Homework #10 Solutions
Due Monday, October 20

Exercise 4.4.11. (Topological Characterization of Continuity) Let g be defined on
all of R. If B is a subset of R, define the set

g '(B)={z eR:g(x) € B}.
Show that g is continuous if and only if g~1(O) is open whenever O C R is an open set.

Solution. Proof. (=) Suppose that g is continuous and let O C R be an open set.

Let ¢ € g71(0). Then g(c) € O. Since O is an open set, we can find € > 0 so that
Ve(g(e)) € O. Since g is continuous at ¢, we can find § > 0 so that |z — ¢| < ¢ implies
lg(z) — g(c)] < e. This means if z € Vs(c), then g(x) € Vi(g(c)). This implies that
Vs(c) € g~1(O) which shows c is an interior point of g~1(O). Since ¢ € g~1(0) is arbitrary,
g~ 1(O) is an open set. Since O C R is an arbitrary open set, this shows g~1(O) is open
whenever O C R is an open set.

(<) Suppose g be defined on all of R and ¢g~!(O) is open whenever O C R is an open
set.

Let ¢ € R and let € > 0. Then V,(g(c)) is an open set. By hypothesis, g~ (V.(g(c))) is
an open set and contains c. It follows there exists § > 0 so that z € Vs(c) C g1 (Vi(g(c))).

Let |x —c| < 6. Then x € Vs(c) € g1 (Vi(g(c))), so g(z) € (Vi(g(c))). That is,
lg(x) — g(c)| < e. Since € > 0 is arbitrary, g is continuous at ¢, and since c is arbitrary, g
is continuous. O



Exercise 4.4.13. (Continuous Extension Theorem)

a ow that a uniformly continuous function preserves Cauchy sequences; that is, i

Show that iforml ti functi Cauch that is, if
f+ A — R is uniformly continuous and (x,) C A is a Cauchy sequence, then show
(f(zy)) is a Cauchy sequence.

(b) Let g be a continuous function on the open interval (a,b). Prove that ¢ is uniformly
continuous on (a,b) if and only if it is possible to define values g(a) and g(b) at the
endpoints so that the extended function g is continuous on [a,b]. (In the forward
direction, first produce candidates for g(a) and g(b), and then show the extended g is
continuous.)

Solution. (a) Proof. Let f : A — R be uniformly continuous and let (z,) C A be a
Cauchy sequence. Consider the sequence (f(xy)).

Let € > 0. Since f is uniformly continuous on A, there exists 4 > 0 so that
|f(z) = f(y)] < e whenever |z — y| < § for any xz,y € A. Since (z,,) is a Cauchy
sequence, there exists N € N so that |z, — z,,| < § whenever n,m > N.

Let n,m > N. Then |z, — x| < §, whereby |f(z,) — f(zm)| < €.

Since € > 0, this shows the sequence (f(x,)) is a Cauchy sequence. O

(b) Proof. (=) Suppose g is continuous on (a,b) and it is possible to define values g(a)
and g(b) at the endpoints so that the extended function g is continuous on [a, b].

If the extended function, g, of ¢ is continuous on [a, b], then g is uniformly continuous
on [a,b] by Theorem 4.4.7. But then g is uniformly continuous on (a, b) as well.

(<) Suppose g is uniformly continuous on (a,b). Let (x,) be a sequence in (a,b)
converging to a. Since (z,,) converges, (x,) is a Cauchy sequence. Since g is uniformly
continuous on (a, b), by part (a), the sequence (g(z,,)) is also a Cauchy sequence. Hence
(g9(xy)) converges. Define g(a) = lim,, o0 g(p).

If (z,) is a second sequence in (a,b) converging to a, then (z, — ) converges to 0.
Since g is uniformly continuous on (a,b), we have (g(z,) — g(x},)) converges to 0. So,
g(a) is well defined.

By the sequential characterization of continuity, Theorem 4.3.2 (iii), ¢ is continuous at
a.

Now, do the same for b. O



Exercise 4.5.2. Provide an example of each of the following, or explain why the request
is impossible

(a)
(b)
(c)

(d)

A continuous function defined on an open interval with range equal to a closed interval.
A continuous function defined on a closed interval with range equal to an open interval.

A continuous function defined on an open interval with range equal to an unbounded
closed set different from R.

A continuous function defined on all of R with range equal to Q.

Solution. (a) Define f: (—1,1) = R by f(z) = 3. Then f is continuous and the image is

the closed interval [3,3]. (Perhaps that’s cheating.)

Here is a better example due to C. Reeves. Consider f : (—1,00) — R given by
f(z) = |z|. Then f is defined on an open interval and the range of f is [0, 00), a closed
interval.

This is not possible if the closed interval is bounded, say [a, b], since this set is compact.
Since f is continuous, the image of [a, b] will also be compact, hence not open.

So, if we want an example, we have to look at unbounded closed intervals. The entire
real line is also a closed interval. In this case, we can use the function arctan : R —
(—m,2,7/2). This is a continuous function that takes a closed interval to an open
interval.

Define f : (—n/2,7/2) — R by f(z) = secxz. The domain is the open interval
(—m/2,7/2) and the image is the unbounded closed set [1,00).

This is not possible. The set of real numbers is a connected set and the image of
a connected set under a continuous map is connected. However, the set of rational
numbers is not connected.



Exercise 4.5.3. A function f is increasing on A if f(z) < f(y) for all z < y in A. Show
that if f is increasing on [a,b] and satisfies the intermediate value property (Definition
4.5.3), then f is continuous on [a, b].

Solution. Proof. Let f be increasing on [a, b] and satisfy the intermediate value property.
If f(a) = f(b), then f is constant and there is nothing to prove. So, we assume f(a) < f(b).

Let ¢ be a point of (a,b) and let € > 0. (We will deal with the endpoints separately.)

Let (x,) be a sequence of points in (a,c) converging to c¢. Since z, < ¢ for all n,
f(zn) < f(c) for all n. Hence, the set {f(zy)} is bounded above. Using the Axiom of
Completeness, let L_ be the supremum of this set. We note that L_ < f(c) since f(c) is
an upper bound for this set.

Suppose L_ < f(¢). Then we have f(z,) < L_ < f(c¢) for all n. Fix one such
N. By the intermediate value property, there must exist x with xxy < x < ¢ so that
flzny) < L < f(x) < f(c) However, (x,) converges to ¢, so for n sufficiently large we
must have z < z, < c¢. But then L_ < f(z) < f(zn) < f(c). This contradicts the fact
that L_ be the supremum of this set {f(x,)}.

This proves that that the sequence f(z,) converges to f(c). Hence f is continuous at
¢ from the left.

A similar argument shows that f is continuous at ¢ from the right.

For the endpoints, use the first argument for b and the second argument for a.



Exercise 4.5.5. (a) Finish the proof of the Intermediate Value Theorem using the Axiom
of Completeness started previously.

(b) Finish the proof of the Intermediate Value Theorem using the Nested Interval Property
started previously.

Solution. (a) I start by stating the proof as begun in the text.

Proof. To simplify matters a bit, let’s consider the special case where f is a continuous
function satisfying f(a) < 0 < f(b) and show that f(c) = 0 for some ¢ € (a,b). First
let,

K ={z €a,b]: f(x) <0}
Notice that K is bounded above by b, and a € K so K is not empty. Thus we may
appeal to the Axiom of Completeness to assert that ¢ = sup K exists.

There are three cases to consider:

[Here’s where our proof starts.]

Suppose f(c) > 0. Since f is continuous on [a,b]|, there exists § > 0 so that
|f(z) — f(c)| < 3 f(c) provided |z — ¢| < §. Then, for z € (¢ — 6, ¢+ §) we have

1 1
~5(0) < (@) = £(0) < 55©)

whereby f(z) > %f(c) > 0. However, by the definition of ¢ as sup K, there exists
x € K with ¢ — 6 < z < ¢, and for this z, f(z) < 0 by the definition of K. This is a
contradiction.

Suppose f(c) < 0. Since f is continuous on [a,b], there exists § > 0 so that
|f(z) — f(c)| < —3f(c) provided |z — c| < 8. Then, for z € (c — §,c + §) we have

1 1
S f(e) < flz) = fle) < =5 f(0)

whereby f(z) < 3f(c) < 0. Choose any z with ¢ < 2 < ¢+ 4. Then f(z) < 0, so
x € K. This contradicts the fact that ¢ is an upper bound for K.

We conclude that f(c) = 0. O



(b) I start by stating the proof as begun in the text.

Proof. Again, consider the special case where L = 0 and f(a) < 0 < f(b). Let
Iy = [a,b], and consider the midpoint

a+b
5

z =

If f(z) =0, we're done. If f(z) > 0, then set a; = a and by = z. If f(z) < 0, then set
a1 = z and by = b. In either case, the interval I = [ay, b1] has the property that f is
negative at the left endpoint and positive at the right.

Having constructed I, = [ay, by] with f(a,) < 0 and f(b,) > 0, let z = (a, +b,)/2. If
f(z) =0, we’re done. If f(z) > 0, then set an4+1 = ay, and b,11 = z. If f(2) < 0, then
set ap+1 = z and by41 = by,. In either case, the interval I,, = [a,, b,] has the property
that f is negative at the left endpoint and positive at the right.

Notice that the intervals I,, for a nested set of nonempty closed intervals:
Iho2hL 22132142

By the Nested Interval Property, there exists ¢ € (oo, In.
We note that the diameter of [ay,, by] is |b — a|/2™.

Since a, < c<b,, wehave 0 < c—a, <b, —a, = bz_—n“. By the Squeeze Theorem, (a,)
converges to c. By the sequential property of continuous functions (Theorem 4.3.2),
(f(an)) converges to f(c). Since f(a,) < 0 for all n € N, we must have f(c) <0.

Similarly, since a,, < ¢ < b,, we have —172_—”“ =a, — b, < c—1b, <0. By the Squeeze
Theorem, (b,) converges to ¢. By the sequential property of continuous functions
(Theorem 4.3.2), (f(by,)) converges to f(c). Since f(b,) > 0 for all n € N, we must

have f(c) > 0.
It follows from the two inequalities that f(c) = 0, as desired. O



