx
n converges absolutely

for x = t. So
∞∑
n=0

|antn|

converges. But then the multiple
∑ M

t |ant
n| = M

t

∑
|antn| also coverges.

Since
∑ M

t |ant
n| converges and |nanxn−1| ≤ M

t |ant
n| for all n ∈ N, we have

∞∑
n=1

nanx
n−1

converges absolutely by the Comparison Test.
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Exercise 6.6.2. Starting from one of the previously generated series in this section, use
manipulations similar to those in Example 6.6.1 to find a Taylor series representations for
each of the following functions. For precisely what values of x is each series representation
valid?

(a) x cos(x2)

(b) x/(1 + 4x2)2

(c) ln(1 + x2)

Solution. (a) We have already computed that

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · · .

Substituting x2 for x, we have

cos(x2) = 1− x4

2!
+

x8

4!
− x12

6!
+

x16

8!
− · · · .

Multiplying by x, we get

x cos(x2) = x− x5

2!
+

x9

4!
− x13

6!
+

x17

8!
− · · · .

(b) If we look at the geometric series with ratio −4x2, we get

1

1 + 4x2
= 1− 4x2 + 16x4 − 64x6 + 256x8 − · · ·

This converges absolutely for |x| < 1/2. Taking the derivative, we get

−8x

(1 + 4x2)2
= −8x+ 64x3 − 384x5 + 2048x7 − · · ·

Divide by −8 to get
x

(1 + 4x2)2
= x− 8x3 + 48x5 − 256x7 + · · ·

(c) If we look at the geometric series with ratio −x2, we get

1

1 + x2
= 1− x2 + x4 − x6 + x8 − · · ·

This converges absolutely for |x| < 1. Multiplying by 2x, we get

2x

1 + x2
= 2x− 2x3 + 2x5 − 2x7 + 2x9 − · · ·

Taking the antiderivative, we get

ln(1 + x2) = x2 − 1

2
x4 +

1

3
x6 − 1

4
x8 +

1

5
x10 − · · ·
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Exercise 6.6.7. Find an example of each of the following or explain why no such function
exists.

(a) An infinitely differentiable function g(x) on all of R with a Taylor series that converges
to g(x) only for x ∈ (−1, 1).

(b) An infinitely differentiable function h(x) with the same Taylor series as sinx but such
that h(x) ̸= sinx for all x ̸= 0.

(c) An infinitely differentiable function f(x) on all of R with a Taylor series that converges
to f(x) if and only if x ≤ 0.

Solution. (a) Let g(x) = 1
1+x2 . Then

g(x) = 1− x2 + x4 − x6 + x8 − · · · .

for |x| < 1.

(b) Let g(x) be the counterexample introduced on p. 203.

g(x) =

{
e−1/x2

for x ̸= 0,

0 for x = 0.

The Maclaurin series for g is identically zero, but g is nowhere zero except at x = 0.

Let h(x) = sinx+ g(x). Then h and sinx have the same Maclaurin series, but the two
functions are not equal except at x = 0.

(c) Modify the counterexample introduced on p. 203:

f(x) =

{
e−1/x2

for x > 0,

0 for x ≤ 0.

The Maclaurin series for f is identically zero, but f is nowhere zero except x < 0,
where it equals its Taylor series (which is identically 0).
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Exercise 6.6.10. Consider f(x) = 1/
√
1− x.

(a) Generate the Taylor series for f centered at zero, and use Lagrange’s Remainder The-
orem to show the series converges to f on [0, 1/2]. (The case x < 1/2 is more straight-
forward while x = 1/2 requires some extra care.). What happens when we attempt
this with x > 1/2?

(b) Use Cauchy’s Remainder Theorem proved in Exercise 6.6.9 to show the series repre-
sentation for f holds on [0, 1). (You do not have to do Exercise 6.6.9. Just use it
here.)

Solution. (a) We have

f (n)(x) =

∏n
i=1(2i− 1)

2n

(
1

1− x

)n
√

1

1− x
.

The Maclaurin series is

∞∑
n=0

∏n
i=1(2i− 1)

2nn!
xn =

∞∑
n=0

(
xn

2n

n∏
i=1

(2i− 1)

i

)
≤

∞∑
n=0

(
xn

2n

n∏
i=1

2

)
=

∞∑
n=0

xn,

so we know that the Maclaurin series at least converges to something for x ∈ [0, 1).

Lagrange’s form of the remainder gives us

EN (x) =

(∏N+1
i=1 (2i− 1)

)
2N+1(N + 1)!

(
1

1− c

)N+1
√

1

1− c
xN+1

for some c ∈ (0, x). For x = 1/2 and 0 < c < x:

|EN (x)| ≤

(
N+1∏
i=1

2i− 1

i

)(
1

2− 2c

)N+1
(√

1

1− c

)
1

2N+1

≤ 2N+1dN+1

(√
1

1− c

)
1

2N+1
= dN+1

√
1

1− c
,

where d = 1/(2− 2c) < 1; this shows EN converges to 0 over [0, 1/2].

Writing EN in product notation,

EN (x) =

N+1∏
i=1

(2i− 1)x

2i(1− c)
.

If x > 1/2, then it’s possible for x
1−c > 1. Then for some I, for i > I we have

x

1− c
>

2i

2i− 1
> 1.
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Beyond that point, the terms in the product begin increasing, with the product as a
whole growing exponentially and diverging.

(b) Plugging in Cauchy’s Remainder Theorem,

EN (x) =

(
N+1∏
i=1

2i− 1

i

)
(2N + 1)(x− c)Nx

2N (1− c)N+1

√
1

1− c

≤ (2N + 1)(d)N
x

1− c

√
1

1− c
,

where d = x−c
1−c < 1. The first term is linear in N , the second is exponentially decay-

ing in N , and the last two terms are constant, so the behavior is dominated by the
exponential decay and EN (x) converges to 0.1

1Shamelessly stolen from https://www.uli.rocks/understanding-analysis-solutions/main.pdf and edited.
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