

Homework #8

Due Monday, October 6

Exercise 3.3.4. Assume K is compact and F is closed. Decide if the following sets are definitely compact, definitely closed, both, or neither.

- (a) $K \cap F$
- (b) $\overline{F^c \cup K^c}$
- (c) $K \setminus F = \{x \in K : x \notin F\}$
- (d) $\overline{K \cap F^c}$

Exercise 3.3.5. Decide whether the following propositions are true or false. If the claim is valid, supply a short proof, and if the claim is false, provide a counterexample.

- (a) The arbitrary intersection of compact sets is compact.
- (b) The arbitrary union of compact sets is compact.
- (c) Let A be arbitrary, and let K be compact. Then, the intersection $A \cap K$ is compact.
- (d) If $F_1 \supseteq F_2 \supseteq F_3 \supseteq F_4 \supseteq \dots$ is a nested sequence of nonempty closed sets, then the intersection $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Exercise 4.2.5. Use Definition 4.2.1 to supply a proof for the following limit statements.

- (a) $\lim_{x \rightarrow 2} (3x + 4) = 10$.
- (b) $\lim_{x \rightarrow 0} x^3 = 0$.
- (c) $\lim_{x \rightarrow 2} (x^2 + x - 1) = 5$.
- (d) $\lim_{x \rightarrow 3} \frac{1}{x} = \frac{1}{3}$,

Exercise 4.2.11 (Squeeze Theorem). Let f , g , and h satisfy $f(x) \leq g(x) \leq h(x)$ for all x in some common domain A . If $\lim_{x \rightarrow c} f(x) = L$ and $\lim_{x \rightarrow c} h(x) = L$ at some limit point c of A , show that $\lim_{x \rightarrow c} g(x) = L$ as well.