Homework #12
Due Monday, November 3

Exercise 5.3.11. (a) Use the Generalized Mean Value theorem to furnish a proof of the
0/0 case of L'Hospital’s rule (Theorem 5.3.6).

(b) If we keep the first part of the hypothesis of Theorem 5.3.6 the same but we assume

that .
lim f/(a:)
z—a g (x)

does it necessarily follow that

Solution.

Theorem (L’Hospital’s Rule: 0/0 case). Assume f and g are continuous functions defined
on an interval containing a, and assume that f and g are differentiable on this interval,
with the possible exception of the point a. If f(a) =0 and g(a) =0, then
!/
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(a) Proof. Let f and g be continuous functions defined on an interval containing a, and
assume that f and g are differentiable on this interval, with the possible exception of
the point a. Suppose further that f(a) =0 and g(a) = 0 and

f'(z)
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Since limg_,, f,%) = L, there is some interval containing a on which ¢’(z) is never zero.
By the Generalized Mean Value Theorem, for z inside this interval, we have that there

exists a point ¢ between x and a so that




Now, taking the limit as x goes to a and noting that c is between x and a, we get
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This concludes the proof. ]

Proof. Let f and g be continuous functions defined on an interval containing a, and
assume that f and g are differentiable on this interval, with the possible exception of
the point a. Suppose further that f(a) =0 and g(a) = 0 and

lim f'(z)

z—a g’(x)

Let M > 0. Since lim,_,, g,lég = 00, we can choose d > 0 so that g:ég > M whenever
0<l|z—al<9d.

Let z € (a,a + ¢). Applying the Mean Value Theorem to f on the interval [a, z], we

get
flx) _ flz) = fla) _ flc)

g(z)  glx)—ga)  ¢(c)

for some ¢ € (a,z). However, in this interval, we have 5 ,,((3 > M, so that
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Since this is true for all z € (a,a + ¢), we see that

im @ =
x1—>a+ g(:c) >0

An analogous proof shows that

So,



Exercise 6.2.1. Let
n

- 14+ na?’

()
(a) Find the pointwise limit of (f,) for all z € (0, 00).
(b 0,00)?
(c 0,1)?
(d) Is the convergence uniform on (1,00)?

Solution. (a) Let z € (0,00). We modify f, by dividing the numerator and denominator
by n.
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)

)
Is the convergence uniform on (0,

(

(

nx

1+ nx?
nx

1+ na?
x

1 2°
Tl+x

falz) =

3=[S |-

Now, as n — 0o, we see that

1 2 2 :
n+x x T

(b) We compute

[fn(2) = f@)| = |77 — =

Let z, = 1/n. Then

| fr(@n) — fzn)| =

Y

for all n € N.

Thus, for all n € N, we have found z,, € (0,00) so that |f,(z,) — f(zn)] >
(fn) does not converge uniformly on (0, c0).

1
5- Hence,



(¢) The argument used in (b) (starting at n = 2) shows that (f,) does not converge
uniformly on (0,1).

(d) Using the computation in (b), for z > 1 we have
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|[fu(z) — f(2)|

So, we see the convergence is uniform on the interval (1, 00).



Exercise 6.2.3. For each n € N and z € [0, 00), let

1
T 1 ifoa
gn(z) = and  hp(z) =
1
142" nr fo<azxz<-—.

n
Answer the following questions for the sequences (gy) and (hy):
(a) Find the pointwise limit on [0, c0).
(b) Explain how we know that the convergence cannot be uniform on [0, c0).

(c) Choose a smaller set over which the convergence is uniform and supply an argument
to show that this is indeed the case.

Solution. (a) For (gy,), the pointwise limit on [0, c0) is

T for0<z <1
1

g(xz) = 3 forz=1
0 forx >1

For (hy,), the pointwise limit on [0, c0) is

0 forx =0
h(z) =
1 forx >0

(b) The convergence cannot be uniform because all the functions g, and h,, are continuous
and the limit of a sequence of continuous functions converging uniformly is continuous.
However, h and g are not continuous.

(¢) Over [1,00) we have h,,(z) = h(z) = 1 for all n, thus |h,(x)—h(x)| = 0 for all x € [1, c0)
so h,, converges uniformly.
Now for g,,. Let t € [0,1). Let € > 0.

Since ¢t € [0,1), we know from early in the course that (¢") converges to 0. Choose
N € N so that t" < e for alln > N.

Let n > N. Then
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for all z € [0,1).



Exercise 6.2.5. Using the Cauchy Criterion for convergent sequences of real numbers
(Theorem 2.6.4), supply a proof for Theorem 6.2.5. (First, define a candidate for f(x), and
then argue that f, — f uniformly.)

Theorem (Cauchy Criterion for Uniform Convergence). A sequence of functions (fy)
defined on a set A C R converges uniformly on A if and only if for every € > 0 there exists
an N € N such that |fr(z) — fm(z)| < € for allm, n > N and all x € A.

Solution. Proof. (=) Suppose a sequence of functions (f,,) defined on a set A C R con-
verges uniformly to f on A. By definition of uniform convergence, for every ¢ > 0 there
exists N € N so that for all z € A, |f,(z) — f(z)| < €/2 whenever n > N. Then for m,
n > N, we have

(@) = fn(2)] = | fu()

— f(z) + f(z) — fm(2)]
= f@)]+f(x) = fin(2)]
<fifo

O |

for all x € A.

(<) Let (f») be a sequence of functions defined on a set A C R which has the property
that for every € > 0 there exists an N € N such that |f,(z) — fi(2)| < € for all m, n > N
and all z € A.

For a fixed z € A, the condition says that the sequence (f,(x)) is a Cauchy sequence
in R. By the Cauchy Criterion (Theorem 2.6.4), (f,(z)) converges to some real number.
Call this number f(x). This defines a function f: A — R.

Let ¢ > 0. By the condition in the hypothesis, there exists N &€ N such that
|fr(x) — fm(z)| < €/2 for all m, n > N and all x € A. Letting m — oo, we get

fulz) - @) < S <

for all x € A. That is, (f,) converges uniformly to f on A. O



Exercise 6.2.14. A sequence of functions (f,) defined on a set E C R is called equicon-
tinuous if for every e > 0 there exists a § > 0 such that |f,(z) — fi(y)| < € for all n € N
and |z —y| < din E.

(a) What is the difference between saying that a sequence of functions (f,) is equicontinu-
ous and just asserting that each f, in the sequence is individually uniformly continuous?

(b) Give a qualitative explanation for why the sequence g,(z) = 2™ is not equicontinuous
on [0, 1]. Is each g, uniformly continuous on [0, 1]?

Solution. (a) For equicontinuous functions the same § works for every function in the
sequence, as opposed to individually being uniformly continuous where § depends on
n.

(b) Not equicontinuous since as n increases we need 0 to be smaller, hence § cannot be writ-
ten independent of n. Each g, is uniformly continuous however (since g, is continuous
on the compact set [0, 1]).

This solution freely stolen from

https://www.uli.rocks/understanding-analysis-solutions/main.pdf.


https://www.uli.rocks/understanding-analysis-solutions/main.pdf

