
Homework #12

Due Monday, November 3

Exercise 5.3.11. (a) Use the Generalized Mean Value theorem to furnish a proof of the
0/0 case of L’Hospital’s rule (Theorem 5.3.6).

(b) If we keep the first part of the hypothesis of Theorem 5.3.6 the same but we assume
that

lim
x→a

f ′(x)

g′(x)
= ∞

does it necessarily follow that

lim
x→a

f(x)

g(x)
= ∞?

Solution.

Theorem (L’Hospital’s Rule: 0/0 case). Assume f and g are continuous functions defined
on an interval containing a, and assume that f and g are differentiable on this interval,
with the possible exception of the point a. If f(a) = 0 and g(a) = 0, then

lim
x→a

f ′(x)

g′(x)
= L implies lim

x→a

f(x)

g(x)
= L.

(a) Proof. Let f and g be continuous functions defined on an interval containing a, and
assume that f and g are differentiable on this interval, with the possible exception of
the point a. Suppose further that f(a) = 0 and g(a) = 0 and

lim
x→a

f ′(x)

g′(x)
= L.

Since limx→a
f ′(x)
g′(x) = L, there is some interval containing a on which g′(x) is never zero.

By the Generalized Mean Value Theorem, for x inside this interval, we have that there
exists a point c between x and a so that

f ′(c)

g′(c)
=

f(x)− f(a)

g(x)− g(a)
=

f(x)

g(x)
.
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Now, taking the limit as x goes to a and noting that c is between x and a, we get

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(c)

g′(c)
= lim

x→a

f ′(x)

g′(x)
= L.

This concludes the proof.

(b) Proof. Let f and g be continuous functions defined on an interval containing a, and
assume that f and g are differentiable on this interval, with the possible exception of
the point a. Suppose further that f(a) = 0 and g(a) = 0 and

lim
x→a

f ′(x)

g′(x)
= ∞.

Let M > 0. Since limx→a
f ′(x)
g′(x) = ∞, we can choose δ > 0 so that f ′(x)

g′(x) > M whenever

0 < |x− a| < δ.

Let x ∈ (a, a + δ). Applying the Mean Value Theorem to f on the interval [a, x], we
get

f(x)

g(x)
=

f(x)− f(a)

g(x)− g(a)
=

f ′(c)

g′(c)

for some c ∈ (a, x). However, in this interval, we have f ′(c)
g′(c) > M , so that

f(x)

g(x)
=

f ′(c)

g′(c)
> M.

Since this is true for all x ∈ (a, a+ δ), we see that

lim
x→a+

f(x)

g(x)
= ∞.

An analogous proof shows that

lim
x→a−

f(x)

g(x)
= ∞.

So,

lim
x→a

f(x)

g(x)
= ∞.
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Exercise 6.2.1. Let
fn(x) =

nx

1 + nx2
.

(a) Find the pointwise limit of (fn) for all x ∈ (0,∞).

(b) Is the convergence uniform on (0,∞)?

(c) Is the convergence uniform on (0, 1)?

(d) Is the convergence uniform on (1,∞)?

Solution. (a) Let x ∈ (0,∞). We modify fn by dividing the numerator and denominator
by n.

fn(x) =
nx

1 + nx2

=
nx

1 + nx2
·

1
n
1
n

=
x

1
n + x2

.

Now, as n → ∞, we see that
x

1
n + x2

→ x

x2
=

1

x
.

(b) We compute

|fn(x)− f(x)| =
∣∣∣∣ nx

1 + nx2
− 1

x

∣∣∣∣
=

1

x(1 + nx2)
.

Let xn = 1/n. Then

|fn(xn)− f(xn)| =
1(

1
n

)
(1 + n

(
1
n

)2
)

=
1(

1
n

)
(1 + 1

n)

=
n2

n+ 1

≥ 1

2

for all n ∈ N.
Thus, for all n ∈ N, we have found xn ∈ (0,∞) so that |fn(xn) − f(xn)| ≥ 1

2 . Hence,
(fn) does not converge uniformly on (0,∞).
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(c) The argument used in (b) (starting at n = 2) shows that (fn) does not converge
uniformly on (0, 1).

(d) Using the computation in (b), for x ≥ 1 we have

|fn(x)− f(x)| = 1

x(1 + nx2)
≤ 1

1 + n
.

So, we see the convergence is uniform on the interval (1,∞).
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Exercise 6.2.3. For each n ∈ N and x ∈ [0,∞), let

gn(x) =
x

1 + xn
and hn(x) =


1 if x ≥ 1

n

nx if 0 ≤ x <
1

n
.

Answer the following questions for the sequences (gn) and (hn):

(a) Find the pointwise limit on [0,∞).

(b) Explain how we know that the convergence cannot be uniform on [0,∞).

(c) Choose a smaller set over which the convergence is uniform and supply an argument
to show that this is indeed the case.

Solution. (a) For (gn), the pointwise limit on [0,∞) is

g(x) =


x for 0 ≤ x < 1

1

2
for x = 1

0 for x > 1

For (hn), the pointwise limit on [0,∞) is

h(x) =

{
0 for x = 0

1 for x > 0

(b) The convergence cannot be uniform because all the functions gn and hn are continuous
and the limit of a sequence of continuous functions converging uniformly is continuous.
However, h and g are not continuous.

(c) Over [1,∞) we have hn(x) = h(x) = 1 for all n, thus |hn(x)−h(x)| = 0 for all x ∈ [1,∞)
so hn converges uniformly.

Now for gn. Let t ∈ [0, 1). Let ϵ > 0.

Since t ∈ [0, 1), we know from early in the course that (tn) converges to 0. Choose
N ∈ N so that tn < ϵ for all n ≥ N .

Let n ≥ N . Then∣∣∣∣ x

1 + xn
− 1

∣∣∣∣ = ∣∣∣∣x− x(1 + xn)

1 + xn

∣∣∣∣ = ∣∣∣∣ xn+1

1 + xn

∣∣∣∣ < |tn+1| < ϵ

for all x ∈ [0, t).
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Exercise 6.2.5. Using the Cauchy Criterion for convergent sequences of real numbers
(Theorem 2.6.4), supply a proof for Theorem 6.2.5. (First, define a candidate for f(x), and
then argue that fn → f uniformly.)

Theorem (Cauchy Criterion for Uniform Convergence). A sequence of functions (fn)
defined on a set A ⊆ R converges uniformly on A if and only if for every ϵ > 0 there exists
an N ∈ N such that |fn(x)− fm(x)| < ϵ for all m, n ≥ N and all x ∈ A.

Solution. Proof. (⇒) Suppose a sequence of functions (fn) defined on a set A ⊆ R con-
verges uniformly to f on A. By definition of uniform convergence, for every ϵ > 0 there
exists N ∈ N so that for all x ∈ A, |fn(x) − f(x)| < ϵ/2 whenever n ≥ N . Then for m,
n ≥ N , we have

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)|
≤ |fn(x)− f(x)|+ |f(x)− fm(x)|

<
ϵ

2
+

ϵ

2
= ϵ

for all x ∈ A.

(⇐) Let (fn) be a sequence of functions defined on a set A ⊆ R which has the property
that for every ϵ > 0 there exists an N ∈ N such that |fn(x)− fm(x)| < ϵ for all m, n ≥ N
and all x ∈ A.

For a fixed x ∈ A, the condition says that the sequence (fn(x)) is a Cauchy sequence
in R. By the Cauchy Criterion (Theorem 2.6.4), (fn(x)) converges to some real number.
Call this number f(x). This defines a function f : A → R.

Let ϵ > 0. By the condition in the hypothesis, there exists N ∈ N such that
|fn(x)− fm(x)| < ϵ/2 for all m, n ≥ N and all x ∈ A. Letting m → ∞, we get

|fn(x)− f(x)| ≤ ϵ

2
< ϵ,

for all x ∈ A. That is, (fn) converges uniformly to f on A.
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Exercise 6.2.14. A sequence of functions (fn) defined on a set E ⊆ R is called equicon-
tinuous if for every ϵ > 0 there exists a δ > 0 such that |fn(x)− fn(y)| < ϵ for all n ∈ N
and |x− y| < δ in E.

(a) What is the difference between saying that a sequence of functions (fn) is equicontinu-
ous and just asserting that each fn in the sequence is individually uniformly continuous?

(b) Give a qualitative explanation for why the sequence gn(x) = xn is not equicontinuous
on [0, 1]. Is each gn uniformly continuous on [0, 1]?

Solution. (a) For equicontinuous functions the same δ works for every function in the
sequence, as opposed to individually being uniformly continuous where δ depends on
n.

(b) Not equicontinuous since as n increases we need δ to be smaller, hence δ cannot be writ-
ten independent of n. Each gn is uniformly continuous however (since gn is continuous
on the compact set [0, 1]).

This solution freely stolen from

https://www.uli.rocks/understanding-analysis-solutions/main.pdf.
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