Homework #14
Due Monday, November 17

Exercise 6.5.3. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Theorem. If a power series Y > apx™ converges absolutely at a point xq, then it con-
verges uniformly on the closed interval [—c, c| where ¢ = |xzg|.

Exercise 6.5.5. (a) If s satisfies 0 < s < 1, show ns"~! is bounded for all n > 1.

(b) Given an arbitrary x € (=R, R), pick ¢ to satisfy || < ¢ < R. Use this start to
construct a proof for Theorem 6.5.6.

Theorem. If Y >  ja,z" converges for all x € (—R, R), then the differentiated series
Yoy napz™ ' converges at each x € (—R, R) as well. Consequently, the convergence
is uniform on compact sets contained in (—R, R).

Exercise 6.6.2. Starting from one of the previously generated series in this section, use
manipulations similar to those in Example 6.6.1 to find a Taylor series representations for

each of the following functions. For precisely what values of x is each series representation
valid?

(a) xcos(x?)
(b) z/(1+42?)?
(c) In(1 + 22)

Exercise 6.6.7. Find an example of each of the following or explain why no such function
exists.

(a) An infinitely differentiable function g(x) on all of R with a Taylor series that converges
to g(z) only for x € (—1,1).

(b) An infinitely differentiable function h(x) with the same Taylor series as sinz but such
that h(x) # sinz for all z # 0.



(¢) An infinitely differentiable function f(z) on all of R with a Taylor series that converges
to f(z) if and only if z < 0.

Exercise 6.6.10. Consider f(z) =1/y/1 — z.

(a) Generate the Taylor series for f centered at zero, and use Lagrange’s Remainder The-
orem to show the series converges to f on [0,1/2]. (The case x < 1/2 is more straight-
forward while z = 1/2 requires some extra care.). What happens when we attempt
this with x > 1/27

(b) Use Cauchy’s Remainder Theorem proved in Exercise 6.6.9 to show the series repre-
sentation for f holds on [0,1). (You do not have to do Exercise 6.6.9. Just use it
here.)



