

Homework #15

Due Monday, December 1

Exercise 7.2.1. Let f be a bounded function on $[a, b]$, and let P be an arbitrary partition of $[a, b]$. First, explain why $U(f, P) \geq L(f, P)$. Now, prove Lemma 7.2.6.

Lemma. *For any bounded function f on $[a, b]$, it is always the case that $U(f) \geq L(f)$.*

Exercise 7.2.2. Consider $f(x) = 1/x$ over the interval $[1, 4]$. Let P be the partition consisting of the points $\{1, 3/2, 2, 4\}$.

- (a) Compute $L(f, P)$, $U(f, P)$ and $U(f, P) - L(f, P)$.
- (b) What happens to the value of $U(f, P) - L(f, P)$ when we add the point 3 to the partition?
- (c) Find a partition P' of $[1, 4]$ for which $U(f, P') - L(f, P') < 2/5$.

Exercise 7.2.3 (Sequential Criterion for Integrability). (a) Prove that a bounded function f is integrable on $[a, b]$ if and only if there exists a sequence of partitions $(P_n)_{n=1}^{\infty}$ satisfying

$$\lim_{n \rightarrow 0} [U(f, P_n) - L(f, P_n)] = 0.$$

- (b) For each n , let P_n be the partition of $[0, 1]$ into n equal subintervals. Find formulas for $U(f, P_n)$ and $L(f, P_n)$ if $f(x) = x$. The formula $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ will be useful.
- (c) Use the sequential criterion for integrability from (a) to show directly that $f(x) = x$ is integrable on $[0, 1]$ and compute $\int_0^1 f$.

Exercise 7.2.5. Assume that, for each n , f_n is an integrable function on $[a, b]$. If $(f_n) \rightarrow f$ uniformly on $[a, b]$, prove that f is also integrable on this set. (We will see that this conclusion does not necessarily follow if the convergence is pointwise.)

Exercise 7.3.3. Let

$$f(x) = \begin{cases} 1 & \text{if } x = 1/n \text{ for some } n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is integrable on $[0, 1]$ and compute $\int_0^1 f$.