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Recall Green's Theorem
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Recall Green's Theorem

We already have seen how to calculate the circulation of a vector

field F counterclockwise around a simple, closed, piecewise smooth
curve C by relating it to a related integral over the region R is the
plane which C bounds. Specifically, we have two forms of Green's
Theorem.
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Recall Green's Theorem

Let's recall the tangential form of Green's Theorem.

Green's Theorem (Circulation-Curl or Tangential Form)

Let C be a piecewise smooth, simple closed curve enclosing a
region R in the plane. Let F = Pi+ Qj be a vector field with P
and @ having continuous first partial derivatives in an open region
containing R. Then the counterclockwise circulation of F around
C equals the double integral of (curl F) - k over R.

j{F Tds—j{de—i—Qdy // (g—g—i) dx dy.
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Recall Green's Theorem

The integrand in the double integral in the tangential form of
Green's Theorem is the k-component of the curl vector field of F.
What the tangential form of Green's Theorem says is that the
circulation of a vector field F around the boundary of a region R in
the plane is equal to the integral over the region of the
k-component of curl F.

This result generalizes to surfaces in space with a boundary. This
result is Stokes’ Theorem.
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The Curl Vector Field
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The Curl Vector Field

Suppose that F is the velocity field of a fluid flowing in space.
Particles near the point (x,y, z) in the fluid tend to rotate around
an axis through (x, y, z) that is parallel to a certain vector we are
about to define. This vector points in the direction for which the
rotation is counterclockwise when viewed looking down onto the
plane of the circulation from the tip of the arrow representing the
vector. This is the direction your right-hand thumb points when
your fingers curl around the axis of rotation in the way consistent
with the rotating motion of the particles in the fluid. The length of
the vector measures the rate of rotation.
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The Curl Vector Field

This vector is called the curl vector, and for the vector field
F=Pi+ Qj+ Rk it is defined to be

curlF =V xF
i j k
Cdet |2 2 &
P Q@ R
OR 0Q) . oP OR) . 0Q 0P
=5 -5 —_— - = — - —— ] k.
<6y 8z>l+<6z 8X)J+<8X 8y>
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Example 1

Compute the curl of the vector field

F=(x>—y)i+ (%2 -2)j+ (22 - x)k.
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Example 1

i j k
curl F =det | & o g
x2—y y2—z 72— x
=i+j+k
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Stokes' Theorem
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Stokes' Theorem

Stokes’ Theorem

Let S be a piecewise smooth oriented surface having a piecewise
smooth boundary curve C. Let F = Pi+ Qj+ Rk be a vector
field whose components have continuous first partial derivatives on
an open region containing S. Then the circulation of F around C
in the direction counterclockwise with respect to the surface's unit
normal vector N equals the integral of the curl vector field V x F

over S:
%F-dr://(VxF)-dS.
C 5
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Stokes' Theorem

We would like a more useful formula here.

Suppose S is an oriented surface parametrized by
r(u,v) = (x(u,v),y(u,v), z(u,v)) for (u,v) in some parameter
space R.

Then, the unit normal vector is given by

N — ry Xr,
[ru < ry ||

just as before.
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Stokes' Theorem

Then the surface integral in Stokes' Theorem takes the following

form.
/ (V xF)-dS

/ (V x F(r(u, v)) - ”:uirVHHruerHdA

= / (V x F(r(u,v)) - (ry xr,)dA.
R
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Examples
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Example 2

Example

Use the surface integral in Stokes’ Theorem to calculate the
circulation of the field F = yi + xzj 4 x? k around the curve C,
the boundary of the triangle cut from the plane x +y +z =1 by
the first octant, counterclockwise when viewed from above.
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Example 2

First, we write down the surface integral from Stokes' Theorem:

//SVXF-dS://R(VxF(r(u,v)).(ruxrv)dA
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Example 2

Solution (cont.)

We compute curl F:

i ] k

_ a9 9 9

curl F = det | 5 9y oz
y xz x2

=—xi—2xj+(z—1)k.
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Examples

Solution (cont.)

Now we compute r, X r, where the parametrization of S is given
by I’(X,y) = <x,y,1—x—y>.

i j k
rexr,=det |1 0 -1
01 -1

=i+j+k

While we're here, the parameter space R is the region in the first
quadrant bounded by the line x +y = 1.
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Example 2

Solution (cont.)

Now we can finish the computation:
// T s s ) [ 5 1)
R
1 1—x
:/ / (—x,—2x,((1 —x—y)—1))-(1,1,1) dy dx
0o Jo

1 pl—x
= / / —4x — y dy dx
0 Jo
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Example 2

Solution (cont.)

Continuing,
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Example 3

Example

Use the surface integral in Stokes’ Theorem to calculate the
circulation of the field F = (y? + z2)i+ (x*> + z2)j + (x* + y?) k
around the curve C, the boundary of the triangle cut from the
plane x + y + z = 1 by the first octant, counterclockwise when
viewed from above.
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Example 3

First, we write down the equation for Stokes’ Theorem:

?{F-dr://s(VxF)-NdS
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Example 3

Solution (cont.)

We compute curl F:

i ] k
_ 0 a9 9
curl F = det Ix ay 3z

Fo B B AL x2—|-y2
=2y —2z2)i+ (2z—2x)j+ (2x — 2y) k.
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Example 3

Solution (cont.)

Next, we compute N.

Since the surface is a plane, the normal vector is given by the
coefficients of the equation of the plane, scaled to be a unit vector:

N—1i+1'~|—1k
BB TA
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Example 3

Solution (cont.)

Now we compute:

//S(VXF)-NdS
://5[(2y—2z)i+(2z—2x)j-|—(2x—2y)k]-

<%i IF %j IF %k) ds
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Example 3

Solution (cont.)

So, the circulation of the field
F=(2+22)i+(C+2)j+ (< +y*)k

around the curve C, the boundary of the triangle cut from the
plane x + y + z = 1 by the first octant, is 0.
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Example 4

Example

Use the surface integral in Stokes’ Theorem to calculate the
circulation of the field F = x?y3i 4 j + zk around the curve C, the
intersection of the cylinder x?> + y? = 4 and the hemisphere

x? + y2 + 22 =16, z > 0, counterclockwise when viewed from

above.

See the sketch on the next slide.
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Example 4

?+yi=4

Figure: Sketch for Example 4
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Example 4

First, we write down the equation for Stokes’ Theorem:

]{CF-dr://S(VxF)-NdS
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Example 4

Solution (cont.)

We then compute curl F:

i i k
crlF=det | 5o & 5
x2y3 1 =z

= —3x°y?k.
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Example 4

Solution (cont.)

Next, we compute N. The sphere is a level surface, so a normal
vector is the gradient vector field: (2x,2y,2z). We divide this by
its length to get N:

1
N= e o
= L (2x,2y,2z)

2 /X2+y2+22
2x,2y,2z
2\/—< y,2z) =

1
7 (x,y,2).
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Example 4

Solution (cont.)

Now we compute:
/ (VxF)-NdS

// —3x2y (xu+yj+zk)d5

= —Z//szyzzds.
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Example 4

Solution (cont.)

We parametrize the spherical cap by using the disk of radius 2 in
the xy-plane centered at the origin and letting

z=14/16 — x2 — y2. The Jacobian is then

2 2
Siirra— I S L R
1+z+2, = 1—|—< —16—x2—y2> —l—( —16—x2—y2>
X2 y2
=4/1
\/—i_16—x2—y2+16—x2—y2
4

V16— x2 —y2
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Example 4

Solution (cont.)

Now we compute:

/A(VXF)-Ndsz—%//S%ﬁzds

4

3// 2.2
=[x 16—x2—y2. ———~
1)) W T

= // x2y? dA.
R

dA
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Example 4

Solution (cont.)

We compute this double integral using polar coordinates:

27 2
—3// x%y? dA = —3/ / (rcos8)?(rsin6)?r dr do
R
27
:—3/ / r® cos? 0'sin? 6 dr do

——3/ = r® cos? 0 sin? «9
o 6

27
= —32/ cos? 0'sin® 6 do.
0

do
0
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Example 4

Solution (cont.)

We continue:

27
//(v x F)-NdS = —32/ cos? fsin? 6 df
S 0
g 1
= —32 ~(1+4 cos20) - =(1 — cos26) df
y 2 2

27
= —8/ (1 — cos?26) df
0

27
:—/ sin® 20 do
0

Mark Faucette Stokes’ Theorem Fall 2025 39 /71



Example 4

Solution (cont.)

We continue:

27
//(VX F)-NdS:—S/ sin? 20 df
S 0

27 1
= —8/ ~(1 — cos40) db
0o 2

21
= —4/ 1 — cos46do
0

1 2
=4 [0 — Zsin49

0
= —8m.
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Example 5

Let N be the outer unit normal of the elliptical shell

S: 4x>4+9y%2+3622=136, z>0,

and let
F=yi+x?j+(x®+y*)*2sin(eV?)k

//S(VXF)-NdS.

(Hint: One parametrization of the ellipse at the base of the shell is
x=23cost, y =2sint, 0 <t <27.)

Find the value of
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Example 5

It may be helpful to visualize the surface. It is the top half of an
ellipsoid with boundary curve 4x? 4 9y? = 36.

4% + 9y° + 362% = 36

Figure: Sketch for Example 5
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Example 5

Solution

In view of the hint given in the problem, we want to compute the
line integral from Stokes’ Theorem. The curve C bounding the
surface S is the ellipse 4x? + 9y? = 36. We can parametrize this
curve as given in the hint in the problem.

x =3cost
y =2sint.

for 0 < t < 2.
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Example 5

Solution (cont.)

Now, we compute the line integral:

//S(VXF)-NdS
:%CF-dr

= j{ ydx + x2dy + (x® + y*)3/2sin(eV*?) dz.
C
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Example 5

Solution (cont.)

Now we pull the line integral back to the parameter space:
j{ ydx +x2dy + (x* + y*)3/?sin(eV™¥?) dz
C
21
= / (2sin t)(—3sint) + (3cos t)?(2cos t) dt
0

27
:/ —65sin® t + 18 cos® t dit
0
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Example 5

Solution (cont.)

Continuing . ..
2
/ — 6sin® t + 18 cos® t dt
0
2w 1
= / —6- 5(1 — cos2t) + 18(1 — sin® t) cos t dt
0
27
= / —3(1 — cos2t) + 18(1 —sin® t) cos t dt
0

= -3 t—ls' 2t | + 18 ( si t—ls'3t 27r
= 5 in in 3 in

= —6r.

0
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Example 6

Example

Use the surface integral in Stokes' Theorem to calculate the flux of
the curl of the field F = 2zi + 3xj + 5y k across the surface
S:r(r,0) = (rcosf)i+ (rsin)j+(4—r’)k, 0<r <2,

0 <0 <2n.
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Example 6

First, we draw a sketch:
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Example 6

The problem asks us to compute the flux directly from the surface

integral. So, we have
//(VxF)-NdS,
S
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Example 6

Solution (cont.)

We compute curl F:

i j k

VxF=det |5 & &

2z 3x by
—5i+2j+3k
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Example 6

Solution (cont.)

We next compute N:

r, =cosfi+sinfj—2rk

rg = —rsinfi—+ rcosfj
r,Xrg= 2r2c059i+2r25in9j+rk
_ X g
[rr < 1ol
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Example 6

Solution (cont.)

Finally we compute

/ (V x F)-NdS

// 5i+2j+3k). " 4s
lrr x vl
a . rr X rg
= 5i4+2j+3k)- ———— ||r, X rg|| dA
//R( J ) ||rr><r9H ||r 09“
://(5i+2j+3k)-<2r2c050,2r2sin9,r> dA
R

=//(10r2c059+4r25in9+3r) dA
R

Mark Faucette Stokes’ Theorem Fall 2025 52 /71



Example 6

Solution (cont.)

Continuing the computation ...

//(VX F)-NdS://(10r2cose+4r25in9+3r)dA
S R

21 2
= / / (1Or2 cosf + 4r? sin0+3r) dr do
0 0
2

LBl 4 3
:/ —r3cosO+ —r3sinf+ =r?| db
o 3 3 2 |

27
:/ @c059+2sin9+6d0
o 3 3
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Example 6

Solution (cont.)

Finishing the computation . ..

V xF)-NdS = [7"8cosf+ 2sinb +6do
S 0 3 3
= 830 sinf — c056’+69‘
= (80 sin 2w — cos27r—|—6 . 27r)
(8305|n0— cos0+6-0)
— (-2 +120) - (-B)
= 127.
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Example 6

On Slide 53, why didn't dA become r dr d6?
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Example 7

Example

Use the surface integral in Stokes’ Theorem to calculate the flux of
the curl of the field F = y?i+ 2z j 4 x k across the surface

S :r(¢,0) = (2sinpcosh)i+ (2sinpsinb)j+ (2cos @)k,
0<¢p<7/2,0<6<2r.
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Example 7

The problem asks us to compute the flux directly from the surface

integral. So, we have
// (VxF)-NdS
S
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Example 7

Solution (cont.)

We compute curl F:

i J k

VxF=det |5 & &
y2 2 x

=—2zi— j—2yk
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Example 7

Solution (cont.)

We next compute N:

ry =2cos¢cosi+ 2cospsinfj—2singpk
rg = —2sin¢gsinfi—+ 2sin ¢ cosb j
ry X rg = 4sin® ¢ cosBi+ 4sin®psindj+ 4cosgsinpk
r¢><r9

lrg x roll”

Mark Faucette Stokes’ Theorem Fall 2025 59 /71



Example 7

Solution (cont.)

Finally we compute

/ (V x F)-NdS

I’¢><I‘9
-2 —2vk
// e A

= //’?(—2(2 cos@)i— j—2(2sin ¢sin ) k)-

r¢><r
Trs X ral llre x rg|| dA
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Example 7

Solution (cont.)

Continuing the computation, we get

rgp X rg
l[re x roll

= //(—4cos¢i — j—4sinpsin0k)-
R
<4sin2¢cos«9,4sin2¢sin 0,4 cos ¢ sin ¢> dA

// (—2(2cos )i — j—2(2sin ¢sin0) k) llrg x rgl| dA
R
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Example 7

Solution (cont.)

Continuing the computation, we get

//S(VXF)-NdS

= //(—4cos¢i — j—4sin¢sinfk)-
R
(4sin® ¢ cos ), 4sin” ¢sin 0, 4 cos psin ¢) dA

2r  pm
:/ / (—16sin? ¢ cos ¢ cos O — 4sin” g sin 6
o Jo
—16 cos ¢sin® ¢sin ) do df
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Example 7

Solution (cont.)

Finishing the computation . ..

//S(VXF)-NdS

2n  pT
:/ / (—165in? ¢ cos ¢ cos O — 4sin® Bsin 0
o Jo
—16 cos ¢ sin® ¢ sin 9) dodb

27
= / —27sinfdo = 0.
0
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Stokes’ Theorem for Surfaces with Holes
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Stokes’ Theorem for Surfaces with Holes

Stokes' Theorem holds for an oriented surface S that has one or
more holes. The surface integral over S of the normal component
of V x F equals the sum of the line integrals around all the
boundary curves of the tangential component of F, where the
curves are to be traced in the direction induced by the orientation
of S. For such surfaces the theorem is unchanged, but C is
considered as a union of simple closed curves.
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An Important Identity
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An Important Identity

An Important Identity

VxVf=0 or curl(gradf)=0.
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Conservative Fields and Stokes’ Theorem
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Conservative Fields and Stokes’ Theorem

We saw in the section on Green's Theorem that if a vector field F
is conservative, then its integral around any closed loop is zero.

If F=Pi+ Qj—+ Rk, this, in turn, is equivalent on simply
connected regions to

ok _0Q 0P _OR 0Q _09P
dy 0z’ 0z 0Ox Ox Oy’
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Conservative Fields and Stokes’ Theorem

However, these three equations

OR _9Q 9P 0OR 0Q 0P

dy 9z’ 9z Ox  Ox Oy
are exactly the statement that curl(F) = 0.

So, on a simply connected region,
F is conservative if and only if curl(F) = 0.

This leads us to the following theorem.
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Conservative Fields and Stokes’ Theorem

Curl F = 0 Related to the Closed-Loop Property

If V x F =0 at every point of a simply connected open region D
in space, then on any piecewise-smooth closed path C in D,

]{F-dr=0.
C
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