

Homework #3

Due **Wednesday, September 3**

Exercise 1.6.10. As a final exercise, answer each of the following by establishing 1–1 correspondence with a set of known cardinality.

- (a) Is the set of all functions from $\{0, 1\}$ to \mathbb{N} countable or uncountable?
- (b) is the set of all functions from \mathbb{N} to $\{0, 1\}$ countable or uncountable?

Exercise 2.2.2. Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.

$$(a) \lim \frac{2n+1}{5n+4} = \frac{2}{5}.$$

$$(b) \lim \frac{2n^2}{n^3+3} = 0.$$

$$(c) \lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0.$$

Exercise 2.2.4. Give an example of each or state that the request is impossible. For any that are impossible, give a compelling argument for why that is the case.

- (a) A sequence with an infinite number of ones that does not converge to one.
- (b) A sequence with an infinite number of ones that converges to a limit not equal to one.
- (c) A divergent sequence such that for every $n \in \mathbb{N}$ it is possible to find n consecutive ones somewhere in the sequence.

Exercise 2.2.6. Prove Theorem 2.2.7:

Theorem. *The limit of a sequence, when it exists, must be unique.*

To get started, assume $(a_n) \rightarrow a$ and also that $(a_n) \rightarrow b$. Now argue that $a = b$.

Exercise 2.2.7. Here are two useful definitions:

- (i) A sequence (a_n) is *eventually* in a set $A \subseteq \mathbb{R}$ if there exists an $N \in \mathbb{N}$ such that $a_n \in A$ for all $n \geq N$.
- (ii) A sequence (a_n) is *frequently* in a set $A \subseteq \mathbb{R}$ if, for every $N \in \mathbb{N}$, there exists an $n \geq N$ such that $a_n \in A$.

- (a) Is the sequence $(-1)^n$ eventually or frequently in the set $\{1\}$?
- (b) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?
- (c) Give an alternate rephrasing of Definition 2.2.3B using either frequently or eventually. Which is the term we want?
- (d) Suppose an infinite number of terms of a sequence (x_n) are equal to 2. Is (x_n) necessarily eventually in the interval $(1.9, 2.1)$? Is it frequently in $(1.9, 2.1)$?