

Homework #14 Solutions

Due Monday, November 17

Exercise 6.5.3. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Theorem. *If a power series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely at a point x_0 , then it converges uniformly on the closed interval $[-c, c]$ where $c = |x_0|$.*

Solution. *Proof.* Suppose a power series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely at a point x_0 . If $x_0 = 0$ there is nothing to prove, so we may suppose $x_0 \neq 0$.

Let $c = |x_0|$. Let $M_n = |a_n|c^n$.

Since $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely at a point x_0 , the series

$$\sum_{n=0}^{\infty} |a_n x_0^n| = \sum_{n=0}^{\infty} |a_n| c^n = \sum_{n=0}^{\infty} M_n$$

converges.

Let $x \in [-c, c]$. Then

$$|a_n x^n| = |a_n| |x|^n \leq |a_n| c^n = M_n.$$

By the Weierstrass M-Test, the series $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on $[-c, c]$.

□

Exercise 6.5.5. (a) If s satisfies $0 < s < 1$, show ns^{n-1} is bounded for all $n \geq 1$.

(b) Given an arbitrary $x \in (-R, R)$, pick t to satisfy $|x| < t < R$. Use this start to construct a proof for Theorem 6.5.6.

Theorem. *If $\sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in (-R, R)$, then the differentiated series $\sum_{n=1}^{\infty} n a_n x^{n-1}$ converges at each $x \in (-R, R)$ as well. Consequently, the convergence is uniform on compact sets contained in $(-R, R)$.*

Solution. (a) *Proof.* Consider the power series $\sum_{n=1}^{\infty} n x^{n-1}$. Applying the Ratio Test, we compute

$$\begin{aligned} \lim_{n \rightarrow \infty} \left| \frac{b_{n+1}}{b_n} \right| &= \lim_{n \rightarrow \infty} \left| \frac{(n+1)x^n}{n x^{n-1}} \right| \\ &= \lim_{n \rightarrow \infty} \left(\frac{n+1}{n} \right) |x| \\ &= |x|. \end{aligned}$$

By the Ratio Test, this power series converges absolutely on the interval $(-1, 1)$.

Let $0 < s < 1$. Then the series $\sum_{n=1}^{\infty} n s^{n-1}$ converges. But this means that the terms are bounded. So, there exists $M \in \mathbb{R}$ so that $n s^{n-1} \leq M$ for all $n \in \mathbb{N}$. \square

(b) *Proof.* Let $x \in (-R, R)$, pick t to satisfy $|x| < t < R$ and let $r = |x|/t$, which we note is less than one. We observe that

$$|n a_n x^{n-1}| = \frac{1}{t} \left(n \left| \frac{x^{n-1}}{t^{n-1}} \right| \right) |a_n t^n| = \frac{1}{t} (n|r|^{n-1}) |a_n t^n|.$$

Applying part (a), there exists $M > 0$ so that $n|r|^{n-1} \leq M$ for all $n \in \mathbb{N}$. Then

$$|n a_n x^{n-1}| \leq \frac{M}{t} |a_n t^n|.$$

Since t lies in the interval of convergence, the series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for $x = t$. So

$$\sum_{n=0}^{\infty} |a_n t^n|$$

converges. But then the multiple $\sum \frac{M}{t} |a_n t^n| = \frac{M}{t} \sum |a_n t^n|$ also converges.

Since $\sum \frac{M}{t} |a_n t^n|$ converges and $|n a_n x^{n-1}| \leq \frac{M}{t} |a_n t^n|$ for all $n \in \mathbb{N}$, we have

$$\sum_{n=1}^{\infty} n a_n x^{n-1}$$

converges absolutely by the Comparison Test. \square

Exercise 6.6.2. Starting from one of the previously generated series in this section, use manipulations similar to those in Example 6.6.1 to find a Taylor series representations for each of the following functions. For precisely what values of x is each series representation valid?

- (a) $x \cos(x^2)$
- (b) $x/(1 + 4x^2)^2$
- (c) $\ln(1 + x^2)$

Solution. (a) We have already computed that

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

Substituting x^2 for x , we have

$$\cos(x^2) = 1 - \frac{x^4}{2!} + \frac{x^8}{4!} - \frac{x^{12}}{6!} + \frac{x^{16}}{8!} - \dots$$

Multiplying by x , we get

$$x \cos(x^2) = x - \frac{x^5}{2!} + \frac{x^9}{4!} - \frac{x^{13}}{6!} + \frac{x^{17}}{8!} - \dots$$

- (b) If we look at the geometric series with ratio $-4x^2$, we get

$$\frac{1}{1 + 4x^2} = 1 - 4x^2 + 16x^4 - 64x^6 + 256x^8 - \dots$$

This converges absolutely for $|x| < 1/2$. Taking the derivative, we get

$$\frac{-8x}{(1 + 4x^2)^2} = -8x + 64x^3 - 384x^5 + 2048x^7 - \dots$$

Divide by -8 to get

$$\frac{x}{(1 + 4x^2)^2} = x - 8x^3 + 48x^5 - 256x^7 + \dots$$

- (c) If we look at the geometric series with ratio $-x^2$, we get

$$\frac{1}{1 + x^2} = 1 - x^2 + x^4 - x^6 + x^8 - \dots$$

This converges absolutely for $|x| < 1$. Multiplying by $2x$, we get

$$\frac{2x}{1 + x^2} = 2x - 2x^3 + 2x^5 - 2x^7 + 2x^9 - \dots$$

Taking the antiderivative, we get

$$\ln(1 + x^2) = x^2 - \frac{1}{2}x^4 + \frac{1}{3}x^6 - \frac{1}{4}x^8 + \frac{1}{5}x^{10} - \dots$$

Exercise 6.6.7. Find an example of each of the following or explain why no such function exists.

- (a) An infinitely differentiable function $g(x)$ on all of \mathbb{R} with a Taylor series that converges to $g(x)$ only for $x \in (-1, 1)$.
- (b) An infinitely differentiable function $h(x)$ with the same Taylor series as $\sin x$ but such that $h(x) \neq \sin x$ for all $x \neq 0$.
- (c) An infinitely differentiable function $f(x)$ on all of \mathbb{R} with a Taylor series that converges to $f(x)$ if and only if $x \leq 0$.

Solution. (a) Let $g(x) = \frac{1}{1+x^2}$. Then

$$g(x) = 1 - x^2 + x^4 - x^6 + x^8 - \dots$$

for $|x| < 1$.

- (b) Let $g(x)$ be the counterexample introduced on p. 203.

$$g(x) = \begin{cases} e^{-1/x^2} & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

The Maclaurin series for g is identically zero, but g is nowhere zero except at $x = 0$.

Let $h(x) = \sin x + g(x)$. Then h and $\sin x$ have the same Maclaurin series, but the two functions are not equal except at $x = 0$.

- (c) Modify the counterexample introduced on p. 203:

$$f(x) = \begin{cases} e^{-1/x^2} & \text{for } x > 0, \\ 0 & \text{for } x \leq 0. \end{cases}$$

The Maclaurin series for f is identically zero, but f is nowhere zero except $x < 0$, where it equals its Taylor series (which is identically 0).

Exercise 6.6.10. Consider $f(x) = 1/\sqrt{1-x}$.

- (a) Generate the Taylor series for f centered at zero, and use Lagrange's Remainder Theorem to show the series converges to f on $[0, 1/2]$. (The case $x < 1/2$ is more straightforward while $x = 1/2$ requires some extra care.). What happens when we attempt this with $x > 1/2$?
- (b) Use Cauchy's Remainder Theorem proved in Exercise 6.6.9 to show the series representation for f holds on $[0, 1]$. (You do not have to do Exercise 6.6.9. Just use it here.)

Solution. (a) We have

$$f^{(n)}(x) = \frac{\prod_{i=1}^n (2i-1)}{2^n} \left(\frac{1}{1-x}\right)^n \sqrt{\frac{1}{1-x}}.$$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{\prod_{i=1}^n (2i-1)}{2^n n!} x^n = \sum_{n=0}^{\infty} \left(\frac{x^n}{2^n} \prod_{i=1}^n \frac{(2i-1)}{i} \right) \leq \sum_{n=0}^{\infty} \left(\frac{x^n}{2^n} \prod_{i=1}^n 2 \right) = \sum_{n=0}^{\infty} x^n,$$

so we know that the Maclaurin series at least converges to something for $x \in [0, 1]$.

Lagrange's form of the remainder gives us

$$E_N(x) = \frac{\left(\prod_{i=1}^{N+1} (2i-1)\right)}{2^{N+1}(N+1)!} \left(\frac{1}{1-c}\right)^{N+1} \sqrt{\frac{1}{1-c}} x^{N+1}$$

for some $c \in (0, x)$. For $x = 1/2$ and $0 < c < x$:

$$\begin{aligned} |E_N(x)| &\leq \left(\prod_{i=1}^{N+1} \frac{2i-1}{i} \right) \left(\frac{1}{2-2c} \right)^{N+1} \left(\sqrt{\frac{1}{1-c}} \right) \frac{1}{2^{N+1}} \\ &\leq 2^{N+1} d^{N+1} \left(\sqrt{\frac{1}{1-c}} \right) \frac{1}{2^{N+1}} = d^{N+1} \sqrt{\frac{1}{1-c}}, \end{aligned}$$

where $d = 1/(2-2c) < 1$; this shows E_N converges to 0 over $[0, 1/2]$.

Writing E_N in product notation,

$$E_N(x) = \prod_{i=1}^{N+1} \frac{(2i-1)x}{2i(1-c)}.$$

If $x > 1/2$, then it's possible for $\frac{x}{1-c} > 1$. Then for some I , for $i > I$ we have

$$\frac{x}{1-c} > \frac{2i}{2i-1} > 1.$$

Beyond that point, the terms in the product begin increasing, with the product as a whole growing exponentially and diverging.

(b) Plugging in Cauchy's Remainder Theorem,

$$\begin{aligned} E_N(x) &= \left(\prod_{i=1}^{N+1} \frac{2i-1}{i} \right) \frac{(2N+1)(x-c)^N x}{2^N (1-c)^{N+1}} \sqrt{\frac{1}{1-c}} \\ &\leq (2N+1)(d)^N \frac{x}{1-c} \sqrt{\frac{1}{1-c}}, \end{aligned}$$

where $d = \frac{x-c}{1-c} < 1$. The first term is linear in N , the second is exponentially decaying in N , and the last two terms are constant, so the behavior is dominated by the exponential decay and $E_N(x)$ converges to 0.¹

¹Shamelessly stolen from <https://www.ulি.rocks/understanding-analysis-solutions/main.pdf> and edited.