
Homework #14

Due Monday, November 17

Exercise 6.5.3. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Theorem. If a power series
∑∞

n=0 anx
n converges absolutely at a point x0, then it con-

verges uniformly on the closed interval [−c, c] where c = |x0|.

Exercise 6.5.5. (a) If s satisfies 0 < s < 1, show nsn−1 is bounded for all n ≥ 1.

(b) Given an arbitrary x ∈ (−R,R), pick t to satisfy |x| < t < R. Use this start to
construct a proof for Theorem 6.5.6.

Theorem. If
∑∞

n=0 anx
n converges for all x ∈ (−R,R), then the differentiated series∑∞

n=1 nanx
n−1 converges at each x ∈ (−R,R) as well. Consequently, the convergence

is uniform on compact sets contained in (−R,R).

Exercise 6.6.2. Starting from one of the previously generated series in this section, use
manipulations similar to those in Example 6.6.1 to find a Taylor series representations for
each of the following functions. For precisely what values of x is each series representation
valid?

(a) x cos(x2)

(b) x/(1 + 4x2)2

(c) ln(1 + x2)

Exercise 6.6.7. Find an example of each of the following or explain why no such function
exists.

(a) An infinitely differentiable function g(x) on all of R with a Taylor series that converges
to g(x) only for x ∈ (−1, 1).

(b) An infinitely differentiable function h(x) with the same Taylor series as sinx but such
that h(x) ̸= sinx for all x ̸= 0.
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(c) An infinitely differentiable function f(x) on all of R with a Taylor series that converges
to f(x) if and only if x ≤ 0.

Exercise 6.6.10. Consider f(x) = 1/
√
1− x.

(a) Generate the Taylor series for f centered at zero, and use Lagrange’s Remainder The-
orem to show the series converges to f on [0, 1/2]. (The case x < 1/2 is more straight-
forward while x = 1/2 requires some extra care.). What happens when we attempt
this with x > 1/2?

(b) Use Cauchy’s Remainder Theorem proved in Exercise 6.6.9 to show the series repre-
sentation for f holds on [0, 1). (You do not have to do Exercise 6.6.9. Just use it
here.)
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