

Homework #11

Due Monday, October 27

Exercise 5.2.1. Supply proofs for parts (i) and (ii) of Theorem 5.2.4.

Theorem. *Let f and g be functions defined on an interval A , and assume both are differentiable at some point $c \in A$. Then,*

- (i) $(f + g)'(c) = f'(c) + g'(c)$,
- (ii) $(kf)'(c) = kf'(c)$ for all $k \in \mathbb{R}$,
- (iii) $(fg)'(c) = f'(c)g(c) + f(c)g'(c)$
- (iv) $(f/g)'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2}$, provided that $g(c) \neq 0$.

Exercise 5.2.3. (a) Use Definition 5.2.1 to produce the proper formula for the derivative of $h(x) = 1/x$.

- (b) Combine the result in part (a) with the Chain Rule (Theorem 5.2.5) to supply a proof for part (iv) of Theorem 5.2.4.
- (c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the difference quotient for (f/g) in a style similar to the proof of Theorem 5.2.4 (iii).

Exercise 5.2.11. Assume that g is differentiable on $[a, b]$ and satisfies $g'(a) < 0 < g'(b)$.

- (a) Show that there exists a point $x \in (a, b)$ where $g(a) > g(x)$, and a point $y \in (a, b)$ where $g(y) < g(b)$.
- (b) Now complete the proof of Darboux's Theorem started earlier.

Exercise 5.3.1. Recall from Homework Exercise 4.4.9 that a function $f : A \rightarrow \mathbb{R}$ is Lipschitz on A if there exists an $M > 0$ such that

$$\left| \frac{f(x) - f(y)}{x - y} \right| \leq M$$

for all $x \neq y \in A$.

- (a) Show that if f is differentiable on a closed interval $[a, b]$ and if f' is continuous on $[a, b]$, then f is Lipschitz on $[a, b]$.
- (b) Review the definition of a contractive function in Exercise 4.3.11. If we add the assumption that $|f'(x)| < 1$ on $[a, b]$, does it follow that f is contractive on this set?

Exercise 5.3.2. Let f be differentiable on an interval A . If $f'(x) \neq 0$ on A , show that f is one-to-one on A . Provide an example to show that the converse statement need not be true.

Exercise 5.3.5. (a) Supply the details for the proof of Cauchy's Generalized Mean Value Theorem (Theorem 5.3.5).

(b) Give a graphical interpretation of the Generalized Mean Value Theorem analogous to the one given for the Mean Value Theorem at the beginning of Section 5.3. (Consider f and g as parametric equations for a curve.)