
Homework #13

Due Monday, November 10

Exercise 6.3.1. Consider the sequence of functions defined by

gn(x) =
xn

n
.

(a) Show that (gn) converges uniformly on [0, 1] and find g = lim gn. Show that g is
differentiable and compute g′(x) for all x ∈ [0, 1].

(b) Now, show that (g′n) converges on [0, 1]. Is the convergence uniform? Set h = lim g′n
and compare h and g′. Are they the same?

Solution. Let

gn(x) =
xn

n
.

(a) Proof. For x ∈ [0, 1], gn(x) converges pointwise to g ≡ 0. Let’s show this convergence
is uniform.

|gn(x)− g(x)| = xn

n
≤ 1

n

for all x ∈ [0, 1]. So, we see that (gn) converges to g uniformly on [0, 1].

(b) Proof. We compute
g′n(x) = xn−1.

For 0 ≤ x < 1, g′n(x) → 0. However, g′n(1) = 1 for all n ∈ N. So, (g′n) converges to the
function

h(x) =

{
0 for 0 ≤ x < 1

1 for x = 1.

Since g′n is continuous for all n ∈ N and h is not, this convergence cannot be uniform,
by Theorem 6.2.6. Since the limit function g is identically zero, g′ is also identically
zero. So we see that the sequence (g′n) does not converge to g′.



Exercise 6.3.3. Consider the sequence of functions

fn(x) =
x

1 + nx2
.

(a) Find the points on R where each fn(x) attains its maximum and minimum value. Use
this to prove (fn) converges uniformly on R. What is the limit function?

(b) Let f = lim fn. Compute f ′
n(x) and find all the values of x for which f ′(x) = lim f ′

n(x).

Solution. We claim that (fn) converges uniformly on R to f ≡ 0. Let’s show this.
Using some calculus and graphing the function, we see that |fn(x)| ≤ 1

2
√
n
.

Let ϵ > 0 and choose N > 1
4ϵ2

. Then for n ≥ N , we have

|fn(x)| ≤
1

2
√
n
≤ 1

2
√
N

< ϵ

for all x. This shows the sequence (fn) converges to zero uniformly on the entire real line.
We compute that

f ′
n(x) =

1− nx2

(1 + nx2)2
.

Notice the derivative is defined for all x ∈ R since 1 + nx2 ̸= 0 for all x ∈ R. Taking the
limit as n → ∞, we get

lim
n→∞

1− nx2

(1 + nx2)2
= lim

n→∞

1− nx2

(1 + nx2)2
· 1/n

2

1/n2

= lim
n→∞

1
n2 − x2

n

( 1n + x2)2

= 0,

provided x ̸= 0. If x = 0, we see this limit is 1.
So, we see that (f ′

n(x)) converges to f ′(x) for x ̸= 0, but not at x = 0.
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Exercise 6.4.2. Decide whether each proposition is true or false, providing a short justi-
fication or counterexample as appropriate.

(a) If
∑∞

n=1 gn converges uniformly, then (gn) converges uniformly to zero.

(b) If 0 ≤ fn(x) ≤ gn(x) and
∑∞

n=1 gn converges uniformly, then
∑∞

n=1 fn converges uni-
formly.

(c) If
∑∞

n=1 fn converges uniformly on A, then there exist constantsMn such that |fn(x)| ≤
Mn for all x ∈ A and

∑∞
n=1Mn converges.

Solution. (a) Proof. Let
∑∞

n=1 gn converge uniformly on some set A.

Let ϵ > 0. By the Cauchy Criterion for Uniform Convergence of Series (Theorem 6.4.4),
there exists N ∈ N so that for all n > m ≥ N − 1,

|gm+1(x) + gm+2(x) + · · ·+ gn(x)| < ϵ for all x ∈ A. (1)

Let n ≥ N and let m = n− 1. Note that n > m ≥ N − 1, so that by Equation (1),

|gn(x)| < ϵ for all x ∈ A.

Since n ≥ N is arbitrary, this later inequality holds for all n ≥ N , and since ϵ > 0 is
arbitrary, (gn) converges to zero uniformly on A.

(b) Proof. Suppose 0 ≤ fn(x) ≤ gn(x) for all n ∈ N and
∑∞

n=1 gn converges uniformly on
a set A.

Let ϵ > 0. By the Cauchy Criterion for Uniform Convergence of Series (Theorem 6.4.4)
there exists N ∈ N so that

|gm+1(x) + gm+2(x) + · · ·+ gn(x)| < ϵ.

whenever n > m ≥ N and for all x ∈ A.

Let n > m ≥ N . Then

|fm+1(x) + fm+2(x) + · · ·+ fn(x)| = fm+1(x) + fm+2(x) + · · ·+ fn(x)

≤ gm+1(x) + gm+2(x) + · · ·+ gn(x)

≤ |gm+1(x) + gm+2(x) + · · ·+ gn(x)|
< ϵ

for all x ∈ A. Since ϵ > 0 is arbitrary, the series
∑∞

n=1 fn converges uniformly on A by
the Cauchy Criterion for Uniform Convergence of Series (Theorem 6.4.4).
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(c) This statement is false.

As a counterexample, for each n ∈ N, let

fn : R → R

fn(x) =


1

n
if n− 1 < x ≤ n

0 otherwise

We first show that
∑∞

n=1 fn converges uniformly on R. We remark that for a fixed
value of x, fn(x) ̸= 0 for only one value of n, so that

|fm+1(x) + · · ·+ fn(x)| <
1

m

for all x ∈ R.
Let ϵ > 0. Choose N > 1/ϵ. Then for n > m ≥ N , we have

|fm+1(x) + · · ·+ fn(x)| <
1

m
≤ 1

N
< ϵ.

The sum
∑∞

n=1 fn converges uniformly by the Cauchy Criterion for Uniform Conver-
gence of Series.

However, if |fn(x)| ≤ Mn for all x, then Mn ≥ 1/n, and so
∑∞

n=1Mn diverges by the
Comparison Test.1

1This example is freely stolen and adapted from Math Stack Exchange under the topic “Converse of the
Weierstrass M-Test.”
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Exercise 6.4.7. Let

f(x) =
∞∑
k=1

sin(kx)

k3
.

(a) Show that f(x) is differentiable and that the derivative f ′(x) is continuous.

(b) Can we determine if f is twice-differentiable?

Solution. Let

f(x) =
∞∑
k=1

sin(kx)

k3

(a) Let fk(x) = sin(kx)/k3. Then |fk(x)| ≤ 1/k3 for all x ∈ R and
∑∞

k=1 1/k
3 con-

verges since it’s a p-series with p = 3 > 1. So by the Weierstrass M-Test, the series∑∞
k=1 sin(kx)/k

3 converges uniformly on the entire real line.

Now, we compute f ′
k(x) = cos(kx)/k2. Then |f ′

k(x)| ≤ 1/k2 for all x ∈ R and∑∞
k=1 1/k

2 converges since it’s a p-series with p = 2 > 1. So by the Weierstrass
M-Test, the series

∑∞
k=1 cos(kx)/k

2 converges uniformly on the entire real line.

Since each f ′
k is continuous and g =

∑
f ′
k converges uniformly, g is continuous by

Theorem 6.4.2. By Theorem 6.4.3, f ′ = g. So, f is continuously differentiable.

(b) If we take the second derivative of fk, we get

f ′′
k (x) = −sin(kx)

k

and we see that |f ′′(x)| ≤ 1/k for all x. However, the series
∑∞

k=1 1/k does not con-
verge, so the Weierstrass M-Test can’t be applied. Thus, we cannot use Theorems 6.4.2
and 6.4.3 as we did before. So, my guess is no.
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Exercise 6.4.9. Let

h(x) =
∞∑
n=1

1

x2 + n2
.

(a) Show that h is a continuous function defined on all of R.

(b) Is h differentiable? If so, is the derivative function h′ continuous?

Solution. (a) Let

h(x) =

∞∑
n=1

1

x2 + n2
.

Let

hn(x) =
1

x2 + n2
.

We note that hn(x) is defined and continuous for all x ∈ R. We also note that

|hn(x)| =
∣∣∣∣ 1

x2 + n2

∣∣∣∣ ≤ 1

n2

for all n ∈ N. Since
∑∞

n=1
1
n2 converges (since it’s a p-series with p = 2 > 1), the series

h(x) =
∞∑
n=1

1

x2 + n2
.

converges uniformly for all x ∈ R by the Weierstrass M-Test. By Theorem 6.4.2, h is
continuous on R.

(b) Using the notation and definitions in part (a), we compute

h′n(x) = − 2x

(x2 + n2)2
.

Let R > 0 be arbitrary and consider h′n on the interval [−R,R]. On this interval

|h′n(x)| =
∣∣∣∣ 2x

(x2 + n2)2

∣∣∣∣ = 2|x|
(x2 + n2)2

≤ 2R

n4
.

Since the series
∑∞

n=1 2R/n4 = 2R
∑∞

n=1 1/n
4 converges (since it’s a multiple of a p-

series with p = 4 > 1), the series
∑∞

n=1 h
′
n converges uniformly on [−R,R] to some

function g. By Theorem 6.4.3, h is differentiable on [−R,R] and

h′(x) =

∞∑
n=1

−2x

(x2 + n2)2
.

Since R > 0 is arbitrary, h is differentiable on R and h′(x) =
∑∞

n=1−2x/(x2 + n2)2.
Since each h′n is continuous and the convergence of

∑∞
n=1 h

′
n is uniform on any interval

[−R,R], we have h′ is also continuous on R.
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