

Homework #1

Due Monday, August 18

Exercise 1.2.5 (De Morgan's Laws). Let A and B be subsets of \mathbb{R} .

- (a) If $x \in (A \cap B)^c$, explain why $x \in A^c \cup B^c$. This shows that $(A \cap B)^c \subseteq A^c \cup B^c$.
- (b) Prove the reverse inclusion $(A \cap B)^c \supseteq A^c \cup B^c$, and conclude that $(A \cap B)^c = A^c \cup B^c$.
- (c) Show that $(A \cup B)^c = A^c \cap B^c$ by demonstrating inclusion both ways.

Exercise 1.2.7. Given a function f and a subset A of its domain, let $f(A)$ represent the range of f over the set A ; that is, $f(A) = \{f(x) : x \in A\}$.

- (a) Let $f(x) = x^2$. If $A = [0, 2]$ (the closed interval $\{x \in \mathbb{R} : 0 \leq x \leq 2\}$) and $B = [1, 4]$, find $f(A)$ and $f(B)$. Does $f(A \cap B) = f(A) \cap f(B)$ in this case? Does $f(A \cup B) = f(A) \cup f(B)$?
- (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
- (c) Show that, for an arbitrary function $g : \mathbb{R} \rightarrow \mathbb{R}$, it is always true that $g(A \cap B) \subseteq g(A) \cap g(B)$ for all sets $A, B \subseteq \mathbb{R}$.
- (d) Form and prove a conjecture about the relationship between $g(A \cup B)$ and $g(A) \cup g(B)$ for an arbitrary function g .

Exercise 1.2.9. Given a function $f : D \rightarrow \mathbb{R}$ and a subset $B \subseteq \mathbb{R}$, let $f^{-1}(B)$ be the set of all points from the domain D that get mapped into B ; that is,

$$f^{-1}(B) = \{x \in D \mid f(x) \in B\}$$

This set is called the **preimage** of B .

- (a) Let $f(x) = x^2$. If A is the closed interval $[0, 4]$ and B is the closed interval $[-1, 1]$, find $f^{-1}(A)$ and $f^{-1}(B)$. Does $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ in this case? Does $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$?
- (b) The good behavior of preimages demonstrated in (a) is completely general. Show that for an arbitrary function $g : \mathbb{R} \rightarrow \mathbb{R}$, it is always true that $g^{-1}(A \cap B) = g^{-1}(A) \cap g^{-1}(B)$ and $g^{-1}(A \cup B) = g^{-1}(A) \cup g^{-1}(B)$ for all sets $A, B \subseteq \mathbb{R}$.

Exercise 1.2.12. Let $y_1 = 6$, and for each $n \in \mathbb{N}$ define $y_{n+1} = (2y_n - 6)/3$.

- (a) Use induction to prove that the sequence satisfies $y_n > -6$ for all $n \in \mathbb{N}$.
- (b) Use another induction argument to show the sequence (y_1, y_2, y_3, \dots) is decreasing.

Exercise 1.2.13. For this exercise, assume Exercise 1.2.5 has been successfully completed.

- (a) Show how induction can be used to conclude that

$$(A_1 \cup A_2 \cup \dots \cup A_n)^c = A_1^c \cap A_2^c \cap \dots \cap A_n^c$$

for any finite $n \in \mathbb{N}$.

- (b) It is tempting to appeal to induction to conclude

$$\left(\bigcup_{n=1}^{\infty} A_n \right)^c = \bigcap_{n=1}^{\infty} A_n^c.$$

but induction does not apply here. Induction is used to prove that a particular statement holds for every value of $n \in \mathbb{N}$, but this does not imply the validity of the infinite case. To illustrate this point, find an example of a collection of sets B_1, B_2, B_3, \dots

where $\bigcap_{i=1}^n B_i \neq \emptyset$, but $\bigcap_{i=1}^{\infty} B_i \neq \emptyset$ fails.

- (c) Nevertheless, the infinite version of De Morgan's Law stated in (b) is a valid statement. Provide a proof that does not use induction.