Homework #11
Due Monday, October 27

Exercise 5.2.1. Supply proofs for parts (i) and (ii) of Theorem 5.2.4.

Theorem. Let f and g be functions defined on an interval A, and assume both are differ-
entiable at some point c € A. Then,

(i) (f +9)(c) = f'(c) +¢'(c),
(i) (kf)(c) =kf'(c) for all k € R,
(iii) (fg)'(c) = f'(c)g(c) + f(e)g'(c)

(iv) (f/9)'(c) = g(c)f’(T;(;)ij(c)g’(c)’ provided that g(c) # 0.

Solution. Let f and g be functions defined on an interval A, and assume both are differ-
entiable at some point ¢ € A.

(i) Proof. Computing, we have
(f+9)(x) = (f+9)(c)

(f +9)'(c) = lim

)+ gl (70 + 9(0)
)~ 10+ 9le) — 90
o @)= £ 9o - 500

= :n f(x)x__fzc) + lim 5(;;—9(0)
A



(ii) Proof. Computing, we have

(kf)(z) = (kf)(c)

(kf)(c) = lim
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Exercise 5.2.3. (a) Use Definition 5.2.1 to produce the proper formula for the derivative
of h(z) =1/z.

(b) Combine the result in part (a) with the Chain Rule (Theorem 5.2.5) to supply a proof
for part (iv) of Theorem 5.2.4.

(c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the difference
quotient for (f/g) in a style similar to the proof of Theorem 5.2.4 (iii).

Solution. (a) Proof. Let f(x) =1/x. We compute
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provided ¢ # 0. O

(b) Proof. We use part (a), the Product Rule, and the Chain Rule to prove the Quotient
Rule.

Let F(z) = f(x)/g(x) = f(x)[g(x)]~". Then

Fa) = F@lo(@)] ™ + f(z) - 5 fo(a)]™
= F@)o@) ™ + @) (1o - o (@)




(¢) Proof. Now, we prove the Quotient Rule directly from the definition of the derivative.
Let Q(z) = f(x)/g(z). Then we compute

limg . g(z)g(c)
_ f()g(c) = fle)g'(c)
[g(c)]? '

We remark that since g is differentiable at ¢, it is also continuous at ¢, so
lim, . g(z) = g(c). O




Exercise 5.2.11. Assume that g is differentiable on [a,b] and satisfies ¢'(a) < 0 < ¢'(b).

(a) Show that there exists a point x € (a,b) where g(a) > g(z), and a point y € (a,b)
where g(y) < g(b).

(b) Now complete the proof of Darboux’s Theorem started earlier.

Solution. (a) Proof. Let g be differentiable on [a, b] and satisfy ¢'(a) < 0 < ¢'(b).
Since ¢'(a) < 0, there exists 6 > 0 so that

9(z) — g(a)

<0

for all 0 < |z —a| < §. Then for z = a+6/2 € (a,b),

9(x) — g(a)
s
which forces g(z) < g(a).
Since ¢'(b) > 0, there exists 0 > 0 so that
o(@) ~alb) _,
x—b

for all 0 < |z —b| < 6. Then for z =b—6/2 € (a,b),

g9(x) —g(b)

S5 O

which forces g(x) < g(b). O



Theorem (Darboux’s Theorem). If f is differentiable on an interval [a,b], and if o
satisfies f'(a) < a < f'(b) (or f'(a) > o > f'(b)), there there exists a point ¢ € (a,b)
where f'(c) = a.

Proof. Beginning with the proof in the book ...

We first simplify matters by defining a new function g(z) = f(z) — ax on [a, b]. Notice
that g is differentiable on [a,b] with ¢'(x) = f/(x) — a. In terms of g, our hypothesis
states that ¢’(a) < 0 < ¢'(b), and we hope to show that ¢’(c) = 0 for some ¢ € (a,b).

Since g is differentiable on [a, b], it must be continuous on [a, b]. By the Extreme Value
Theorem, g has both a maximum and minimum value of [a, b]. By part (a), there exists
z € (a,b) with g(z) < g(a) and y € (a,b) with ¢g(y) < g(b). Hence, the minimum of ¢
on [a,b] doesn’t occur at the endpoints of [a,b]. Since g is differentiable on (a,b), the
minimum must occur at some point ¢ € (a,b) with ¢’(¢) = 0 by the Interior Extremum
Theorem. But then f'(c) = a, as desired. O



Exercise 5.3.1. Recall from Homework Exercise 4.4.9 that a function f : A — R is
Lipschitz on A if there exists an M > 0 such that

LB Ty
T —y

for all z # y € A.

(a)

(b)

Show that if f is differentiable on a closed interval [a, b] and if f’ is continuous on [a, b],
then f is Lipschitz on [a, b].

Review the definition of a contractive function in Exercise 4.3.11. If we add the as-
sumption that |f’(x)| < 1 on [a, b], does it follow that f is contractive on this set?

Solution. (a) Proof. Let f be differentiable on a closed interval [a, b] with f’ is continuous

on [a,b]. Since f’ is continuous on the closed interval [a,b], f’ has a minimum value

m1 and a maximum value msy on this interval by the Extreme Value Theorem.
Let a <z < y < b. Applying the Mean Value Theorem on the interval [z, y], we get
m [R—
< M — f/(g) < ma.
r—y

for some £ between = and y. Since x and y are arbitrary in [a, b],

f(@) = f(y)
T -y

my <

< mgy

for all z, y in [a, b]. If we take M = max{|m|, |mz|}, then
LOEICIY
r—y
Thus, f is Lipschitz on [a, b]. O
Proof. Let f be differentiable on a closed interval [a,b] with f’ is continuous on [a, b].
Further, suppose |f'(x)| < 1 on [a, b].

Since f’ is continuous on [a,b], it attains both a maximum and a minimum on [a, b].
Since |f'(z)| < 1 on [a,b], we must have |f'(z)| < M < 1 on [a,b].

Let x,y € [a,b]. By the Mean Value Theorem, there exists ¢ between x and y so that
f@) = fly) = fle)(@ —y),

so that
[f(@) = f@)] =1 (0)llz —y| < M|z -y,
with M < 1. So, f is a contractive mapping. O



Exercise 5.3.2. Let f be differentiable on an interval A. If f/(x) # 0 on A, show that f
is one-to-one on A. Provide an example to show that the converse statement need not be
true.

Solution. Proof. Let f be differentiable on an interval A and suppose f’(z) # 0 on A.
Let x1, zo € A, 1 < x2. By the Mean Value Theorem, there exists ¢, z1 < ¢ < x2, S0

that
f(xl) — f(x2) — f/(C).
r1 — T2
By hypothesis, f'(¢) # 0, so f(x1) # f(x2). This shows f is one-to-one on A. O

3

For a nonexample, let f(x) = x° on the interval [—1,1]. Then f is one-to-one but

£'(0) =o.



Exercise 5.3.5. (a) Supply the details for the proof of Cauchy’s Generalized Mean Value
Theorem (Theorem 5.3.5).

(b) Give a graphical interpretation of the Generalized Mean Value Theorem analogous to
the one given for the Mean Value Theorem at the beginning of Section 5.3. (Consider
f and g as parametric equations for a curve.)

Solution.

Theorem (Generalized Mean Value Theorem). If f and g are continuous on the closed
interval [a, b] and differentiable on the open interval (a,b), then there exists a point ¢ € (a,b)
where

[£(0) = f(a)lg'(¢) = [g(b) — g(a)]f(¢).

If ¢’ is never zero on (a,b), then the conclusion can be stated as

f'(e) _ f(b) = fla)

g(c)  gb)—g(a)
(a) Proof. Let f and g be continuous on the closed interval [a, b] and differentiable on the
open interval (a,b).

Define

F(z) = f(x)[g(b) — g(a)] = [£(b) — f(a)]g(=).
By the hypotheses on f and g, F' is continuous on [a, b] and differentiable on the open
interval (a,b). By the Mean Value Theorem, there exists ¢, a < ¢ < b, so that

0=F()— F(a) = F'(c)(b—a),
so F'(¢) = 0. Computing F’(c), setting it equal to zero, and manipulating gives us

[f(b) = f(a)lg'(c) = [g(b) — g(a)]f'(c),
as desired.

If ¢’ is never zero on [a,b], then g(a) # g(b) by the Mean Value Theorem, and the
result can be written ,
f'le) _ f(b) — fla)

g'c)  g(b) —gla)’

(b) Proof. Consider the parametric curve given by

z=g(t)
y = [f().
Then by the chain rule, dy/dz = f’/¢g’. The Generalized Mean Value Theorem says

that the slope of the secant line between (g(a), f(a)) and (g(b), f(b)) equals the slope
of the tangent line at some intermediate point (g(c), f(c)). O



