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Surface Integrals

We have seen that a line integral is an integral over a path in a
plane or in space. However, if we wish to integrate over a surface
(a two-dimensional object) rather than a path (a one-dimensional
object) in space, then we need a new kind of integral that can
handle integration over objects in higher dimensions. We can
extend the concept of a line integral to a surface integral to allow
us to perform this integration.
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Parametric Surfaces
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Surface Integrals

Recall that to calculate a scalar or vector line integral over curve
C, we first need to parameterize C. In a similar way, to calculate a
surface integral over surface S, we need to parameterize S. That
is, we need a working concept of a parameterized surface (or a
parametric surface), in the same way that we already have a
concept of a parameterized curve.
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Parametrizations of Surfaces

Just as a curve can be parametrized by a function
r(t) = x(t)i+y(t)j
in the plane or
r(t) =x(t)i+y(t)j+z(t)k

in space, a surface in space can likewise be parametrized, but we
need two parameters.
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Parametrizations of Surfaces

We have
t(u,v) = x(u, )i+ y(u, V) + 2(u, V)
where x(u, v), y(u,v), and z(u, v) are defined on some region R in

the uv-plane. We will at least assume these component functions
are continuous and will usually assume they are differentiable.
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Parametrizations of Surfaces

Suppose the range of r as (u, v) varies over R is a surface S in
space.

The variables u and v are the parameters.

The region R is the parameter domain or parameter space.
This is where the parameters live.
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Examples
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Example 1

Find a parametrization of the surface z =9 — x? — y2, z>0.
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Example 1

First, we sketch the surface to see what it looks like.

Figure: Sketch of Surface z =9 — x? — y?
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Example 1

Solution (cont.)

If we project the surface down onto the xy-plane, we get the disk
x? 4+ y? < 9. We will use this disk as our parameter space R.

Figure: Sketch of Parameter Space for z = 9 — x> — y?
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Example 1

Solution (cont.)

We parametrize this disk using polar coordinates.

We let

X = rcos@

y =rsind,

where 0 < r <3 and 0 <60 < 27.

Mark Faucette Surface Integrals Fall 2025 13 /91



Example 1

Solution (cont.)

To get z, we simply substitute these expressions into the equation
for the surface.

z=9—x° —y2
=9 — (rcosf)? — (rcosv)?
=9—r?cos?f — r’sin’f
=9 — r?(cos? § + sin” 9)

=9 r°
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Example 2

Example

Find a parametrization of the portion of the sphere
x? 4 y? 4 z% = 4 in the first octant between the xy-plane and the

cone z = /x2 + y2.
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Example 2

First, we sketch the surface to see what it looks like. The surface
is the purple surface below the cone, over the xy-plane, and only
over the first quadrant in the xy-plane.

Solution

See the sketch of the surface on the next slide.
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Example 2

Solution (cont.)

Figure: Sketch of Surface in Example 2
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Example 2

Solution (cont.)

We use the equations for both surfaces to find where the two
surfaces intersect.

X +y?+22=4

2 2
(\/xz—i—yz) +z°=4

2+ 22=4
27° =4
72 =2
x2+y?=2
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Example 2

Solution (cont.)

Figure: Sketch of Surface in Example 2

So, if we project the surface down onto the xy-plane, we get the
quarter washer 2 < x? + y2 < 4 in the first quadrant. We will use
this quarter annulus as our parameter space R.
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Example 2

Solution (cont.)

We parametrize this quarter annulus using polar coordinates again.

X = rcosf

y =rsinf,

where /2 <r<2and 0 <0 < /2.
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Example 2

Solution (cont.)

To get z, we simply substitute these expressions into the equation
for the surface.
x> + y2 +22=4
rP+z2=4
22=4-—7?

z=14—r.
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Example 2

Solution (cont.)

So, our parametrization is

X = rcosf

y =rsinf
z=v4—r?

where\/§§r§23nd0§0§7r/2.
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Example 3

Find a parametrization of the portion of the plane x+y +z=1
inside the cylinder x% + y? = 9.
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Example 3

Solution

First, we sketch the surface to see what it looks like. The surface
is the portion of the purple plane inside the cylinder.

Figure: Sketch of Surface in Example 3
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Example 3

Solution (cont.)

If we project the surface down onto the xy-plane, we get the disk
x? 4+ y? < 9. We will use this disk as our parameter space R.

Figure: Sketch of Parameter Space for Example 3
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Example 3

Solution (cont.)

We parametrize this disk using polar coordinates as we did in
Example 1.

X = rcos@

y =rsinf

with0<r<3,0<6<2m.
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Example 3

Solution (cont.)

Then we find z=1—x—y =1—rcosf — rsiné for (r,6) in our
region R.

This gives us the parametrization

X = rcosf
y =rsinf

z=1—rcosf — rsind.

The parameter space is0 < r <3, 0 <60 < 27.
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Parametrizations of Surfaces

Definition

A parametrized surface
r(u,v) =x(u,v)i+y(u,v)j+z(u,v)k

is smooth if r, and r, are continuous and r, X r, is never zero on
the interior of the parameter domain.

This restriction guarantees that the surface has a tangent plane at
each point.
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Surface Area of a Parametric Surface
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Surface Area

Let S be a surface with parameterization
r(u,v) = x(u,v)i+ y(u,v)j+z(u,v)k

over some parameter domain D. We assume here and throughout
that the surface parameterization

r(u,v) = (x(u,v),y(u,v),z(u,v),)

is continuously differentiable—meaning, each component function
has continuous partial derivatives. Assume for the sake of
simplicity that D is a rectangle (although the following material
can be extended to handle nonrectangular parameter domains).

Mark Faucette Surface Integrals Fall 2025 30 /91



Surface Area

The tangent vector to the surface in the u-direction is
[0 by 0z
Y \ouou ou/”

The tangent vector to the surface in the v-direction is

[ 0x Oy 0z
N OvIavi ov /)
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Surface Area

If we take the rectangle that is Au by Av in the parameter space,
R, the image of this region in space is approximated by the part of
the tangent plane to the surface given by the parallelogram

spanned by
_ /0x 9y 0z
fulbu = <au’auvau> au
and 3% 8y 3
_ [ ox 9y 0z
rAv = <8v’8v’8v> Av.
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Surface Area

The area of the parallelogram spanned by r, Au and r,Av is
lry X ry|| AuAv.

The quantity ||r, X r,|| is the absolute value of the Jacobian for
this change of coordinates.

It measures the distortion in area caused by the parametrization.
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Surface Area

Definition

Let r(u,v) = (x(u, v),y(u,v),z(u,v)) with parameter domain R
be a smooth parameterization of surface S. Furthermore, assume
that S is traced out only once as (u, v) varies over R. The surface

area of S is
/ |lry X ry|| dA,

0, 0,
where r, = (%, =8 %) and r, = (2 e

v? v’

QalQa
<IN

)-
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Examples
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Example 4

Find the area of the portion of the plane y + 2z = 2 inside the
cylinder x? 4 y? = 1.
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Example 4

Solution

First, we have to parametrize the surface. You do this in the same
way we did in Examples 1 and 3. We just need to change the
radius there from 3 to 1.

X = rcosf
y =rsinf
1
=1— —rsind.
z 2rsm

The parameter space R in rf-space is given by 0 < r <1,
0<6<2nr.
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Example 4

Solution (cont.)

Now we compute the Jacobian of this parametrization.

r. = <c059,sin 9,—%sin 9>
1
<—r5|n9 rcosf, —Erc059>

1
r 07_
rr X rg 2 >
12 NG
lr, x rg|| = (§> +r2_7r
dsz‘/;rdrde.
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Example 4

Solution (cont.)

The area of the surface S is given by

/dS /—rdA
27
/ /—rdrd9

VB

2"

o1
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Example 5

Find the area of the portion of the paraboloid z = x? + y? between
the planes z =1 and z = 4.
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Example 5

First, we sketch the surface:

Figure: Sketch of Surface in Example 5

The surface is the part of the purple paraboloid between the red
and blue planes.

Mark Faucette Surface Integrals Fall 2025 41 /91



Example 5

Solution (cont.)

First, we have to parametrize the surface.
The plane z =1 cuts out the circle
x2 + y2 =1
on the surface.
The plane z = 4 cuts out the circle
xX2+y?>=4

on the surface.
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Example 5

Solution (cont.)

If we project the surface between these two planes into the
xy-plane, we get the annulus 1 < x? + y? < 4.

This will be our parameter space R, but we will use polar
coordinates.

= rcosf

rsin@

r.

N < X
I

The parameter space R in rf-space is given by 1 < r < 2,
0 <0 <2n.
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Example 5

Solution (cont.)

Now we compute the Jacobian of this parametrization:

r, = (cosf,sinf,2r)
ro = (—rsinf, rcos6,0)
r X rg= <—2r2 cos(f), —2r?sin(#), r)
rr x 1| = \/(—2r2 cos(0))? + (—2r2sin(0))? + r2
— Va2 +1
dS = r\/m dr do.
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Example 5

Solution (cont.)

The area of the surface S is given by

/dS:/r\/4r2+1drd9
S R
27 2
:/ /r\/4r2+1drd6’
T 1 3/2
= 4r° +1 do
[, w7

=/27r 1 (17\/_ 5\/3) do
0
- % (17\/_ 5v/5 )
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Surface Integral of a Scalar-Valued Function
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Surface Integral of a Scalar-Valued Function

Let S be a piecewise smooth surface with parameterization
f(u, v) = x(u, v)i + y(u, v)j+ 2(u, V) Kk

with parameter domain R and let f(x,y, z) be a function with a
domain that contains S. For now, assume the parameter domain R
is a rectangle, but we can extend the basic logic of how we proceed
to any parameter domain (the choice of a rectangle is simply to
make the notation more manageable).
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Surface Integral of a Scalar-Valued Function

Divide rectangle R into subrectangles R;; with horizontal width Au
and vertical length Av. Suppose that / ranges from 1 to m and j
ranges from 1 to n so that R is subdivided into mn rectangles.

This division of R into subrectangles gives a corresponding division
of S into pieces Sj;. Choose point Pj; in each piece Sj;, evaluate Pj;
at f, and multiply by area ASj; to form the Riemann sum

DD f(Py) AS;
i=1 j=1

To define a surface integral of a scalar-valued function, we let the
areas of the pieces of S shrink to zero by taking a limit.
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Surface Integral of a Scalar-Valued Function

The surface integral of a scalar-valued function of f over a
piecewise smooth surface S is

[ fexres= im 35 riey

i=1 j=1
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Surface Integral of a Scalar-Valued Function

Recall the definition of vectors r, andr,:
_ /Ox Oy 0Oz _ /Ox Oy 0Oz
’“—<auwau> and ry = <avfav’av>

ASj =~ ||lry x 1| ARj.

Then
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Surface Integral of a Scalar-Valued Function

Taking the limit as Au and Av both go to zero, we get

//S f(x,y,z)dS = m’lrimoozz F(Py)|ru x ry|| ARy

i=1 j=1

which gives us

/ / Fx,y,2)dS = / / Fx,y:2) lIea % 1y | dA,
S R

where dA is du dv or dv du.
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Calculating a Surface Integral
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Example 6

Integrate the function G(x,y, z) = z over the cylindrical surface
y24+22=4,2>0,1<x<4.
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Example 6

We parametrize the surface by

X=u
r(u,v) =<y =2cosv
z =2sinv

forl<u<4, 0<v<m.
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Example 6

Solution (cont.)
Now, we compute the Jacobian:
ry = <1a Oa 0>
r, = (0,—2sinv,2cos v)

ry, X r, = (0,—2cos v, —2sinv)

lrw % 1]l = /(2 cos V)2 + (~2sinv)? = 2.
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Example 6

Solution (cont.)

So, the integral is given by

//zdS://2sin(v)Hru><rVHdudv
S R
T 4
:/ / 2sin(v) - 2dudv
0 J1
™ 4
:4/ / sin(v) du dv
0 J1

= 4/ 3sin(v) dv
0
=4[—-3cos(v)|5 = 24.
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Example 7

Integrate the function G(x,y, z) = x2 over the unit sphere
X2ty 722 =1,
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Example 7

We parametrize the surface using spherical coordinates.
x =sin¢cosf, y=singsinf, 2z = cosq,

for 0 < ¢ <, 0< 6 <2r. This is our parameter space R.
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Example 7

Solution (cont.)
We compute
ry = (cos ¢ cos @, cos gsin b, —sin ¢)
rop = (—sin¢sinf,sin ¢ cosf,0)
ry X rg = (sin? ¢ cos B, sin? ¢ sin 6, sin ¢ cos ¢)
lrs x ro|l = \/(sin2 ¢ cos )2 4 (sin? ¢ sin 0)2 + (sin ¢ cos ¢)?
= sin ¢.
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Example 7

Solution (cont.)

Now, we compute:
2 1o . 2
//SX dS = //R(smdmosﬂ) llrs x rgl| dop df

=// (sin ¢ cos 0)? sin ¢ d¢ dO
R
27 g

= / / (sin® ¢ cos? 0) do df
o Jo

271'4
:/0 §c0529d9

4
= —T.

3
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Example 8

Integrate G(x,y,z) = x + y + z over the portion of the plane
2x + 2y + z = 2 that lies in the first octant.
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Example 8

Solution

First, we draw the surface we're integrating over.

Figure: Sketch of Surface in Example 3
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Example 8

Solution (cont.)

If we project into the xy-plane, we get the triangle with vertices
(0,0), (1,0), and (0,1). The diagonal edge has equation

x 4+ y = 1. This triangle is the region R that is the parameter
space. The parametrization is

X =X
y=Yy
z=2—-2x—2y

for (x,y) in the region R.
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Example 8

Solution (cont.)

Now, we compute the area element:

ds = \/1 + (F)2 + (£,)2 dx dy

= \/1 +(—2)2 + (—2)? dx dy
= 3dxdy.
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Example 8

Solution (cont.)

Finally, we compute the integral:

//S(X+y+z)d5:/()1/01_y[x+y+(2—2x—2)/)]3dXdy

1 1-y
:3// (2—x—y)dxdy
0o Jo
1 1 1-y
3/ <2x——x2—xy>
0 2 0
3/1 L2 oy 43) g
o 2}’ y 5 y

dy
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Example 8

Solution (cont.)

Concluding the computation, we get

171 3
//(X+y+z)d5:3/ <—y2—2y+—) dy
s o \2 2
15 o, 3\

3[(6)/ y+2y>

3.
2

0

Wl N
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Example 9

Example

A piece of metal has a shape that is modeled by paraboloid
z=x?4y? 0 < z <4, and the density of the metal is given by
p(x,y,z) = z+ 1. Find the mass of the piece of metal.
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Example 9

For a surface, mass is density times area, so the mass of the
surface is given by the integral

//Sp(x,y,z)d5://s(z+1)d5
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Example 9

Solution (cont.)

If we project the surface into the xy-plane, we get the disk of
radius 2 centered at the origin. This will be our parameter space R
and we will use polar coordinates here. The parametrization of the

surface S is then
x(r,0) = rcosf

y(r,0) =rsiné
z(r,0) = r?

for0 <O <2rand 0 < r < 2.
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Example 9

Solution (cont.)

Next, we compute the Jacobian:

gk i i kK

e xrol| = |2 % 221 = cosf§  sinf 2r
ox Oy 9z —rsinf rcosf 0
20 80 20

= ||-2r* cos0i— 2r?sinj + rk||
:\/ —2r2cos0)2 + (—2r2sin )2 + r2

=\A4r* 4+ r2 = r\/4r? +
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Example 9

Solution (cont.)

The mass of the surface is then

//S(z+1)d5://R(r2+1) . r/4rZ 1 L dr db.
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Example 9

Solution (cont.)

Let u = 4r2+ 1. Then du = 8r dr and % du = r dr. Substituting,
we get

2 2
/ /(r2+1)-r\/4r2+1drd9
o Jo

:/0%/117 <%(u—1)+1> -%\/ﬂdudH

27 17
_ 1/ / 132302\ qude
g)y ), \a 4
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Example 9

Solution (cont.)

Continuing, we get

21 17
/ / (1 w24 2 u1/2) du df

1 1 3 o 1
_8/0 [10 (5+u)

2 17
do = [ (5 + u)‘ d9
1 27 1 27
= —/ 173/2(22) — 13/2(6) df = %/ 37417 — 6 d6
0

1 80 1

80
187\/ﬁ -3
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Orientation of a Surface
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Orientation of a Surface

Curves are oriented by the direction in which they are traversed.

Surfaces in space are oriented by choosing a distinguished normal
vector to the surface. When one can choose a continuous vector
field of unit normal vectors n on a smooth surface, the surface is
called orientable or two-sided.
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Orientation of a Surface

It is a theorem that every closed surface in space in orientable.
However, there are closed surfaces that are not orientable. One
such is the Klein bottle.

See the sketch of a Klein bottle on the next slide.
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Orientation of a Surface

Glue ends so

_’—_____-_-_‘-N_

arrow directions
disagree

Cylinder

Immersed Klein bottle
in ¥

Figure: Immersion of the Klein Bottle in R3
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Orientation of a Surface

The Klein bottle has no inside or outside. It is a closed one-sided
surface. However, it does not live in 3-dimensional space. The
Klein bottle naturally lives in 4-dimensional space.
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Orientation of a Surface

To quote Victor Guillemin and Alan Pollack, the authors of the
text Differential Topology,

To envision an embedding in R4, represent the fourth di-

mension by the density of red coloration and allow the
bottle in the drawing to blush as it passes through itself.
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Surface Integral of a Vector Field
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Surface Integral of a Vector Field

Let S be an oriented surface with unit normal vector N. Let v be a
velocity field of a fluid flowing through S, and suppose the fluid
has density p(x, y, z). Imagine the fluid flows through S, but S is
completely permeable so that it does not impede the fluid flow.
The mass flux of the fluid is the rate of mass flow per unit area.
The mass flux is measured in mass per unit time per unit area.
How could we calculate the mass flux of the fluid across S7
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Surface Integral of a Vector Field

The rate of flow, measured in mass per unit time per unit area, is
pN. To calculate the mass flux across S, chop S into small pieces
Sjj. If Sjj is small enough, then it can be approximated by a
tangent plane at some point P in S;;. Therefore, the unit normal
vector at P can be used to approximate N(x, y, z) across the
entire piece Sj;, because the normal vector to a plane does not
change as we move across the plane. The component of the vector
pv at P in the direction of N is pv - N at P.
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Surface Integral of a Vector Field

Since §j; is small, the dot product pv - N changes very little as we
vary across Sj;, and therefore pv - N can be taken as approximately
constant across S;;. To approximate the mass of fluid per unit time
flowing across Sj; (and not just locally at point P), we need to
multiply (pv - N)(P) by the area of Sj;. Therefore, the mass of
fluid per unit time flowing across Sj; in the direction of N can be
approximated by (pv - N)AS;;, where N, p, and v are all evaluated
at P.
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Surface Integral of a Vector Field

Definition

Let F be a continuous vector field with a domain that contains
oriented surface S with unit normal vector N. The surface integral

of Fover S is
//F-dS://F-NdS
S S

Integral [[¢F-NdS is called the flux of F across S. A surface
integral over a vector field is also called a flux integral.
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Surface Integral of a Vector Field

Once again, we need a more useful formula.

So, let S be an orientable surface parametrized by
r(u,v) = (x(u,v),y(u,v),z(u,v)) over a parameter domain R.
Then, the unit normal vector is given by

N — r, Xr,
[ra < ry|l
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Surface Integral of a Vector Field

Then we have
//F N dS — // > _gs
Hru X "VH
ry Xr,
(r(u,v) vy x r,|| dA
// Hru X v||

_ //R F(r(u,v)) - (ra x rv) dA.
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Surface Integral of a Vector Field

Therefore, to compute a surface integral over a vector field we can
use the equation

//F NdS = // (ry xr,) dA.
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Example 10

Example

Let v(x,y,z) = (x> + y2,z,4y) m/sec represent a velocity field of
a fluid with constant density 100 kg/m3. Let S be the half-cylinder
r(u,v) = (cosu,sinu,v), 0 <u<m, 0<v<2,

Calculate the mass flux of the fluid across S.
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Example 10

We first compute the r, x r,:

= (—sinu,cos u,0)
rV:(OOI)
k
r, Xr,=|—sinu cosu 0
0 1
= (cosu sinu, 0).

Mark Faucette Surface Integrals Fall 2025 90 / 91



Example 10

Solution (cont.)

We compute

//F-NdS
// o) (g < ) A

:// ((cos® u 4 sin® u, v, 4sin u)) - ((cos u, sin u, 0)) dA

1 2
//cosu—l—vsmudvdu—/ [vcosu+§vzsinu du
0

—/ 2cosu+ 2sinudu = 2sinu — 2cosulg = 4.
0
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