

## Homework #4

Due Monday, September 8

**Exercise 2.3.1.** Let  $x_n \geq 0$  for all  $n \in \mathbb{N}$ .

- (a) If  $(x_n) \rightarrow 0$ , show that  $(\sqrt{x_n}) \rightarrow 0$ .
- (b) If  $(x_n) \rightarrow x$ , show that  $(\sqrt{x_n}) \rightarrow \sqrt{x}$ .

**Exercise 2.3.4.** Let  $(a_n) \rightarrow 0$ , and use the Algebraic Limit Theorem to compute each of the following limits (assuming the fractions are always defined):

$$(a) \lim \left( \frac{1 + 2a_n}{1 + 3a_n - 4a_n^2} \right)$$

$$(b) \lim \left( \frac{(a_n + 2)^2 - 4}{a_n} \right)$$

$$(c) \lim \left( \frac{\frac{2}{a_n} + 3}{\frac{1}{a_n} + 5} \right)$$

**Exercise 2.3.7.** Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):

- (a) sequences  $(x_n)$  and  $(y_n)$ , which both diverge, but whose sum  $(x_n + y_n)$  converges;
- (b) sequences  $(x_n)$  and  $(y_n)$ , where  $(x_n)$  converges,  $(y_n)$  diverges, and  $(x_n + y_n)$  converges;
- (c) a convergent sequence  $(b_n)$  with  $b_n \neq 0$  for all  $n$  such that  $(1/b_n)$  diverges;
- (d) an unbounded sequence  $(a_n)$  and a convergent sequence  $(b_n)$  with  $(a_n - b_n)$  bounded;
- (e) two sequences  $(a_n)$  and  $(b_n)$ , where  $(a_n b_n)$  and  $(a_n)$  converge but  $(b_n)$  does not.

**Exercise 2.3.10.** Consider the following list of conjectures. Provide a short proof for those that are true and a counterexample for any that are false.

- (a) If  $\lim(a_n - b_n) = 0$ , then  $\lim a_n = \lim b_n$ .
- (b) If  $(b_n) \rightarrow b$ , then  $|b_n| \rightarrow |b|$ .
- (c) If  $(a_n) \rightarrow a$  and  $(b_n - a_n) \rightarrow 0$ , then  $(b_n) \rightarrow a$ .
- (d) If  $(a_n) \rightarrow 0$  and  $|b_n - b| \leq a_n$  for all  $n \in \mathbb{N}$ , then show that  $(b_n) \rightarrow b$ .