Homework #14 Solutions
Due Monday, November 17

Exercise 6.5.3. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Theorem. If a power series Y > apx™ converges absolutely at a point xq, then it con-
verges uniformly on the closed interval [—c, c| where ¢ = |xzg|.

Solution. Proof. Suppose a power series y ° a,x™ converges absolutely at a point .
If g = 0 there is nothing to prove, so we may suppose zg # 0.

Let ¢ = |zg|. Let M,, = |a,|c™.

Since > "7, apx™ converges absolutely at a point xg, the series

o o [e.e]
> lanat] =3 lanle" = 3 M,
n=0 n=0 n=0

converges.
Let z € [—¢,c]. Then

lanz™| = |an| |z|" < |an|c™ = M,

By the Weierstrass M-Test, the series > > j anz™ converges uniformly on [—¢, c|.



Exercise 6.5.5. (a) If s satisfies 0 < s < 1, show ns"~! is bounded for all n > 1.

(b) Given an arbitrary x € (—R, R), pick t to satisfy |z| < ¢ < R. Use this start to
construct a proof for Theorem 6.5.6.

Theorem. If Y >  ja,z" converges for all x € (—R, R), then the differentiated series
Yo na,z" ! converges at each x € (—R, R) as well. Consequently, the convergence
is uniform on compact sets contained in (—R, R).

Solution. (a) Proof. Consider the power series Y o0 nz" !

we compute

. Applying the Ratio Test,

.| b . |(n+ 1)z
lim = lim |——F—
n—o0 n n—oo nxh—1
. n+1
= lim |z
n—00 n
= |z|.

By the Ratio Test, this power series converges absolutely on the interval (—1,1).

Let 0 < s < 1. Then the series y 7, ns" ! converges. But this means that the terms
are bounded. So, there exists M € R so that ns"~! < M for all n € N. O

(b) Proof. Let x € (—R, R), pick ¢ to satisfy |z| <t < R and let r = |z|/t, which we note
is less than one. We observe that

1
na,z" ! == (n

mn—l

t tnfl

1
) lant™| = - (n|r\”71) lant™|.
Applying part (a), there exists M > 0 so that n|r|*~! < M for all n € N. Then
M
[na,z" ! < 7|ant"|.

Since ¢ lies in the interval of convergence, the series ) 7 jana™ converges absolutely

for x =t. So
o
> ot
n=0

converges. But then the multiple » %|ant”| = % > |ant™| also coverges.

Since ) ¥|ant”| converges and |na,z" | < ¥|ant”| for all n € N, we have

o
E na,x" !
n=1

converges absolutely by the Comparison Test. ]



Exercise 6.6.2. Starting from one of the previously generated series in this section, use
manipulations similar to those in Example 6.6.1 to find a Taylor series representations for
each of the following functions. For precisely what values of x is each series representation
valid?

(a) xcos(x?)
(b) /(1 +42%)
(c) In(1+ z?)

Solution. (a) We have already computed that
2 4 6 8

4 " x x x
cos(r) =l-grt o w TE
Substituting 22 for x, we have
4 8 12 16
cos(xQ)zl—x—jo—fLJrif

Multiplying by x, we get

(b) If we look at the geometric series with ratio —4x2, we get

1
——— =1—42% + 162" — 642° + 2562% — - -
1+ 422
This converges absolutely for |z| < 1/2. Taking the derivative, we get
—8z 3 5 7
Divide by —8 to get
X _ 3 5 7
(c) If we look at the geometric series with ratio —a2, we get
1
=1-a? 42t a5 ...
14 a2
This converges absolutely for |z| < 1. Multiplying by 2z, we get
2
= =2z — 223 4+ 22° — 227 + 229 — .
14 a2

Taking the antiderivative, we get

1 1 1 1
2 Lt a4, t e L. 8, +
295 +3x 496 —1-595

In(1+42%) ==z 10 _



Exercise 6.6.7. Find an example of each of the following or explain why no such function
exists.

(a) An infinitely differentiable function g(x) on all of R with a Taylor series that converges
to g(z) only for x € (—1,1).

(b) An infinitely differentiable function h(x) with the same Taylor series as sinz but such
that h(z) # sinx for all z # 0.

(¢) An infinitely differentiable function f(x) on all of R with a Taylor series that converges
to f(x) if and only if z < 0.

Solution. (a) Let g(z) = ﬁ Then
gx)=1—-a?+a2t —ab 425 ...
for |x| < 1.
(b) Let g(x) be the counterexample introduced on p. 203.
o) = {e_l/gﬁ2 for x # 0,
0 forax=0.

The Maclaurin series for g is identically zero, but g is nowhere zero except at z = 0.
Let h(z) = sinz + g(x). Then h and sin x have the same Maclaurin series, but the two

functions are not equal except at z = 0.

(¢c) Modify the counterexample introduced on p. 203:

eV for o > 0,
0 forz<0.

fz) =

The Maclaurin series for f is identically zero, but f is nowhere zero except x < 0,
where it equals its Taylor series (which is identically 0).



Exercise 6.6.10. Consider f(z) =1/y/1 —z.

(a) Generate the Taylor series for f centered at zero, and use Lagrange’s Remainder The-
orem to show the series converges to f on [0,1/2]. (The case x < 1/2 is more straight-
forward while x = 1/2 requires some extra care.). What happens when we attempt
this with x > 1/27

(b) Use Cauchy’s Remainder Theorem proved in Exercise 6.6.9 to show the series repre-
sentation for f holds on [0,1). (You do not have to do Exercise 6.6.9. Just use it
here.)

Solution. (a) We have

1—2a

f(">(x):H?:1(2z'—1)< 1 )n 1

The Maclaurin series is

Sl (R ) <X (R 1) -2

=1

so we know that the Maclaurin series at least converges to something for = € [0, 1).

Lagrange’s form of the remainder gives us

(Hij\gl(%_l)) < 1 >N+1 %xz\ul

2NH(N + 1) \1-¢ —c

En(x) =

for some ¢ € (0,z). For x =1/2 and 0 < ¢ < x:

N+1 . N—+1
2 — 1 1 1 1
En(z)| <
[En(@)] < (H i )(2—2c> ( 1—c> oNTT

S 2N+1dN+1 ( 1 ) 1 _ dN+1 1
C

1-— 2N+1 1-¢’

where d = 1/(2 — 2¢) < 1; this shows En converges to 0 over [0,1/2].

Writing En in product notation,
li[ (2i — 1)
Ll 2i(1—¢)
If > 1/2, then it’s possible for %- > 1. Then for some I, for i > I we have

T - 21
1—c¢ 2t —1

> 1.



Beyond that point, the terms in the product begin increasing, with the product as a
whole growing exponentially and diverging.

Plugging in Cauchy’s Remainder Theorem,
() Nﬁl%—l @N+1)(z—c)Nz [ 1
xr) =
N e B 2N (1 — ¢)N+1 1—c

1
1l—cV1-=¢

< (2N +1)(d)N

where d = 7=; < 1. The first term is linear in N, the second is exponentially decay-
ing in N, and the last two terms are constant, so the behavior is dominated by the
exponential decay and Exn(x) converges to 0.

!Shamelessly stolen from https://www.uli.rocks/understanding-analysis-solutions/main.pdf and edited.



